
2011-01 1© VIRTUAL VEHICLE

Model-based development and

test of distributed automotive

embedded systems

Dr. Eric Armengaud

VIF - Area E

Group leader embedded systems

January 10th, 2011

2011-01 2© VIRTUAL VEHICLE

Content

Electronics in car

Software Engineering for automotive embedded

systems

The time-triggered architecture & FlexRay

Research activities @ Virtual Vehicle Competence

Center

2011-01 3© VIRTUAL VEHICLE

Managing Director: Dr. Jost Bernasch

Scientific Director: Prof. Hermann Steffan
(Vehicle Safety / Frank Stronach Institute, TU Graz)

VIRTUAL VEHICLE in a nutshell:

Founded: July 2002

Current Staff: 150

Turnover: EUR 12 Mio.

40%

10%

19%

19%

12%

Shareholder:

2011-01 4© VIRTUAL VEHICLE

Independent Research Platform
(not tied to specific bodies or corporations)

Applied Research and Scientific Services

Driven by the demand of leading companies
(> 50 industry partners)

Comprehensive international Research Network
(> 35 scientific partners and university institutes)

Extensive financial funding programs available
(no overhead as in customary funded projects)

VIRTUAL catchwords:

2011-01 5© VIRTUAL VEHICLE

Semiconductor vs. Automotive industry

“If the automotive industry had advanced as rapidly as the

semiconductor industry we’d all be driving a Rolls Royce, it

would do half a million miles to the gallon and it would be

cheaper to throw away than to park”

And as a friend pointed out, Moore said,

"it would only be a half-inch long and a

quarter-inch high."

2011-01 6© VIRTUAL VEHICLE

PAST TODAY FUTURE ?

Vehicles a decade ago

 A few embedded systems per vehicle

Vehicles nowadays

 Up to a few hundreds of computing

devices per vehicle

 Multiple networks per vehicle

Advantage

 Safety-critical embedded systems have

been key innovation drivers

 E.g. by-wire systems

Disadvantage

 Enormous complexity is challenging

industry (automotive, aerospace, rail,

automation)

 Increasing costs

 Affected product quality  safety-

critical

Source: AVL List

Electronics in cars

2011-01 7© VIRTUAL VEHICLE

Innovation Cycles in Automotive

R&D spending in automotive

industry:

- In 2005 € 68 billion in research &

development

• 4,2 % of sales or € 783 per vehicle

- Additionally € 1.500 of cost reduction

per vehicle forecasted (11 % of costs)

- Through 2015, R&D will rise to € 800

billion

- E&E will remain the most important

enabler for automotive innovations

[H. Gall, austriamicrosystems]

2011-01 8© VIRTUAL VEHICLE

automotive electronics

80% of the innovation in cars comes from electronics – Software plays a
key role

Evolution of the complexity

 Programming language: assembler in the 1970’s, C in the 90’s,
Matlab/Simulink (ASCET) nowadays

 100 millions lines of code

 up to 80 ECUs

 2500 signals

 65 millions cars and light commercial vehicles produced each year

 Large development teams regrouping different domains and different
institutions

Requirements on automotive electronics

 High reliability

 Functional safety

 Real-time behavior

 Minimized resource consumption

 Robust design

2011-01 9© VIRTUAL VEHICLE

The model-based approach for early validation and automatic translations

The development life cycle process

But, different kinds of models for different skills (dysfunctional models

for safety, performance models for timing constraints, …)

[CESAR Project,

O. Laurent, AIRBUS]

2011-01 10© VIRTUAL VEHICLE

Needs for improved development processes

Methods for requirement engineering

 First description of the system; contract between OEM and supplier

 Requirements needs to be precise, unambiguous and complete

 Formalization of multi viewpoint, multi criteria and multi level requirements

Methods for component-based design

 Global understanding of the system for efficient analysis

 Provide traceability during system design and validation

 Design space exploration comprising multi-view, multi-criteria and multi level
architecture trade-offs

