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Placel/transition nets REVIEW

Def.. (P, T, F, K, W, M,) is called a place/transition net (P/T net) iff
1. N=(P,T,F)is anet with places p € P and transitionst € T
2. K:P — (N, v {o}) {0} denotes the capacity of places
(o symbolizes infinite capacity)
3. W:F —(N, \{0}) denotes the weight of graph edges
4. My P > Ny U{w} represents the initial marking of places

W (Segment of some net)

defaults:
K=o
W=1

In the following: assume initial marking is finite, capacity o.
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Unbounded Petri net REVIEW
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Boundedness REVIEW

Theorem 1: A P/T net (with finite initial marking) is
bounded iff its reachability set is finite.

Theorem 2: A P/T net is unbounded iff there exist two
reachable markings M, M’, such that
M[*>M" and M’ > M.
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Algorithm for deciding boundedness

= Explore RG(M,) depth-first:
= If there exists a marking M* on the stack
such that M‘'<M,
stop with result UNBOUNDED;

= |f entire graph explored, return BOUNDED.
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REVIEW

Weak Petri net computers

A P/T net with
r distinguished input places (in;),
a finite number of internal places s;,
one extra output place (out),
one extra start place (on), and
one extra stop place (off)
is called a weak Petri net computer for the function f: N- — N
iff there exists for each xeN"an initial marking M,
such that

M,(on)=1 and M, (in)=x;for 1< x; <r;

M, (out)=M,(off)=0;

Mx(si)ZO;

For all reachable markings M=M., ,

M(on)=0 and 1< M(off) < 1 and M(out) < f(x);

= For all reachable markings M=M,, if M(off)=1 then M is dead;

= For all 0< k <f(x), there exists a reachable marking M
such that M(out)=k and M(off)=1.
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Multiplication REVIEW
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Source: Matthias Jantzen, Complexity of Place/Transition Nets (1986)
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Computation of Invariants REVIEW

We are interested in subsets R of places whose number
of labels remain invariant under transitions,

*e.g. the number of trains commuting between
Amsterdam and Paris (Cologne and Paris) remains
constant

Important for correctness proofs, e.g. the proof of
liveness
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Example Thalys
trains:
more complex

= Thalys trains
between Cologne,
Amsterdam,
Brussels and Paris.

= Synchronization at
Brussels and Paris
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REVIEW

Disconnecting
/

O Cologne

Brussel:

Paris

Application to Thalys example

NT ¢g = 0, with N'=

[ Ip pps palps [P ops]
t 1

P Pio| P Pz

P |

ts 1|1
ts 1 -1
ty 1 -1

ts | 1 4 -1
tg -1 ]
t7 | 1 -1
ts 1
tg

tin

1

Cr,=(1111110000000)
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Interpretation of the 1st invariant

places for Cologne train.
We proved that: the number o

trains along the path remains Brusssl
constant.
»
‘L " Paris
B[R
8y Gare de Lyon
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Application to Thalys example

NT ¢, = 0, with NT= T[r{n F;z P Palps nifp pg—grp;_ [P P2 [Pis
ta 1[-1 |

ts 1 -1

ty | 14}

Cg, =(1,0,0,0,1,1,0,0,1,1,1,0,0)
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Interpretation of the 2"d invariant

CR‘Z :(1’0’0’0’1’1’0’0,1,1’1’010) 10\Amsterdam ;/@)‘\Cologne
;1 1(:1\ . 1\_3_[ fs\ i
CRp G\ oF
We proved that: necﬁﬂg@
None of the Amsterdam trains T Brussels
gets lost. | ,
» ¥
i ) I—.
; Gare du Nord
ré  OF .
v 1
B[R
8) Gare de Lyon
BF - ES - 13-

Application to Thalys example

. P P[Py palPs PP Ps [P Pio [P Pua[Pus ]
NTcr =0, with NT= ;1 = 1 1
ts 1|1

Cr,=(0000001100010)
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Solution vectors for Thalys example

Cr,=(1111110000000)
Cr,=(0000001100010)
C.;=(0000000011001) “#

Crs=(1000110011100)

We proved that:

» the number of trains serving
Amsterdam, Cologne and
Paris remains constant.

* the number of train drivers

; & {6 VARE
remains constant. (8)" Gare de Lyon

Paris
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Solution vectors for Thalys example

It follows:

» each place invariant must
have at least one label at the
beginning, otherwise “dead”

» atleast three labels are
necessary in the example

11 ¥ Paris
'z!’ 8 ) 7 | I;I
‘-‘@ngare de Lyon
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Invariants & boundedness

= Anetis covered by place invariants
iff every place is contained in some invariant.
* Theorem 4:
a) If R is a place invariant and p € R, then p is bounded.
b) If a net is covered by place invariants then it is
bounded.
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Deadlock REVIEW

= Adead marking (deadlock) is a marking where no transition can fire.
= A Petri net is deadlock-free if no dead marking is reachable.

9 o
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Liveness REVIEW

= Atransition tis dead at M if no marking M’ is reachable
from M such that t can fire in M".

= Atransition tis live at M if there is no marking M*
reachable from M where t is dead.

