
1

- 1 -BF - ES

Embedded Systems 9

- 2 -BF - ES

Exam registration

Exam registration through HISPOS open now.
If you cannot register through HISPOS
→ send email to finkbeiner@cs.uni-sb.de
Deadline: December 5

2

- 3 -BF - ES

Message Sequence Charts

Kahn process
networks, SDF

Data flow model
⊂

Only experimental systems, e.g.
distributed DE in Ptolemy

VHDL,
Simulink

Discrete event (DE)
model

C, C++, Java with libraries
CSP, ADA |

C, C++,
Java

Von Neumann
model

Petri netsComputational
graphs

SDL, MSCsStateCharts,
StateFlow

Communicating
finite state
machines

Message passing
Synchronous | Asynchronous

Shared
memory

Communication/
local computations

REVIEW

- 4 -BF - ES

MSC: Example

user (U) sends a request to an interface (I) to gain
access to a resource R
interface in turn sends a request to the resource,
receives “grant” as a response
Sends “yes” to U.

REVIEW

3

- 5 -BF - ES

Basic MSCs

Consider the Σ-labeled poset Ch = (E, ≤, λ) where

E : set of events
≤ ⊆ E × E: causality relation
(E, ≤) is a partially ordered set (poset)
λ : E → Σ is a labeling function
with set of actions Σ

Ep = {e | λ(e) ∈ Σp } „events in which p takes part“
Ep!q = {e | e ∈ Ep and λ(e) = p!q(m) for some m ∈ M}
Ep?q = {e | e ∈ Ep and λ(e) = p?q(m) for some m ∈ M}

REVIEW

- 6 -BF - ES

Definition basic MSCs

An MSC over (P, M, Act) is a Σ-labeled poset
Ch = (E, ≤, λ) that satisfies:

1. All events that a process takes part in are linearly ordered; each
process is a sequential agent:

≤p is a linear order for each p, where ≤p is ≤ restricted to Ep x Ep .

2. Messages must be sent before they can be received:

Let λ(e) = p?q(m), then | ↓(e) ∩ Ep?q | = | ↓(e) ∩ Eq!p | and there
exists e´ ∈ ↓(e) such that λ(e´) = q!p(m) and
| ↓(e) ∩ Eq!p | = | ↓(e´) ∩ Eq!p |

REVIEW

4

- 7 -BF - ES

Definition basic MSCs

3. There are no dangling communication edges in an MSC; all sent
messages have also been received:

For every p,q with p ≠ q, | Ep?q | = | Eq!p |

4. Causality relation between the events in an MSC is completely
determined by the order in which the events occur within each
process and communication relation relating send-receive pairs:

≤ = (≤P ∪ RP)*, where ≤P = ∪p∈P ≤P and
RP = ∪p,q∈P,p≠q R(p,q)

REVIEW

- 8 -BF - ES

HMSCs

HMSC is a finite state automaton whose states are
labeled with MSCs over (P, M, Act).

Results in finite specifications involving choice, concatenation
and iteration operations over a finite set of seed MSCs.

[in general, specification can be hierarchical, i.e. a state
of the automaton can be labeled by an HMSC instead of
an MSC.
Here:
flattened HMSCs, message sequence graphs (MSGs).]

REVIEW

5

- 9 -BF - ES

Example (1) REVIEW

- 10 -BF - ES

Properties

asynchronous concatenation of two charts is also a chart.
synchronous concatenation of two charts
may not result in a chart.
Asynchronous concatenation may lead to non-regular
languages
Theorem: The intersection of two MSGs (with
asynchronous concatenation) is undecidable.

REVIEW

6

- 11 -BF - ES

Mandatory vs. provisional behavior

If condition is not met,
exit subchart

Condition must be met;
otherwise abort

Condition

Receipt of message is
not guaranteed

If message is sent, it will
be received

Message

Instance run need not
move beyond loc/time

Instance must move
beyond location/time

Location

At least one run of the
system satisfies the
chart

All runs of the system
satisfy the chart

Chart

Provisional (dashed
lines)

Mandatory (solid lines)Level

REVIEW

- 12 -BF - ES

Universal LSC with Prechart

Precharts describe
conditions that must hold
for the main chart to
apply.

