Embedded Systems

BF - ES

Models of computation for embedded systems

Communication/ Shared Message passing

local computations | memory Synchronous | Asynchronous

Communicating StateCharts, SDL, MSCs

finite state StateFlow

machines

Data flow model Kahn process
c networks, SDF

Computational Petri nets

graphs

Von Neumann C, C++, C, C++, Java with libraries

model Java CSP, ADA |

Discrete event (DE) | VHDL, Only experimental systems, e.g.

model Simulink distributed DE in Ptolemy

BF - ES

- 2.

Place/transition nets REVIEW

Def.. (P, T, F, K, W, M,) is called a place/transition net (P/T net) iff
1. N=(P,T,F)is anet with places p € P and transitionst € T
2. K:P — (N, U {o}) {0} denotes the capacity of places
(o symbolizes infinite capacity)
3. W:F —(N, \{0}) denotes the weight of graph edges
4. My P > Ny U{w} represents the initial marking of places

W (Segment of some net)

Mo
’ defaults:
K=o
W=1
In the following: assume initial marking is finite, capacity .
BF - ES . 3.
Unbounded Petri net REVIEW

BF - ES S 4.

Invariants & boundedness REVIEW

= Anetis covered by place invariants
iff every place is contained in some invariant.
= Theorem 4:

a) If R is a place invariant and p € R, then p is bounded.
b) If a net is covered by place invariants then it is
bounded.

BF - ES

Deadlock REVIEW

= Adead marking (deadlock) is a marking where no transition can fire.
= A Petri net is deadlock-free if no dead marking is reachable.

7 '

BF - ES - 6-

Structural properties: deadlock-traps REVIEW

= Aplace set S is a (static) deadlock if every transition
that adds token to S also removes token from S.

= Aplace set S is atrap if every transition that removes
token from S also adds token to S.

Q/E%D DO/D

BF - ES ST

Empty structural deadlocks REVIEW
and marked traps

= Empty structural deadlocks are never re-marked;
= Marked traps are never emptied.

BF - ES - 8-

Sufficiently marked places REVIEW

A place is called sufficiently marked if there are enough token for one of the
outgoing transitions:

= Define
W-(p)=min { W(p,t) | (p,t) € F } if there exists a (p,t) e F
and 0 otherwise

= Place p is sufficiently marked in marking M, if M(p) > W-(p)
= A set of places is sufficiently marked if it contains a sufficiently marked

place.
2 2
BF - ES _ 9.
Deadlock-Trap Property REVIEW

= A P/T has the deadlock-trap property,
if every (static) deadlock contains a trap
that is sufficiently marked in M,

] M@

[
[

BF - ES - 10-

Deadlock-Trap Property REVIEW

Theorem 5:
Every homogeneous P/T net with non-blocking weights
that has the deadlock-trap property is deadlock-free.

Homogeneous: For each place, all outgoing edges have
the same weight.

Non-blocking weights: W*(p) > W-(p)

= W-(p)=min { W(p,t) | (p,t) € F }if there exists a (p,t) € F
and 0 otherwise

= W*(p)=min { W(t,p) | (t,p) € F }if there exists a (t,p) € F
and O otherwise

BF - ES 11 -

Fairness REVIEW

,

Dining philosophers problem '

= n>1 philosophers sitting at a round @ @

table;

= n forks, /<// ®\
= n plates with spaghetti; @
= philosophers either thinking
or eating spaghetti '
(using left and right fork).

= 2 forks needed!

BF - ES S 12-

REVIEW

- 13-

BF - ES

REVIEW

- 14-

BF - ES

Fairness REVIEW

Let N be a Petri net and w an execution of N.

» w is impartial with respect to a set of transitions T
iff every transition in T occurs infinitely often in w.

» W is just with respect to a set of transitions T
iff every transition in T
that is enabled in all except finitely many markings
occurs infinitely often in w.
= w is fair with respect to a set of transitions T
iff every transition in T
that is enabled in infinitely many markings
occurs infinitely often in w.

= wisimpartial = w is fair

= wis fair = wis just
BF - ES - 15-

Persistent nets REVIEW

Theorem 7: If the net is persistent, then every just
execution is fair.

BF - ES - 16-

State Fairness REVIEW

Theorem 8: Let N be a bounded net, t a live transition, and
w a state-fair execution of N. Then t occurs infinitely
often in w.

BF - ES S 17-
Extensions: finite capacities REVIEW
= K(p)=4
tl
2
p .-<2— t,

BF - ES . 18-

Extensions: Petri nets with priorities REVIEW

= t, (1, :t, has higher priority than t;.

test % t, /@)\ t,

| |
O O

Py Po

= Petri nets with priorities are Turing-complete.

BF - ES - 19-

Predicate/transition model

. : REVIEW
of the dining philosophers problem
= Let x be one of the philosophers, Token: individuals.
= let I(x) be the left fork of x, Semantics can be
= |et r(x) be the right fork of x. defined by replacing

net by equivalent
condition/event net.