Safety methods and processes

 Ensure the quality of a product via the execution of safety related activities
and the definition of a standardized development process

 Provide traceability of the development process

 Formalization of the dev. process for analysis, reporting (certification) and
automation (service orchestration)

2011-01 11© VIRTUAL VEHICLE

Software Engineering

“Software engineering (SE) is a profession dedicated to designing,

implementing, and modifying software so that it is of higher quality, more

affordable, maintainable, and faster to build. It is a systematic approach to

the analysis, design, assessment, implementation, test, maintenance and re-

engineering of a software by applying engineering to the software”

[Wikipedia]

2011-01 12© VIRTUAL VEHICLE

Requirements Engineering - motivation

Requirements engineering:

 deals with understanding, documenting, communicating and
implementing customer needs

 is required to reach a common understanding between the stakeholders

 is required during the entire development cycle (design, implementation,
validation)

Related activities

 Requirements elicitation: find out the services the system should provide
and the operational constraints

 Requirements analysis and negotiation: solve the conflicts between the
requirements in order to reach a common understanding between the
stakeholders

 Requirements documentation and validation: write down and check the
requirements against correctness, completeness, consistency,
verifiability, unambiguity, traceability…

 Requirements management: managing requirements changes (keep the
requirement set consistent)

2011-01 13© VIRTUAL VEHICLE

Requirements Engineering

Requirement Specification Language

 minimize amount of time to write requirements

 make requirements understandable and unambiguous

 minimize amount of time to validate requirements

 differences in:

 formality: formal/semi-formal/informal

 illustration: textual/graphical/tabular

Requirement Meta-Model

 capturing, managing and organizing

requirements into a formalized structure

 providing the meta-model for

each RSL

 providing the interoperability

model for tools

[MEPAS Project, N. Marko]

2011-01 14© VIRTUAL VEHICLE

Requirements Engineering – specification language

Free text: no constraint

 no training required
e.g.: the system shall count time between eyelid movement and warn driver if the time is less than 2 sec

Guided natural language: limited vocabulary from a dictionary

 reduce ambiguity
e.g.: driver: person who drives the car // warn: inform the driver about an event

Structured textual: template for requirement description

 further reduce ambiguity, support transition to formal notations
e.g. IF <trigger> THEN <subject> SHALL DO <action list> WITHIN <time bound>

Semi-formal model-based: formal and precise syntax while their semantics are

imprecise and allow different interpretation

 support the analysis of the requirements
e.g.: UML modeling

Formal model-based: method for definite, orderly and methodical requirement

definition

 most precise requirement definition
e.g. Petri nets, timed automata

2011-01 15© VIRTUAL VEHICLE

Traceability: „Requirements traceability refers to the ability to describe and
follow the life of a requirement, in both a forwards and backwards
direction, …“

post-requirements traceability links

 satisfies

 verify

 realize

pre-requirements traceability links

 explicit traceability links
• owns

• hasRationale

• hasSource

 possible operations performed on requirements
• refine

• decompose

• copy

• depend

Requirements Engineering – structuring (ontology)

2011-01 16© VIRTUAL VEHICLE

Model-based design – motivation

Motivation

 Describe in a formalized way the different artefacts of a system
 improved specification of the system

 Explicitly link the different artefacts together
 improved analysis and optimization capabilities of the system

 Provide a computer-based framework
 Support engineers during development activities and improve tool
interaction

Some (non-functional) modeling languages for automotive domain

 EAST-ADL: architecture description language tailored for the automotive
domain (www.atesst.org)

 AUTOSAR: AUTomotiv Open System Architecture (www.autosar.org)

 FIBEX: Field Bus Exchange Format (www.asam.net)

 TIMMO: Timing Model (www.timmo.org)

A modeling language supports your development work but will NEVER
take away the intellectual work of creating and understanding your system

http://www.atesst.org/
http://www.autosar.org/
http://www.asam.net/
http://www.timmo.org/

