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Place/transition nets

Def.: (P, T, F, K, W, M0) is called a place/transition net (P/T net) iff
1. N=(P,T,F) is a net with places p ∈ P and transitions t ∈ T
2. K: P → (N0 ∪ {ω}) \{0} denotes the capacity of places

(ω symbolizes infinite capacity)
3. W: F →(N0 \{0}) denotes the weight of graph edges
4. M0: P → N0 ∪{ω} represents the initial marking of places

W

M0

(Segment of some net)

defaults:
K = ω
W = 1

defaults:
K = ω
W = 1

REVIEW

In the following: assume initial marking is finite, capacity ω.
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Unbounded Petri net
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Boundedness

Theorem 1: A P/T net (with finite initial marking) is
bounded iff its reachability set is finite.

Theorem 2: A P/T net is unbounded iff there exist two
reachable markings M, M’, such that
M[*>M’ and M’ > M.

REVIEW
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Algorithm for deciding boundedness

Explore RG(M0) depth-first:
If there exists a marking M‘ on the stack
such that M‘<M,
stop with result UNBOUNDED;

If entire graph explored, return BOUNDED.

REVIEW
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Weak Petri net computers

A P/T net with
r distinguished input places (ini), 
a finite number of internal places si,
one extra output place (out),
one extra start place (on), and
one extra stop place (off)
is called a weak Petri net computer for the function f: Nr → N 
iff there exists for each x∈Nr an initial marking Mx
such that
Mx(on)=1 and Mx(ini)=xi for 1≤ xi ≤ r;
Mx(out)=Mx(off)=0;
Mx(si)=0;
For all reachable markings M≠Mx, 
M(on)=0 and 1≤ M(off) ≤ 1 and M(out) ≤ f(x);
For all reachable markings M≠Mx, if M(off)=1 then M is dead;
For all 0≤ k ≤ f(x), there exists a reachable marking M 
such that M(out)=k and M(off)=1. 

REVIEW
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Multiplication

Source: Matthias Jantzen, Complexity of Place/Transition Nets (1986)

REVIEW
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Computation of Invariants

We are interested in subsets R of places whose number
of labels remain invariant under transitions,
•e.g. the number of trains commuting between
Amsterdam and Paris (Cologne and Paris) remains 
constant

Important for correctness proofs, e.g. the proof of 
liveness

REVIEW
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s

Example Thalys
trains:
more complex

Thalys trains 
between Cologne, 
Amsterdam, 
Brussels and Paris.
Synchronization at 
Brussels and Paris

Thalys trains 
between Cologne, 
Amsterdam, 
Brussels and Paris.
Synchronization at 
Brussels and Paris

REVIEW
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Application to Thalys example

NT cR = 0, with NT=
p p p p p p p p p p p p p

( )00000001111111, =Rc



6

- 11 -BF - ES

Interpretation of the 1st invariant

Characteristic vector describes 
places for Cologne train.
We proved that: the number of 
trains along the path remains 
constant.

Characteristic vector describes 
places for Cologne train.
We proved that: the number of 
trains along the path remains 
constant.

( )00000001111111, =Rc

s

CR,1
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Application to Thalys example

NT cR = 0, with NT=
p p p p p p p p p p p p p

,1,0,0),1,0,0,1,1(1,0,0,0,12, =Rc
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Interpretation of the 2nd invariant

We proved that:
None of the Amsterdam trains  
gets lost.

We proved that:
None of the Amsterdam trains  
gets lost.

,1,0,0),1,0,0,1,1(1,0,0,0,12, =Rc

s

CR,2
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Application to Thalys example

NT cR = 0, with NT=
p p p p p p p p p p p p p

( )01000110000002, =Rc



8

- 15 -BF - ES

Solution vectors for Thalys example

We proved that:
• the number of trains serving 

Amsterdam, Cologne and 
Paris remains constant.

• the number of train drivers 
remains constant.

We proved that:
• the number of trains serving 

Amsterdam, Cologne and 
Paris remains constant.

• the number of train drivers 
remains constant.

( )00000001111111, =Rc
( )01000110000002, =Rc
( )10011000000003, =Rc

( )00111001100014, =Rc s

CR,2

CR,3 CR,1CR,4
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Solution vectors for Thalys example

It follows:
• each place invariant must 

have at least one label at the 
beginning, otherwise “dead”

• at least three labels are 
necessary in the example

It follows:
• each place invariant must 

have at least one label at the 
beginning, otherwise “dead”

• at least three labels are 
necessary in the example

s

CR,2

CR,3 CR,1CR,4
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Invariants & boundedness

A net is covered by place invariants
iff every place is contained in some invariant.
Theorem 4: 
a) If R is a place invariant and p ∈ R, then p is bounded.
b) If a net is covered by place invariants then it is

bounded. 
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Deadlock

A dead marking (deadlock) is a marking where no transition can fire.
A Petri net is deadlock-free if no dead marking is reachable.