Model can be
extended to arbitrary
numbers.

0)™

BF -ES - 20-

10

Summary Petri nets

Pros:
= Appropriate for distributed applications,
= Well-known theory for formally proving properties,

= |nitially theoretical topic, but now widely adapted in
practice due to increasing number of distributed
applications.

Cons (for the nets presented) :

= problems with modeling timing,

" no programming elements,

= no hierarchy.

Extensions:

= Enormous amounts of efforts on removing limitations.

BF - ES S 21-

Data Flow Models

BF - ES - 22.-

11

Data flow modeling

= Def.: The process of identifying, modeling and
documenting how data moves around an information

system.

Data flow modeling examines
= processes (activities that transform data from one form to
another),
= data stores (the holding areas for data),
= external entities (what sends data into a system or receives data
from a system, and

= data flows (routes by which data can flow).

BF - ES - 23-

Data flow as a “natural” model of applications

Registering for courses Video on demand system

sener List
Echodulor Vigwe! Commands
Nstwork Addrmas.

http://www.agilemodeling.com/artifacts/dataFlowDiagram.htm www.ece.ubc.ca/~irenek/techpaps/vod/vod.html

BF - ES - 24-

12

Process networks

communicating processes.

Many applications can be specified in the form of a set of

temperature sensor

BF - ES

\ humidity sensor
:
FIFO

Example: system with two sensors:

Alternating read

loop

read_temp; read_humidity
until false;

of the two sensors
not the right approach.

- 25-

The case for multi-process modeling

in imperative languages

MODULE main;
TYPE some_channel =
(temperature, humidity);
some_sample : RECORD

value : integer;
line : some_channel
END;

PROCESS get_temperature;

VAR sample : some_sample;

BEGIN

LOOP

sample.value := new_temperature;

IF sample.value > 30 THEN
sample.line := temperature;
to_fifo(sample);

END

END get_temperature;

PROCESS get_humidity;
VAR sample : some_sample;
BEGIN
LOOP
sample.value := new_humidity;
sample.line := humidity;
to_fifo(sample);
END
END get_humidity;

BEGIN

get_temperature; get_humidity;
END;

Blocking calls new_temperature, new_humidity
e Structure clearer than alternating checks for
new values in a single process

How to model

tasks/processes?

dependencies between

13

Dependences between processes/tasks

Get_tem-
_\ perature

BF - ES - 27-

Task graphs

Sequence
constraint K Nodes are assumed to be
e a ,program* described in
some programming

®_) language, e.g. C or Java.

= Def.: Adependence graph is a directed graph G=(V,E) in
which E c V x V is a partial order.

= If (v1, v2) € E, then vl is called an immediate predecessor
of v2 and v2 is called an immediate successor of v1.

= Suppose E* is the transitive closure of E.
If (v1, v2) € E*, then vl is called a predecessor of v2 and v2
is called a successor of v1.

BF - ES - 28-

14

Reference model for data flow:
Kahn process networks (1974)

For asynchronous message passing:
communication between tasks is buffered

&—11m—O

Special case: Kahn process networks:
executable task graphs;
Communication via infinitely large FIFOs

O
@\\\\\\G

BF - ES - 29.-

if (b)i=
wait Y; else i
= wait Z;

i = wait T1

- ou -

15

Properties of Kahn process networks (1)

= Each node corresponds to one program/task;
= Communication is only via channels;
= Channels include FIFOs as large as needed;

= Channels transmit information within an unpredictable but finite
amount of time;

= Mapping from >1 input seq. to >1 output sequence;
= In general, execution times are unknown;
= Send operations are non-blocking, reads are blocking.

= One producer and one consumer;
i.e. there is only one sender per channel;

BF - ES S 31-

Properties of Kahn process networks (2)

= There is only one sender per channel.

= A process cannot check whether data is available before
attempting a read.

= A process cannot wait for data for more than one port at a time.

= Therefore, the order of reads depends only on data, not on the
arrival time.

= Therefore, Kahn process networks are deterministic (1); for a
given input, the result will always the same, regardless of the
speed of the nodes. \

This is the
key beauty
of KPNs!

BF - ES - 32-

A Kahn Process

process f(in int u, in int v, out int w)

{
int i; bool b = true; u
for (;) { S
i = b ? wait(u) : wait(w); f — W
printf("%i\n", i);
send(i, w); v
b =Ib;
} Process alternately reads
} from u and v, _prin;s the data
value, and writes it to w
Source: Gilles Kahn, The Semantics of a Simple Language for Parallel Programming (1974)
BF - ES - 33-

A Kahn Process

process f(in int u, in int v, out int w)

{
int i; bool b = true;
for (;;) {
i = b ? wait(u) : wait(w);
printf("%i\n", i); wait() returns the next
send(i, w): token in an !nput FIFO,
blocking if it's empty
b = b;
}
} send() writes a data
value on an output FIFO
Source: Gilles Kahn, The Semantics of a Simple Language for Parallel Programming (1974)
BF - ES - 34-