Precharts describe
conditions that must hold
for the main chart to
apply.

Prechart
Example:

REVIEW

7

- 13 -BF - ES

Composition of LSCs

- 14 -BF - ES

Additional concepts not covered here

Instantaneous messages
Method calls and returns
Time, Timer events
Coregions
…

8

- 15 -BF - ES

VHDL

- 16 -BF - ES

VHDL

Kahn process
networks, SDF

Data flow model
⊂

Only experimental systems, e.g.
distributed DE in Ptolemy

VHDL,
Simulink

Discrete event (DE)
model

C, C++, Java with libraries
CSP, ADA |

C, C++,
Java

Von Neumann
model

Petri netsComputational
graphs

SDL, MSCsStateCharts,
StateFlow

Communicating
finite state
machines

Message passing
Synchronous | Asynchronous

Shared
memory

Communication/
local computations

9

- 17 -BF - ES

VHDL
HDL = hardware description language
VHDL = VHSIC hardware description language
VHSIC = very high speed integrated circuit

Consortium which developed VHDL (Intermetrics Inc., IBM, Texas
Instruments)
Early 80’s, initiated by US Department of Defense

Modeling of digital circuits

1987 IEEE Standard 1076
Reviews of standard: 1993, 2000, 2002, 2008

⇒ Standard in (European) industry

Extension: VHDL-AMS, includes analog modeling

- 18 -BF - ES

Goals

Main goal was modeling of digital circuits
Modelling at various levels of abstraction
Technology-independent

⇒ Re-Usability of specifications
Standard

⇒ Portability (different synthesis and analysis tools possible)
Validation of designs based on the same description language for
different levels of abstraction

Powerful description language
Contains also many aspects of imperative programming languages

⇒ VHDL is able to describe software, too.

Here: Only some aspects of VHDL, not complete language.

10

- 19 -BF - ES

Entities and architectures

Each design unit is called an entity.
Entities are comprised of entity declarations and one or
several architectures.

Each architecture includes a model of the entity. By default,
the most recently analyzed architecture is used. The use of
another architecture can be requested in a configuration.

Each architecture includes a model of the entity. By default,
the most recently analyzed architecture is used. The use of
another architecture can be requested in a configuration.

- 20 -BF - ES

Example: full adder
- Entity declaration -

Entity declaration:

entity full_adder is
port(a, b, carry_in: in Bit; -- input ports
sum,carry_out: out Bit); --output ports

end full_adder;

11

- 21 -BF - ES

Example: full adder
- Architecture with behavioural body

architecture behavior of full_adder is
begin
sum <= (a xor b) xor carry_in after 10 Ns;
carry_out <= (a and b) or (a and carry_in) or

(b and carry_in) after 10 Ns;
end behavior;

architecture behavior of full_adder is
begin
sum <= (a xor b) xor carry_in after 10 Ns;
carry_out <= (a and b) or (a and carry_in) or

(b and carry_in) after 10 Ns;
end behavior;

- 22 -BF - ES

Example: full adder
- structural body

architecture structure of full_adder is
component half_adder

port (in1,in2:in Bit; carry:out Bit; sum:out Bit);
end component;
component or_gate

port (in1, in2:in Bit; o:out Bit);
end component;
signal x, y, z: Bit; -- local signals
begin -- port map section
i1: half_adder port map (a, b, x, y);
i2: half_adder port map (y, carry_in, z, sum);
i3: or_gate port map (x, z, carry_out);

end structure;

12

- 23 -BF - ES

Example: full adder
- Architectures

Architectures describe implementations of entities.

For component half_adder we need
An entity, e.g.
entity half_adder

port (in1,in2:in Bit; carry:out Bit; sum:out Bit);
end half_adder;
(At least) one architecture
• This architecture may contain components, too.

Architectures and their components can define a
hierarchy of arbitrary depth.

