
1

- 1 -BF - ES

Embedded Systems 7

- 2 -BF - ES

Models of computation for embedded systems

Kahn process
networks, SDF

Data flow model
⊂

Only experimental systems, e.g.
distributed DE in Ptolemy

VHDL,
Simulink

Discrete event (DE)
model

C, C++, Java with libraries
CSP, ADA |

C, C++,
Java

Von Neumann
model

Petri netsComputational
graphs

SDL, MSCsStateCharts,
StateFlow

Communicating
finite state
machines

Message passing
Synchronous | Asynchronous

Shared
memory

Communication/
local computations

2

- 3 -BF - ES

Place/transition nets

Def.: (P, T, F, K, W, M0) is called a place/transition net (P/T net) iff
1. N=(P,T,F) is a net with places p ∈ P and transitions t ∈ T
2. K: P → (N0 ∪ {ω}) \{0} denotes the capacity of places

(ω symbolizes infinite capacity)
3. W: F →(N0 \{0}) denotes the weight of graph edges
4. M0: P → N0 ∪{ω} represents the initial marking of places

W

M0

(Segment of some net)

defaults:
K = ω
W = 1

defaults:
K = ω
W = 1

REVIEW

In the following: assume initial marking is finite, capacity ω.

- 4 -BF - ES

Unbounded Petri net

p1

p2

p3

t1 t2

2
2

2

REVIEW

3

- 5 -BF - ES

Invariants & boundedness

A net is covered by place invariants
iff every place is contained in some invariant.
Theorem 4:
a) If R is a place invariant and p ∈ R, then p is bounded.
b) If a net is covered by place invariants then it is

bounded.

REVIEW

- 6 -BF - ES

Deadlock

A dead marking (deadlock) is a marking where no transition can fire.
A Petri net is deadlock-free if no dead marking is reachable.

REVIEW

4

- 7 -BF - ES

Structural properties: deadlock-traps

A place set S is a (static) deadlock if every transition
that adds token from S also removes token from S.
A place set S is a trap if every transition that removes
token from S also adds token to S.

REVIEW

- 8 -BF - ES

Empty structural deadlocks
and marked traps

Empty structural deadlocks are never re-marked;
Marked traps are never emptied.

REVIEW

5

- 9 -BF - ES

Sufficiently marked places

A place is called sufficiently marked if there are enough token for one of the
outgoing transitions:
Define
W-(p)= min { W(p,t) | (p,t) ∈ F } if there exists a (p,t) ∈ F

and 0 otherwise
Place p is sufficiently marked in marking M, if M(p) ≥ W-(p)
A set of places is sufficiently marked if it contains a sufficiently marked
place.

2 2

REVIEW

- 10 -BF - ES

Deadlock-Trap Property

A P/T has the deadlock-trap property,
if every (static) deadlock contains a trap
that is sufficiently marked in M0.

REVIEW

6

- 11 -BF - ES

Deadlock-Trap Property

Theorem 5:
Every homogeneous P/T net with non-blocking weights
that has the deadlock-trap property is deadlock-free.

Homogeneous: For each place, all outgoing edges have
the same weight.

Non-blocking weights: W+(p) ≥ W-(p)
W-(p)= min { W(p,t) | (p,t) ∈ F } if there exists a (p,t) ∈ F

and 0 otherwise
W+(p)= min { W(t,p) | (t,p) ∈ F } if there exists a (t,p) ∈ F

and 0 otherwise

REVIEW

- 12 -BF - ES

Fairness

Dining philosophers problem

n>1 philosophers sitting at a round
table;
n forks,
n plates with spaghetti;
philosophers either thinking
or eating spaghetti
(using left and right fork).
2 forks needed!