REVIEW
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Liveness

A transition t is dead at M if no marking M‘ is reachable
from M such that t can fire in M‘.
A transition t is live at M if there is no marking M‘
reachable from M where t is dead.
A marking is live if all transitions are live.
A P/T net is live if the initial marking is live.

Observations:
A live net is deadlock-free.
No transition is live if the net is not deadlock-free.

REVIEW
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Structural properties: deadlock-traps

A place set S is a (static) deadlock if every transition
that adds token from S also removes token from S.
A place set S is a trap if every transition that removes
token from S also adds token to S.
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Empty structural deadlocks and marked traps

Empty structural deadlocks are never re-marked;
Marked traps are never emptied.
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Sufficiently marked places

A place is called sufficiently marked if there are enough token for one of the
outgoing transitions:
Define
W-(p)= min { W(p,t) | (p,t) ∈ F } if there exists a (p,t) ∈ F

and 0 otherwise
Place p is sufficiently marked in marking M, if M(p) ≥ W-(p)
A set of places is sufficiently marked if it contains a sufficiently marked
place.

2 2
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Deadlock-Trap Property

A P/T has the deadlock-trap property, 
if every (static) deadlock contains a trap
that is sufficiently marked in M0.
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Deadlock-Trap Property

Theorem 5:
Every homogeneous P/T net with non-blocking weights
that has the deadlock-trap property is deadlock-free.

Homogeneous: For each place, all outgoing edges have
the same weight.

Non-blocking weights: W+(p) ≥ W-(p)
W-(p)= min { W(p,t) | (p,t) ∈ F } if there exists a (p,t) ∈ F

and 0 otherwise
W+(p)= min { W(t,p) | (t,p) ∈ F } if there exists a (t,p) ∈ F

and 0 otherwise
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Proof of Theorem 5

Theorem 5: Every homogeneous P/T net with non-
blocking weights that has the deadlock-trap property is
deadlock-free.
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Fairness

Dining philosophers problem

n>1 philosophers sitting at a round 
table;
n forks,
n plates with spaghetti;
philosophers either thinking
or eating spaghetti
(using left and right fork).
2 forks needed!
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Executions

Let w = (ti), i ≥0, an infinite sequence of transitions.
We call w an execution of the Petri net if there exists an 
infinite sequence of markings (Mi), i ≥0, starting with the
initial marking M0, such that
M0 [t0> M1 [t1> M2 [t2> …

Set of all exections of N: L(N)
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Emptiness

Theorem 6: Emptiness of L(N) is decidable.
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Fairness
Let N be a Petri net and w an execution of N.

w is impartial with respect to a set of transitions T
iff every transition in T occurs infinitely often in w.
w is just with respect to a set of transitions T
iff every transition in T
that is enabled in all except finitely many markings
occurs infinitely often in w.
w is fair with respect to a set of transitions T
iff every transition in T
that is enabled in infinitely many markings
occurs infinitely often in w.

w is impartial ⇒ w is fair
w is fair ⇒ w is just
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Persistent nets

A pair of transitions t1 and t2 are in conflict at marking M 
iff t1 and t2 are enabled in M, but M is too small to satisfy
both preconditions.
A net is statically conflict-free
if there is no marking 
where two transitions are in conflict;
A net is dynamically conflict-free (persistent)
if there is no reachable marking
where two transitions are in conflict.
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Persistent nets

Theorem 7: If the net is persistent, then every just 
execution is fair.
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State Fairness

An execution w=(ti) is state-fair if, for all markings M and 
all transitions t that are enabled in M, the following
holds:

If M is visited infinitely often, 
then t is taken infinitely often at M.

a

b

e d

c
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State Fairness

Theorem 8: Let N be a bounded net, t a live transition, and 
w a state-fair execution of N. Then t occurs infinitely
often in w.
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Proof of Theorem 8

Theorem 8: Let N be a bounded net, t a live transition, and 
w a state-fair execution of N. Then t occurs infinitely
often in w.
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Extensions: finite capacities

p

t1

K(p)=4

t3

t2
2

2
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Extensions: Petri nets with priorities

t1 〈 t2 : t2 has higher priority than t1.

Petri nets with priorities are Turing-complete.

test

p1 p0

t2 t1
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Extensions: Predicate/transition nets

Goal: compact representation of complex systems.
Key changes:

Tokens are becoming individuals;
Transitions enabled if functions at incoming edges true;
Individuals generated by firing transitions defined through functions

Changes can be explained by folding and unfolding C/E 
nets,

semantics can be defined by C/E nets.
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Model quite clumsy.

Difficult to extend to 
more philosophers.

Model quite clumsy.

Difficult to extend to 
more philosophers.
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Predicate/transition model
of the dining philosophers problem

Let x be one of the philosophers,
let l(x) be the left fork of x,
let r(x) be the right fork of x.

p1
p3

p2

f1
f2

f3

Token: individuals.

Semantics can be 
defined by replacing 
net by equivalent 
condition/event net.

Model can be 
extended to arbitrary 
numbers.

Token: individuals.

Semantics can be 
defined by replacing 
net by equivalent 
condition/event net.

Model can be 
extended to arbitrary 
numbers.