- 24 -BF - ES

Structural and behavioural descriptions

Structural descriptions use component instances.
Behavioural descriptions describe behaviour without
defining the structure of the system.

Mixtures are possible.
Mixtures are needed,
at least for the leaves in structural hierarchy.

Structural hierarchy is essential for a compact and clear
modelling of large (hardware) systems.
To define semantics of VHDL, we can assume that the
structural hierarchy is „flattened“, i.e., we can assume
w.l.o.g. that we have just an behavioural description.

13

- 25 -BF - ES

Essential elements of behavourial descriptions:
Processes

Behavioural descriptions consist of a set of concurrently
executed (explicit or implicit) processes.

Explicit processes:
Syntax:

[label:]
process[(sensitivity list)]

declarations
begin

statements
end process [label]

- 26 -BF - ES

Processes – Examples (1)

architecture RTL of NANDXOR is

begin

process

begin

if (C=’0’) then

D <= A nand B after 5 ns;

else

D <= A and B after 10 ns;

end if;

wait on A, B, C;

end process;

end RTL;

14

- 27 -BF - ES

Processes – Examples (2)

signal clk : std_logic;

…

clk_gen : process

begin

clk <= 0;

wait for 5 ns;

clk <= 1;

wait for 5 ns;

end process clk_gen;

- 28 -BF - ES

Processes – Examples (3)

architecture RTL of DFF is

begin

p : process

begin

if (clk‘event) and (clk=‘1‘) then

Q <= D;

end if;

wait on clk;

end process p;

end RTL;

15

- 29 -BF - ES

Processes - Execution

Processes are not allowed to have subprocesses (no
hierarchy of processes).

Processes are executed sequentially until a wait
statement is encountered.
Processes are reactivated according to conditions of
wait-statements.
Different types of wait-statements

- 30 -BF - ES

Wait-statements

Four possible types of wait-statements:
wait on signal list;

wait until at least one of the signals in signal list changes;
Example: wait on a;

wait until condition;
wait until condition is met;
Example: wait until c='1';

wait for duration;
wait for specified amount of time;
Example: wait for 10 ns;

wait;
suspend indefinitely

16

- 31 -BF - ES

Processes - Sensitivity lists

Sensitivity lists are a shorthand for a single wait on-
statement at the end of the process body:
process (x, y)
begin
prod <= x and y ;
end process;

is equivalent to
process
begin
prod <= x and y ;
wait on x,y;
end process;

- 32 -BF - ES

Essential elements of behavourial descriptions
Signal assignments

Signal assignments outside processes can be viewed as
implicit processes:

a <= b and c after 10 ns

is equivalent to

process(b, c)
begin
a <= b and c after 10 ns
end

17

- 33 -BF - ES

Essential elements of behavourial descriptions
Constants, signals and variables

Constants
the value of a constant cannot be changed.

Examples:
constant PI : real := 3.1415;
constant DEFAULT : bit_vector(0 to 3) :=„1001“;
constant PERIOD : time := 100 ns;

- 34 -BF - ES

Essential elements of behavourial descriptions
Constants, signals, and variables

Variables
Variables are declared locally in processes (and procedures / functions)
and are only visible in this scope.

Signals
Can be viewed as a wire
Signals cannot be declared in processes (procedures / functions), but in
architectures (outside processes).

Syntax:
variable_assignment ::=

target := expression

• Example:
Sum := 0

signal_assignment ::=
target <= [delay_mechanism] waveform_element

{ , waveform_element }
waveform_element ::=

value_expression [after time_expression]
• Example:

Inpsig <= ´0´, ´1´after 5 ns, ´0´ after 10 ns, ´1´ after 20 ns;

18

- 35 -BF - ES

Variable versus signal assigment
Variable assignments are performed sequentially and directly after
their occurence,
Signal assignments are performed concurrently, i.e. they are
(sequentially) collected until the process is stopped and are
performed in parallel after all processes are stopped.

signal a : std_logic :=

‘0‘;

signal b : std_logic :=

‘1‘;

…
swap : process

variable c : std_logic := `1`;
variable d : std_logic := `0`;
begin

a <= b; b <= a;

c := d; d := c;

wait on a, b;

end process swap;

- 36 -BF - ES

Semantics of VHDL:
Basic concepts

Similar concepts as in StateCharts.
„Discrete event driven simulation“

Step-based semantics as in StateCharts:
Computation as a series of basic steps
Time does not necessarily proceed between two steps
Like superstep semantics of StateCharts

Concurrent assignments (of signals) like concurrent
assignments in StateCharts.