REVIEW

7

- 13 -BF - ES

s5

e2

e5

e4

e3

e1

s4

s3

s2

s1

f5

f1

f2

f3f4

REVIEW

- 14 -BF - ES

s5

e2

e5

e4

e3

e1

s4

s3

s2

s1

f5

f1

f2

f3f4

REVIEW

8

- 15 -BF - ES

Fairness
Let N be a Petri net and w an execution of N.

w is impartial with respect to a set of transitions T
iff every transition in T occurs infinitely often in w.
w is just with respect to a set of transitions T
iff every transition in T
that is enabled in all except finitely many markings
occurs infinitely often in w.
w is fair with respect to a set of transitions T
iff every transition in T
that is enabled in infinitely many markings
occurs infinitely often in w.

w is impartial ⇒ w is fair
w is fair ⇒ w is just

REVIEW

- 16 -BF - ES

Persistent nets

Theorem 7: If the net is persistent, then every just
execution is fair.

REVIEW

9

- 17 -BF - ES

State Fairness

Theorem 8: Let N be a bounded net, t a live transition, and
w a state-fair execution of N. Then t occurs infinitely
often in w.

REVIEW

- 18 -BF - ES

Extensions: finite capacities

p

t1

K(p)=4

t3

t2
2

2

REVIEW

10

- 19 -BF - ES

Extensions: Petri nets with priorities

t1 〈 t2 : t2 has higher priority than t1.

Petri nets with priorities are Turing-complete.

test

p1 p0

t2 t1

REVIEW

- 20 -BF - ES

Predicate/transition model
of the dining philosophers problem

Let x be one of the philosophers,
let l(x) be the left fork of x,
let r(x) be the right fork of x.

p1
p3

p2

f1
f2

f3

Token: individuals.

Semantics can be
defined by replacing
net by equivalent
condition/event net.

Model can be
extended to arbitrary
numbers.

Token: individuals.

Semantics can be
defined by replacing
net by equivalent
condition/event net.

Model can be
extended to arbitrary
numbers.

REVIEW

11

- 21 -BF - ES

Summary Petri nets

Pros:
Appropriate for distributed applications,
Well-known theory for formally proving properties,
Initially theoretical topic, but now widely adapted in
practice due to increasing number of distributed
applications.

Cons (for the nets presented) :
problems with modeling timing,
no programming elements,
no hierarchy.

Extensions:
Enormous amounts of efforts on removing limitations.

- 22 -BF - ES

Data Flow Models

12

- 23 -BF - ES

Data flow modeling

Def.: The process of identifying, modeling and
documenting how data moves around an information
system.

Data flow modeling examines
processes (activities that transform data from one form to
another),
data stores (the holding areas for data),
external entities (what sends data into a system or receives data
from a system, and
data flows (routes by which data can flow).

- 24 -BF - ES

Data flow as a “natural” model of applications

http://www.agilemodeling.com/artifacts/dataFlowDiagram.htm

Registering for courses

www.ece.ubc.ca/~irenek/techpaps/vod/vod.html

Video on demand system

13

- 25 -BF - ES

Process networks

Many applications can be specified in the form of a set of
communicating processes.

Example: system with two sensors:

mux

temperature sensor
humidity sensor

FIFO

Alternating read
loop
read_temp; read_humidity
until false;
of the two sensors
not the right approach.

- 26 -BF - ES

The case for multi-process modeling
in imperative languages
MODULE main;
TYPE some_channel =

(temperature, humidity);
some_sample : RECORD

value : integer;
line : some_channel

END;
PROCESS get_temperature;
VAR sample : some_sample;
BEGIN
LOOP
sample.value := new_temperature;
IF sample.value > 30 THEN
sample.line := temperature;
to_fifo(sample);
END

END get_temperature;

PROCESS get_humidity;
VAR sample : some_sample;
BEGIN
LOOP
sample.value := new_humidity;
sample.line := humidity;
to_fifo(sample);
END

END get_humidity;

BEGIN
get_temperature; get_humidity;

END;

• Blocking calls new_temperature, new_humidity
• Structure clearer than alternating checks for

new values in a single process

How to model
dependencies between
tasks/processes?