2011-01 17© VIRTUAL VEHICLE

The Multi-views approach: the double challenge

possible views :

• Operational: focus on the system missions

• Functional: focus on the functional aspects of the system

• Logical: define system architecture, define abstract components,

allocation of functions on them, behaviour of components and

interfaces between components

• Physical : define concrete hardware and software components,

allocation of functions on hardware and software components

• Safety: define the dysfunctional aspects of the system

• Product line: define the variability points

• Performance: define the system performance

• Interface: define the interfaces of the system components

The first challenge:

Identify the relevant views

The second challenge:

Propose the appropriate

foundations to share

common data between

the different views

The multi-views prism
[CESAR Project, O. Laurent, AIRBUS]

2011-01 18© VIRTUAL VEHICLE

EAST-ADL (www.atesst.org)

EAST-ADL is an architecture description language with improved means
for capturing the requirements, characteristics and configurations of
cooperative systems and the related analysis and V&V.

2011-01 19© VIRTUAL VEHICLE

AUTOSAR (www.autosar.org)

AUTOSAR (AUTomotive Open System ARchitecture) is an open and
standardized automotive software architecture, jointly developed by
automobile manufacturers, suppliers and tool developers.

2011-01 20© VIRTUAL VEHICLE

FIBEX (www.asam.net)

FIBEX is an XML-based standardised format used for representing the
networks used in the automobile. It has extensibility required for the
various network protocols used.

Topology: ECUs, comm.

channels, HW types

Application:

signals, variable

Communication matrix: mapping

between data models (signal-

PDU-frames), timing information

2011-01 21© VIRTUAL VEHICLE

TIMMO (www.timmo.org)

TIMMO develops a common, standardized infrastructure for the handling of
timing information during the design of embedded real-time systems in the
automotive industry. This shortens the development cycle and increases its
predictability.

2011-01 22© VIRTUAL VEHICLE

Seamless modeling - vision

Requirements

system architecture

specification and

management (EAST-ADL)

Safety analysis

(HiP-HOPS)

IDE

architecture modeling

(AUTOSAR)

behavioral modeling

(Matlab / Simulink)

Further static analysis

2011-01 23© VIRTUAL VEHICLE

Functional safety – motivation

The ECUs are deployed for safety-relevant operations (e.g., car movement,
power distribution, vehicle stability), where a failure can harm people,
environment or property and has therefore to be avoided.

IEC 61508: "Functional safety of electrical/electronic/programmable
electronic safety-related systems"

 Basic functional safety standard applicable to all kinds of industry

 Published 1998, since 2001 as European norm

 Covers the entire development cycle (16 phases covering analysis,
realization, operation

 Central concepts risk and safety function

 Philosophy
• zero risk can never be reached

• safety must be considered from the beginning

• non-tolerable risks must be reduced (ALARP - as low as reasonably
practicable)

2011-01 24© VIRTUAL VEHICLE

Safety methods and development process

ISO 26262: “Road vehicles – Functional safety” (www.iso.org)

 Based on IEC 65801

 Defines safety process for the development of road vehicles

 Draft International Standard – will be released in 2011

Safety

 Freedom from unacceptable risk

 Risk: combination between probability and severity of a failure

Safety related project activities

 Risk: Hazard and risk analysis
e.g. “what could happen if”

 Safety: safety concept
e.g. “what is the safe state”

 Safety functions: safety requirements
e.g. “How to provide the safe state”

 SIL decomposition: Implementation and processes
e.g. “what SIL (Safety Integrity Level) applies for individual units”

http://www.iso.org/

2011-01 25© VIRTUAL VEHICLE

ISO 26262

Standardized
development
processes
including safety-
related activities

Accompanying
processes

[ISO DIS 26262]

2011-01 26© VIRTUAL VEHICLE

Challenges

Safety concept

 Is required to analyze systematically the risks of the controlled system in
its environment

 Provides additional requirements to the system

 Has a direct influence on the system architecture and functionality (safety
functions)