⇒ Steps consist of two stages.

19

- 37 -BF - ES

Overview of simulation

Initialization

End of simulation

Assign new values
to signals

Update
current time

Evaluate processes

Resume processes

- 38 -BF - ES

Transaction list and process activation list

Transaction list
For signal assignments
Entries of form (s, v, t) meaning
„signal s is set to value v at time t“
Example: (clock, ´1´, 10 ns)

Process activation list
For reactivating processes
Entries of form (pi, t) meaning
„process pi resumes at time t“.

20

- 39 -BF - ES

Initialization

At the beginning of initialization, the current time, tcurr,
is assumed to be 0 ns.
An initial value is assigned to each signal.

Taken from declaration, if specified there, e.g.,
• signal s : std_ulogic := `0`;

Otherwise: First value in enumeration for enumeration based data types, e.g.
• signal s : std_ulogic

with
type std_ulogic is (`U`, `X`, `0`, `1`, `Z`, `W`, `L`, `H`, `-`);
⇒ initial value is `Ù`

This value is assumed to have been the value of the signal for an infinite length
of time prior to the start of the simulation.

Initialization phase executes each process exactly once (until it suspends).
During execution of processes: Signal assignments are collected in
transaction list (not executed immediately!) – more details later.
If process stops at „wait for“-statement, then update process activation list –
more details later.
After initialization the time of the next simulation cycle (which in this case is
the first simulation cycle), tnext is calculated:

Time tnext of the next simulation cycle = earliest of
1. time’high (end of simulation time).
2. Earliest time in transaction list (if not empty)
3. Earliest time in process activation list (if not empty).

- 40 -BF - ES

Example
architecture behaviour of example is

signal a : std_logic := `0`;
signal b : std_logic := `1`;
signal c : std_logic := `1`;
signal d : std_logic := `0`;

begin
swap1: process(a, b)
begin

a <= b after 10 ns;
b <= a after 10 ns;

end process;

swap2: process
begin

c <= d;
d <= c;
wait for 15 ns;

end process;

end architecture;

21

- 41 -BF - ES

Signal assignment phase – first part of step

Each simulation cycle starts with setting the current time
to the next time at which changes must be considered:
tcurr = tnext
This time tnext was either computed during the
initialization or during the last execution of the simulation
cycle. Simulation terminates when the current time
would exceed its maximum, time’high.
For all (s, v, tcurr) in transaction list:

Remove (s, v, tcurr) from transaction list.
s is set to v.

For all processes pi which wait on signal s:
Insert (pi, tcurr) in process activation list.

Similarly, if condition of „wait until“-expression changes
value.

- 42 -BF - ES

Example
architecture behaviour of example is

signal a : std_logic := `0`;
signal b : std_logic := `1`;
signal c : std_logic := `1`;
signal d : std_logic := `0`;

begin
swap1: process(a, b)
begin

a <= b after 10 ns;
b <= a after 10 ns;

end process;

swap2: process
begin

c <= d;
d <= c;
wait for 15 ns;

end process;

end architecture;

22

- 43 -BF - ES

Process execution phase – second part of step (1)

Resume all processes pi with entries (pi, tcurr)
in process activation list.
Execute all activated processes „in parallel“ (in fact: in arbitrary
order).
Signal assignments

are collected in transaction list (not executed immediately!).
Examples:

• s <= a and b;
– Let v be the conjunction of current value of a and current value

of b.
– Insert (s, v, tcurr) in transaction list.

• s <= ´1´ after 10 ns;
– Insert (s, ´1´, tcurr + 10 ns) into transaction list.