14

- 27 -BF - ES

Dependences between processes/tasks

Get_tem-
perature

Get_
humidity

FIFO
main

- 28 -BF - ES

Task graphs

Def.: A dependence graph is a directed graph G=(V,E) in
which E ⊆ V × V is a partial order.
If (v1, v2) ∈ E, then v1 is called an immediate predecessor
of v2 and v2 is called an immediate successor of v1.
Suppose E* is the transitive closure of E.
If (v1, v2) ∈ E*, then v1 is called a predecessor of v2 and v2
is called a successor of v1.

Nodes are assumed to be
a „program“ described in
some programming
language, e.g. C or Java.

Nodes are assumed to be
a „program“ described in
some programming
language, e.g. C or Java.

Sequence
constraint

15

- 29 -BF - ES

Reference model for data flow:
Kahn process networks (1974)

Special case: Kahn process networks:
executable task graphs;
Communication via infinitely large FIFOs

Special case: Kahn process networks:
executable task graphs;
Communication via infinitely large FIFOs

For asynchronous message passing:
communication between tasks is buffered
For asynchronous message passing:
communication between tasks is buffered

- 30 -BF - ES

16

- 31 -BF - ES

Properties of Kahn process networks (1)

Each node corresponds to one program/task;
Communication is only via channels;
Channels include FIFOs as large as needed;
Channels transmit information within an unpredictable but finite
amount of time;
Mapping from ≥1 input seq. to ≥1 output sequence;
In general, execution times are unknown;
Send operations are non-blocking, reads are blocking.
One producer and one consumer;
i.e. there is only one sender per channel;

- 32 -BF - ES

Properties of Kahn process networks (2)

There is only one sender per channel.
A process cannot check whether data is available before
attempting a read.
A process cannot wait for data for more than one port at a time.
Therefore, the order of reads depends only on data, not on the
arrival time.
Therefore, Kahn process networks are deterministic (!); for a
given input, the result will always the same, regardless of the
speed of the nodes.

This is the
key beauty
of KPNs!

17

- 33 -BF - ES

A Kahn Process

process f(in int u, in int v, out int w)
{
int i; bool b = true;
for (;;) {
i = b ? wait(u) : wait(w);
printf("%i\n", i);
send(i, w);
b = !b;

}
}

f

u

v

w

Process alternately reads
from u and v, prints the data
value, and writes it to w

Source: Gilles Kahn, The Semantics of a Simple Language for Parallel Programming (1974)

- 34 -BF - ES

A Kahn Process

process f(in int u, in int v, out int w)
{
int i; bool b = true;
for (;;) {
i = b ? wait(u) : wait(w);
printf("%i\n", i);
send(i, w);
b = !b;

}
}

Source: Gilles Kahn, The Semantics of a Simple Language for Parallel Programming (1974)

wait() returns the next
token in an input FIFO,
blocking if it’s empty

send() writes a data
value on an output FIFO

18

- 35 -BF - ES

A Kahn Process

process g(in int u, out int v, out int w)
{
int i; bool b = true;
for(;;) {
i = wait(u);
if (b) send(i, v); else send(i, w);
b = !b;

}
}

gu
v

w

Process reads from u and
alternately copies it to v and w

- 36 -BF - ES

A Kahn System

Prints an alternating sequence of 0’s and 1’s

fg

h

h

Emits a 1 then copies input to output

Emits a 0 then copies input to output

19

- 37 -BF - ES

Definition: Kahn networks

A Kahn process network is a directed graph (V,E), where
V is a set of processes,
E ⊆ V × V is a set of edges,
associated with each edge e is a domain De

Dω: finite of countably infinite sequences over D

Dω is a complete partial order where
X ≤ Y iff X is an initial segment of Y

- 38 -BF - ES

Definition: Kahn networks

associated with each process v∈V with incoming edges
e1, …, ep and outgoing edges e1‘, …,eq‘
is a continuous function
fv: De1

ω × … × Dep
ω → De1

ω × … × Deq
ω

(A function f: A→B is continuous if f(limA a) = limBf(a))

v

e1 e1‘

ep

…
eq‘
…

20

- 39 -BF - ES

Semantics: Kahn networks

A process network defines for each edge e∈ E a
unique sequence Xe.

