

Shorthand for changes of markings		REVIEW
Firing transition:	$M'(p) = \begin{cases} M(p) - W(p,t), \\ M(p) + W(t,p), \\ M(p) - W(p,t) + W(t,p), \\ M(p) \end{cases}$	if $p \in {}^{\bullet}t \setminus t^{\bullet}$ if $p \in t^{\bullet} \setminus {}^{\bullet}t$ if $p \in {}^{\bullet}t \cap t^{\bullet}$ otherwise
Let	$\underline{t}(p) = \begin{cases} -W(p,t) \text{ if } p \in {}^{\bullet}t \setminus t^{\bullet} \\ +W(t,p) \text{ if } p \in t^{\bullet} \setminus {}^{\bullet}t \\ -W(p,t) + W(t,p) \text{ if } p \in \\ 0 \end{cases}$	$t^{\bullet} \cap^{\bullet} t$
\Rightarrow	$\forall p \in P: M'(p) = M(p) + \underline{t}(p)$	
⇒ BF - ES	M' = M + t	-: vector add

Shorthand for changes of markings		REVIEW
Firing transition:	$M'(p) = \begin{cases} M(p) - W(p,t), \\ M(p) + W(t,p), \\ M(p) - W(p,t) + W(t,p), \\ M(p) \end{cases}$	if $p \in {}^{\bullet}t \setminus t^{\bullet}$ if $p \in t^{\bullet} \setminus {}^{\bullet}t$ if $p \in {}^{\bullet}t \cap t^{\bullet}$ otherwise
Let	$\underline{t}(p) = \begin{cases} -W(p,t) \text{ if } p \in {}^{\bullet}t \setminus t^{\bullet} \\ +W(t,p) \text{ if } p \in t^{\bullet} \setminus {}^{\bullet}t \\ -W(p,t) + W(t,p) \text{ if } p \in t^{\bullet} \cap {}^{\bullet}t \\ 0 \end{cases}$	
\Rightarrow	$\forall p \in P: M'(p) = M(p) + \underline{t}(p)$	
⇒ BF - ES	$M' = M + \underline{t} $	-: vector add - 35 -

Matrix M describing all changes
formationsREVIEW $u(p) = \begin{cases} -W(p,t)$ if $p \in {}^{\bullet} \setminus t^{\bullet}$
+W(t,p) if $p \in t^{\bullet} \cap {}^{\bullet} t$
-W(p,t) + W(t,p) if $p \in t^{\bullet} \cap {}^{\bullet} t$
0Def.: Matrix M of net N is a mapping
 $\underline{M}: P \times T \to Z$ (integers)Such that $\forall t \in T: \underline{N}(p,t) = \underline{t}(p)$ Defense

Characteristic Vector

$$\sum_{p \in R} t_j(p) = 0$$
Let:
$$c_R(p) = \begin{cases} 1 \text{ if } p \in R \\ 0 \text{ if } p \notin R \end{cases}$$

$$\Rightarrow \qquad \sum_{p \in R} t_j(p) = t_j \cdot c_R = \sum_{p \in P} t_j(p) \cdot c_R(p) = 0$$
Scalar product