Traceability of the development process

 It must be ensured that the standardized development process has been
followed (audit from external companies)

 The tool chain must be reasonably reliable (classification and qualification
activities)

Needs for Software Engineering

 Development activities are part of the ISO 26262 (“What” - which kind of
test, review, analysis)

 However specific development methods are not part of the ISO 26262
(“How”)

 Systematic approach for designing, implementing, and modifying the
software is required to improve system quality while minimizing the costs

2011-01 27© VIRTUAL VEHICLE

Time-triggered architectures for

complex control applications

“… in the event-triggered approach, all communication and processing

activities are initiated whenever a significant change of state, i.e., an event

(e.g., interrupt), is noted. In the time-triggered approach, all communication

and processing activities are initiated at predetermined points in time.”

[Real-Time Systems, Kopetz, 1997, Kluwer Acacemic]

2011-01 28© VIRTUAL VEHICLE

In-Vehicle-Networking for the next generation

1976: Golf I

1983: Golf II
1991: Golf III

1998: Golf IV

2004: Golf V

Example: Volkswagen Golf

5 ECU„s

0 ECU„s

11 ECU„s

18 ECU„s

Up to 35 ECU„s

2006: Golf VI

Up to 48 ECU„s

2011-01 29© VIRTUAL VEHICLE

Networks in cars

Snapshot 2004: the VW Phaeton

 2110 cables

 3860 meters cable

 Weight: 64kg

 70 ECUs

Advantage

 Safety-critical embedded systems
have been key innovation drivers

 E.g. by-wire systems

Disadvantage

 Enormous complexity is challenging
industry (automotive, aerospace,
rail, automation)

 Increasing costs

 Affected product quality  safety-
critical Source: Technology review, July 2004

Source: Volkswagen Beetle, 1960

2011-01 30© VIRTUAL VEHICLE

Automotive communication networks

Relative price

per node

data rate (bit/s)

CAN

J1850

SAE Class A

Comfort and simple control

~10kB/s

Low cost technology

SAE Class B

10 - 125kB/s

Data exchange between ECU

SAE Class C

125kB/s – 1 MB/s

High speed control loops

Powertrain, chassis

(Hard real-time)

SAE Class D

>1MB/s

Multimedia

Soft real-time
Ethernet

IEEE1394

USB

20K

1M

10M

100M

2011-01 31© VIRTUAL VEHICLE

Needs for new architectures

Automotive electronics organized as complex distributed systems

 Local connection between sensors, processors and actuators

 Information dissemination within the car

 Point to point connection inefficient (reliability, weight)

System complexity difficult to manage

 Number of ECU, intensity of the communication

 Different technologies

 Complexity of the application

The system can not be assumed fault-free

 High temperature range and thermal gradients

 High humidity, splashes from oil, petrol, chemicals…

 Conducted emissions (electric motors) and radiated emissions (power
lines, radio or TV transmitters)

2011-01 32© VIRTUAL VEHICLE

Event-Triggered (ET) architecture

Event-triggered architecture
 System activity triggered by an event

 Priority based communication (CAN)

ID 5

ID 3

ID 1
 Communication jitter

 Constructive integration

 Redundancy

 Architecture flexibility

 Bandwidth use (sporadic events)

ID 5ID 3ID 1

transmission delayed
highest

priority

2011-01 33© VIRTUAL VEHICLE

Time-triggered (TT) architecture

Time-triggered architecture
 Action derived from progression of time

 Static, periodic, a-priori known schedule

 Global notion of time

ID 5

ID 3

ID 1

 Communication jitter

 Constructive integration

 Redundancy, Agreement

 Architecture flexibility

 Bandwidth use (sporadic events)

ID 1 ID 3 ID 5

transmission slot

a-priori known

2011-01 34© VIRTUAL VEHICLE

ET versus TT Transmission paradigm

Event-based communication

 A communication is triggered for each new event – i.e. major state
change (e.g. temperature increase of +5 degree)