Xe is the least fixed point of the equations
(Xe1‘, …, Xeq‘) = fv(Xe1

, …, Xeq
)

for all v∈V.

Result is independent of scheduling!

- 40 -BF - ES

Scheduling Kahn Networks

A
(always

produces
token)

C
(only

consumes
from A)

B
(always

produces
token)

Problem: run processes with finite buffer

D
(always

consumes
token)

21

- 41 -BF - ES

Scheduling may be impossible

a

b
A

(Two a’s
for every b)

B
(Alternates
between

receiving a
and b)

- 42 -BF - ES

Parks’ Scheduling Algorithm (1995)

Set a capacity on each channel
Block a write if the channel is full
Repeat

Run until deadlock occurs
If there are no blocking writes → terminate
Among the channels that block writes,
select the channel with least capacity
and increase capacity until producer can fire.

22

- 43 -BF - ES

Example

A
(always

produces
token)

C
(only

consumes
from A)

B
(always

produces
token)

D
(always

consumes
token)

- 44 -BF - ES

Parks’ Scheduling Algorithm

Whether a Kahn network can execute in bounded memory is
undecidable
Parks’ algorithm does not violate this
It will run in bounded memory if possible, and use unbounded
memory if necessary

Disadvantages:
Requires dynamic memory allocation
Does not guarantee minimum memory usage
Scheduling choices may affect memory usage
Data-dependent decisions may affect memory usage
Relatively costly scheduling technique
Detecting deadlock may be difficult

23

- 45 -BF - ES

Synchronous data flow (SDF)

Asynchronous message passing=
tasks do not have to wait until output is accepted.
Synchronous data flow =
all tokens are consumed at the same time.

SDF model allows static scheduling of token production and
consumption.
In the general case, buffers may be needed at edges.

SDF model allows static scheduling of token production and
consumption.
In the general case, buffers may be needed at edges.

- 46 -BF - ES

SDF: restriction of Kahn networks

An SDF graph is a tuple (V, E, cons, prod, d) where
V is a set of nodes (activities)
E is a set of edges (buffers)
cons: E → N number of tokens consumed
prod: E → N number of tokens produced
d: E → N number of initial tokens

d: „delay“ (sample offset between input and output)

24

- 47 -BF - ES

Multi-rate SDF System

DAT-to-CD rate converter
Converts a 44.1 kHz sampling rate to 48 kHz

1 1 2 3 2 7 8 7 5 1

Upsampler Downsampler

- 48 -BF - ES

SDF Scheduling Algorithm
Lee/Messerschmitt 1987

1. Establish relative execution rates
Generate balance equations
Solve for smallest positive integer vector c

2. Determine periodic schedule
Form an arbitrarily ordered list of all nodes in the system
Repeat:
• For each node in the list, schedule it if it is runnable,

trying each node once
• If each node has been scheduled cn times, stop.
• If no node can be scheduled, indicate deadlock.

Source: Lee/Messerschmitt, Synchronous Data Flow (1987)

25

- 49 -BF - ES

Example 1

A

B

1
2

3

2

D

C

3

41

3

2
1

d(CA)=6

- 50 -BF - ES

Example 2

B

1
3

A

C

1

1
2

1

26

- 51 -BF - ES

Example 3

BA
11

DC
23

- 52 -BF - ES

Example 4

BA
11

11

27

- 53 -BF - ES

Observations

Consistent, connected systems have
one-dimensional solution
Disconnected systems have higher-dimensional solution
Inconsistent systems have 0-schedule;
otherwise infinite accumulation of tokens
Systems may have multiple schedules

- 54 -BF - ES

Summary dataflow

Communication exclusively through FIFOs
Kahn process networks

blocking read, nonblocking write
deterministic
schedulability undecidable
Parks‘ scheduling algorithm

SDF
fixed token consumption/production
compile-time scheduling: balance equations