Processes are executed until wait statement is encountered.
If process pi stops at „wait for“-statement, then update process
activation list:

Example:
• pi stops at „wait for 20 ns;“
• Insert (pi, tcurr + 20 ns) into process activation list

- 44 -BF - ES

Process execution phase – second part of step (2)

If some process reaches last statement and
does not have a sensitivity list and
last statement is not a wait statement,

then it continues with first statement and runs until wait
statement is reached.

When all processes have stopped, the time of the next
simulation cycle tnext is calculated:

Time tnext of the next simulation cycle = earliest of
1.time’high (end of simulation time).
2.Earliest time in transaction list (if not empty)
3.Earliest time in process activation list (if not empty).

Stop if tnext = time’high and transaction list and process
activation list are empty.

23

- 45 -BF - ES

Example
architecture behaviour of example is

signal a : std_logic := `0`;
signal b : std_logic := `1`;
signal c : std_logic := `1`;
signal d : std_logic := `0`;

begin
swap1: process(a, b)
begin

a <= b after 10 ns;
b <= a after 10 ns;

end process;

swap2: process
begin

c <= d;
d <= c;
wait for 15 ns;

end process;

end architecture;

- 46 -BF - ES

Delta delay

As for StateCharts (super step semantics!) time does not
necessarily proceed between two steps.
Several (potentially an infinite number of) steps can take place at
the same time tcurr.

Notion: Signal assignments which take place at the same time in
two consecutive steps are separated by one „delta delay“.

24

- 47 -BF - ES

-- evaluation of AND
-- (C, 0, 0ns)

3

-- evaluation of AND and
NAND
-- (B, 0, 0ns), (C, 1, 0ns)

2

-- evaluation of inverter
-- (A, 1, 0 ns)

10 ns
EventDelta delayCurrent time

Simulation time does not
proceed due to delta delays!

X

1

A

B

C= 1 = 0

= 1

= 0
1→0

Delta delay - Example

- 48 -BF - ES

-- evaluation of AND
-- (C, 0, 0ns)

3

-- evaluation of AND and
NAND
-- (B, 0, 0ns), (C, 1, 0ns)

2

-- evaluation of inverter
-- (A, 1, 0 ns)

10 ns
EventDelta delayCurrent time

Simulation time does not
proceed due to delta delays!

X

1

A

B

C= 1 = 0

= 1

= 0
1→0

Delta delay - Example

25

- 49 -BF - ES

Delta delay -
Simulation of an RS-Flipflop

entitiy RS_Flipflop is
port (R, S : in std_logic;

Q, nQ : inout std_logic);
end RS_FlipFlop;

architecture one of RS_Flipflop is
begin
process (R,S,Q,nQ)
begin

Q := R nor nQ;
nQ := S nor Q;

end process;
end one;0ns 0ns+δ 0ns+2δ

R 1 1 1

S 0 0 0

Q 1 0 0

nQ 0 0 1

0ns 0ns+δ 0ns+2δ

R 1 1 1

S 0 0 0

Q 1 0 0

nQ 0 0 1

0001

1100

0000

0111

1st δ

2nd δ

δ cycles reflect the fact that no
real gate comes with zero delay.
δ cycles reflect the fact that no
real gate comes with zero delay.

- 50 -BF - ES

Semantics of VHDL
Details

What happens, if the same signal is written more than
once in one step?

Inertial and transport delay model

Some additional language elements

Recursive description of parameterized hardware

26

- 51 -BF - ES

„Write-write-conflicts“

Case 1:
Write-write-conflicts are restricted to
the same process
(i.e. they occur inside the same
process)

Then the second signal assignment
overwrites the first one.
This is the only case of „non-concurrency“
of signal assignments
Note that writing to different signals
occurs concurrently, however!

signal s : bit;

…
p : process

begin

…
s <= ‘0‘;

…
s <= ‘1‘;

wait for 5 ns;

end process p;

- 52 -BF - ES

„Write-write-conflicts“

Case 2:
Write-write-conflicts between different
processes (explicit or implicit processes)

If there is no „resolution function“ for the data
type dt, then writing the same signal by different
processes in the same step is forbidden.
If there is a resolution function, then the
resolution function computes the value of s at
time tcurr:

• Value for s in the current step is computed
for each process separately,

• „resolution function“ for different values is
used to compute final result.