17

A Kahn Process

process g(in int u, out int v, out int w)

{ \'
int i; bool b = true; v
for(;}) { U—s g

i = wait(u); ™~ w
if (b) send(i, v); else send(i, w);
b =1b;
}
} Process reads from u and

alternately copies it to v and w

BF - ES - 35-

A Kahn System

» Prints an alternating sequence of 0’'s and 1's

Emits a 1 then copies input to output

h

h

Emits a 0 then copies input to output

BF - ES - 36-

18

Definition: Kahn networks

A Kahn process network is a directed graph (V,E), where
= Vis aset of processes,

» EcVxVisasetofedges,

= associated with each edge e is a domain D,

= De: finite of countably infinite sequences over D

Deis a complete partial order where
X LY iff X is an initial segment of Y

BF - ES - 37-

Definition: Kahn networks

€,

N L

e

p q

= associated with each process veV with incoming edges
e, ..., €, and outgoing edges e;’, ...,e
is a continuous function
fyr Dg @ ... X DepmﬁDelo’x e X Deq“’

(A function f: A—»B is continuous if f(lim, a) = limgf(a))

BF - ES - 38-

19

Semantics: Kahn networks

A process network defines for each edge ec E a
unique sequence X..

X, is the least fixed point of the equations
(Xell, Xeq‘) = v(Xel, Xeq)

for all veV.

Result is independent of scheduling!

BF - ES - 39-

Scheduling Kahn Networks

A C
(always (only
produces consumes
token) from A)
B D
(always (always
produces consumes
token) token)

Problem: run processes with finite buffer

BF - ES - 40-

20

Scheduling may be impossible

BF - ES

a > B
A (Alternates
(Two a’s b between
forevery b) > receiving a
and b)

- 41 -

Parks’ Scheduling Algorithm (1995)

= Set a capacity on each channel
= Block a write if the channel is full
» Repeat

BF - ES

Run until deadlock occurs
If there are no blocking writes — terminate

Among the channels that block writes,
select the channel with least capacity
and increase capacity until producer can fire.

- 42-

21

Example

A C
(always (only
produces consumes
token) from A)
B D
(always (always
produces consumes
token) token)
BF -ES - 43-

Parks’ Scheduling Algorithm

= Whether a Kahn network can execute in bounded memory is
undecidable

= Parks’ algorithm does not violate this

= It will run in bounded memory if possible, and use unbounded
memory if necessary

Disadvantages:

= Requires dynamic memory allocation

» Does not guarantee minimum memory usage

= Scheduling choices may affect memory usage

= Data-dependent decisions may affect memory usage
= Relatively costly scheduling technique

= Detecting deadlock may be difficult

BF - ES - 44 -

22

Synchronous data flow (SDF)

= Asynchronous message passing=
tasks do not have to wait until output is accepted. .
» Synchronous data flow = ,l
all tokens are consumed at the same time. g\

SDF model allows static scheduling of token production and
consumption.
In the general case, buffers may be needed at edges.

BF - ES - 45 -

SDF: restriction of Kahn networks

An SDF graph is a tuple (V, E, cons, prod, d) where
» Vis a set of nodes (activities)

» E is a set of edges (buffers)

= cons: E — N number of tokens consumed

= prod: E — N number of tokens produced

d: E — N number of initial tokens

d: ,delay” (sample offset between input and output)

BF - ES - 46-

23

Multi-rate SDF System

= DAT-to-CD rate converter
= Converts a 44.1 kHz sampling rate to 48 kHz

11 23 2 7 8 7 5 1

Upsampler Downsampler

BF - ES - 47 -

SDF Scheduling Algorithm
Lee/Messerschmitt 1987

1. Establish relative execution rates
= Generate balance equations
= Solve for smallest positive integer vector ¢

2. Determine periodic schedule
= Form an arbitrarily ordered list of all nodes in the system
= Repeat:

* For each node in the list, schedule it if it is runnable,
trying each node once

» If each node has been scheduled c,times, stop.
* If no node can be scheduled, indicate deadlock.

Source: Lee/Messerschmitt, Synchronous Data Flow (1987)

BF - ES - 48-

24

Example 1

1 4
A
3 2 3
D B
2
3 1
1 2
C
d(CA)=6
BF - ES - 49 -
Example 2
1 1
A B
1 1
2 3
C
BF -ES - 50 -

25

Example 3

BF - ES

- 51-

Example 4

BF - ES

- 52-

26

Observations

Consistent, connected systems have
one-dimensional solution

Disconnected systems have higher-dimensional solution

Inconsistent systems have 0-schedule;
otherwise infinite accumulation of tokens

Systems may have multiple schedules

BF - ES

- 53-

Summary dataflow

BF -

Communication exclusively through FIFOs

Kahn process networks
= blocking read, nonblocking write
= deterministic
= schedulability undecidable
= Parks’ scheduling algorithm
SDF

= fixed token consumption/production
= compile-time scheduling: balance equations

ES

- 54-

27