= A marking is live if all transitions are live.
= A P/T netis live if the initial marking is live.

Observations:
= A live net is deadlock-free.

= No transition is live if the net is not deadlock-free.
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Structural properties: deadlock-traps

= Aplace set S is a (static) deadlock if every transition

that adds token frem m token from S.

= AplacesetSisa trap if every transition that removes
token from S also adds token to S.

@/Dﬂig o
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Empty structural deadlocks and marked traps

= Empty structural deadlocks are never re-marked;
= Marked traps are never emptied.
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Sufficiently marked places

A place is called sufficiently marked if there are enough token for one of the
outgoing transitions:

= Define
W-(p)= ﬂr_] {W(p,t) | (p,t) € F}ifthere exists a (p,t) € F
= and 0 otherwise —

= Place p is sufficiently marked in marking M, if M§2 >W-(p)

= A set of places is sufficiently marked if it contains a sufficiently marked
place.
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Deadlock-Trap Property

‘e,
= A P/T has the deadlock-trap property, r ook %

if every (static) deadlock contains a trap Uit ( *W“D)
that is sufficiently marked in M. dinhade ty afficud
Mavled 1y MO,

Ve

T —a——
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Deadlock-Trap Property

Theorem 5:
Every homogeneous P/T net with non-blocking weights
that has the deadlock-trap property is deadlock-free.

Homogeneous: For each place, all outgoing edges have
the same weight.

Non-blocking weights: W*(p) > W-(p)

= W-(p)=min { W(p,t) | (p,t) € F }if there exists a (p,t) € F
and 0 otherwise

= W*(p)=min { W(t,p) | (t,p) € F }if there exists a (t,p) € F
and O otherwise
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Proof of Theorem 5

Theorem 5: Every homogeneous P/T net with non-

blocking weights that has the deadlock-trap property is
deadlock-free.
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Fairness

Dining philosophers problem

= n>1 philosophers sitting at a round
table;

= n forks,
= n plates with spaghetti;

= philosophers either thinking
or eating spaghetti
(using left and right fork).

= 2 forks needed!
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Executions

= Letw = (t), i 20, an infinite sequence of transitions.

= We call w an execution of the Petri net if there exists an
infinite sequence of markings (M), i >0, starting with the
initial marking M,, such that
Mo [to> My [t;> My [to> ...

= Set of all exections of N: L(N)
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Emptiness

= Theorem 6: Emptiness of L(N) is decidable.
[f N umbwmmdd Y — (Nov\w(‘ha

Mo —> Do RECN) cafotn o Raop 1

Yoo —» Nomwrl?

No — ZV\'TA?Q
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Fairness

Let N be a Petri net and w an execution of N.

» wis impartial with respect to a set of transitions T
iff every transition in T occurs infinitely often in w.

» W is just with respect to a set of transitions T
iff every transition in T
that is enabled in all except finitely many markings
occurs infinitely often in w.

= w is fair with respect to a set of transitions T
iff every transition in T
that is enabled in infinitely many markings
occurs infinitely often in w.

= wisimpartial = w is fair
= wis fair = wis just
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Persistent nets

= A pair of transitions t; and t, are in conflict at marking M
iff t; and t, are enabled in M, but M is too small to satisfy
both preconditions.

= A netis statically conflict-free
if there is no marking
where two transitions are in conflict;

= Anetis dynamically conflict-free (persistent)
if there is no reachable marking
where two transitions are in conflict.

lud
D ) @ — D fu/./vm
&L S S
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Persistent nets

Theorem 7: If the net is persistent, then every just
execution is fair.
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State Fairness

O
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An execution w=(t) is state-fair if, for all markings M and
all transitions t that are enabled in M, the following
holds:

If M is visited infinitely often,
then t is taken infinitely often at M.
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State Fairness

Theorem 8: Let N be a bounded net, ta live transition, and
w a state-fair execution of N. Then t occurs infinitely
often in w.
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M'_é ?

Proof of Theorem 8 . .
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Theorem 8: Let N be a bounded net, t a live transition, and
w a state-fair execution of N. Then t occurs infinitely
often in w.
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Extensions: finite capacities

" K(p)=4
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Extensions: Petri nets with priorities

= t, (1, :t, has higher priority than t;.

test % t, /@\ t,

| |
O O

Py Po

= Petri nets with priorities are Turing-complete.
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Extensions: Predicate/transition nets

= Goal: compact representation of complex systems.
= Key changes:

= Tokens are becoming individuals;

= Transitions enabled if functions at incoming edges true;

= Individuals generated by firing transitions defined through functions
= Changes can be explained by folding and unfolding C/E

nets,
& semantics can be defined by C/E nets.
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Model quite clumsy.
Difficult to extend to
more philosophers.
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Predicate/transition model
of the dining philosophers problem

= Let x be one of the philosophers, Token: individuals.
= let I(x) be the left fork of x, Semantics can be
= |et r(x) be the right fork of x. defined by replacing

net by equivalent
condition/event net.

Model can be

extended to arbitrary
(@ y numbers.
\%

1(x) 1(x) o .
@ rﬁi%ﬂ&%‘]
\ =
e rr\/ud\\ﬁK
X X % (I~
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