In the following:
Data type std_ulogic with resolution function
⇒ data type std_logic

signal s : dt;
…
s<= v1;

…
p : process

begin

…
s <= v2;

…
end process p;

q : process

begin

…
s <= v3;

…
end process q;

27

- 53 -BF - ES

Multi-valued logic and standard IEEE 1164

How many logic values for modeling?
Two ('0' and '1') or more?
If real circuits have to be described, some abstraction of
the resistance (inversely-related to the strength) is
required.
⇒ We introduce the distinction between:

the logic level (as an abstraction of the voltage) and
the strength (as an abstraction of the current drive capability) of a
signal.

Both logic level and strength are encoded in logic values.

- 54 -BF - ES

1 signal strength

Logic values '0' and '1'.
Both of the same strength.
Encoding false and true, respectively.

No meaningful “resolution function” possible, if `0` and
`1` are written to the same signal at the same time.

28

- 55 -BF - ES

2 signal strengths (1)

Many subcircuits can be
effectively disconnected
from the rest of the
circuit (they provide
„high impedance“
values to the rest of the
circuit).
Example: subcircuits
with tri-state outputs.

We introduce signal value 'Z', meaning „high impedance “We introduce signal value 'Z', meaning „high impedance “

Example: Tristate NOR
VDD

GROUND

A

B

A B

C

ENABLE

ENABLE

ENABLE = `0`
⇒ C is disconnected
from the rest of the
circuit

- 56 -BF - ES

2 signal strengths (2)

We introduce an operation #, which generates the
effective signal value whenever two signals are
connected by a wire (“resolution”).
#('0','Z')='0'; #('1','Z')='1'; '0' and '1' are „stronger“ than 'Z'

1 strength

According to the partial order
in the diagram, # returns the
larger of the two arguments.

In order to define #('0','1'), we
introduce 'X', denoting an
undefined signal level.
'X' has the same strength as '0'
and '1'.

According to the partial order
in the diagram, # returns the
larger of the two arguments.

In order to define #('0','1'), we
introduce 'X', denoting an
undefined signal level.
'X' has the same strength as '0'
and '1'.

29

- 57 -BF - ES

3 signal strengths
Current set of values insufficient for describing real circuits:

Depletion transistor (resistor) contributes a weak value to be
considered in the #-operation for signal A

Introduction of 'H', denoting a weak signal of the same level
as '1'.
#('H', '0')='0'; #('H,'Z') = 'H'

Depletion transistor (resistor) contributes a weak value to be
considered in the #-operation for signal A

Introduction of 'H', denoting a weak signal of the same level
as '1'.
#('H', '0')='0'; #('H,'Z') = 'H'

Example:
nMOS-Inverter

I

- 58 -BF - ES

3 signal strengths

There may also be weak
signals of the same level as '0'

Introduction of 'L', denoting
a weak signal of the same
level as '0':
#('L', '0')='0'; #('L,'Z') = 'L';

Introduction of 'W',
denoting a weak signal of the
same level as 'X':
#('L', 'H')='W'; #('L,'W') = 'W';

reflected by the partial order
shown.

30

- 59 -BF - ES

IEEE 1164

VHDL allows user-defined value sets.
⇒ Each model could use different value sets (unpractical)
⇒ Definition of standard value set according to standard

IEEE 1164:

{'0', '1', 'Z', 'X', 'H', 'L', 'W', 'U', '-'}
First seven values as discussed previously.
'U': un-initialized signal; used by simulator to initialize all
not explicitly initialized signals:
type std_ulogic is (`U`, `X`, `0`, `1`, `Z`, `W`, `L`, `H`, `-`);
'-': is used to specify don’t cares:

Example: if a /= ‘1’ or b/=‘1’ then f <= a exor b; else f <= ‘-’;
‘-’ may be replaced by arbitrary value by synthesis tools.