 Each event (communication) has to be detected and processed in the
same time order it arrived

 Optimal use of the bandwidth

 Not robust – lost of message might lead to system inconsistencies

Status-based communication

 Periodic communication for updating system state
(e.g. temperature is currently 55 degree)

 Events (communication elements) might be missed or processed in
different time order than reception time

 Worse-case use of the bandwidth

 Robustness: lost of message only induce additional processing delays –
no system inconsistencies

2011-01 35© VIRTUAL VEHICLE

FlexRay

Overview

2011-01 36© VIRTUAL VEHICLE

FlexRay – TDMA Scheme

Periodical communication scheme

 Static segment for time-triggered communication

 Dynamic segment for event-triggered communication

 Symbol window for medium test

 Network idle time for resynchronization

Static

segment

Dynamic

segment
SW NIT

Static

segment

Dynamic

segment
SW NIT

Cycle n Cycle n+1

NIT

Slot 1 Slot 2 … … Slot i

Network idle time

(synchronization)

i+1 i+2 … … … … k

minislot

Static

segment

Cycle n+2
Cycle

n-1

Symbol Window

2011-01 37© VIRTUAL VEHICLE

Medium access

Static segment: static schedule for time-triggered

communication

Dynamic segment: prioritized access for event-triggered

communication

Static segment Dynamic segment

SW NITCh A

Ch B

1 2 3 4 5

1 2 3 4 5 6 7 8 9

SW NIT

N1a N3aN2a N1b

N1a N3b N1b

N2b

6 7 8 9

N1c

N1c

10 11 1213

10

2011-01 38© VIRTUAL VEHICLE

FlexRay controller overview

Controller

host interface

Media access

control

Frame and symbol

processing

Clock

synchronization

Coding & decoding

Protocol operation

control

Macrotick

generation

[FlexRay Protocol Specification, V.2.1A, Fig 2-2]

Frame and symbol

Processing ch. A

Media access

Control ch. A

Coding & decoding ch. A

Coding / Decoding:

• Signal processing

• Adding / removing

bit sequences

• Syntax check

Frame and symbol

processing:

• Packing / unpacking contents

into frames

• Error check (content)

Media access control:

• Generate communication

schedule

• Provide time information

(segment, slot…)

Macrotick generation:

• macrotick: commonly agreed

time base within the network

• Required to generate the

schedule

Clock synchronization:

• Measurement of the clock

(state and rate) differences

• Computation of a fault-tolerant

correction term

• Provides both rate and offset

correction

Protocol operation control:

• Configuration: provides

mechanisms for configuration

• Control: control the protocol

state (stopped, normal, error…)

Controller Host Interface:

• Data exchange with host

• Data exchange with

communication controller

Channel

interface

Host

2011-01 39© VIRTUAL VEHICLE

FlexRay: time synchronization

Aim: provide a global time base within the network to

correct the quartz drift and avoid collision on the bus

Requirement: fault tolerant algorithm
 No single point of error

 Single faults are discarded

Node 1

Node 2

Node 3

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot 8

Frame Frame

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot 8

Frame

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot 8

Frame Frame

2011-01 40© VIRTUAL VEHICLE

Clock synchronization – overview

Goal

 Synchronize the macroticks between the
nodes

 Keep the system precision (maximal time
difference between any two nodes) bounded

Offset correction

 Goal: minimize the clock state difference at
cycle start

 Correct the number of microticks per cycle

 Discrete correction (once per cycle)

Rate correction

 Goal: minimize the clock state difference within
the cycle

 Modify the number of microticks per
macroticks

 Continuous correction

synchronization

period

time

nodes’

time base

time

nodes’

time base

synchronization

period

2011-01 41© VIRTUAL VEHICLE

FlexRay: Wake-up & Start-up

Motivation

 Wake-up the network and provide initial synchronization

 Fault tolerant (network operation relies on start-up)

 Fast operation (fault recovery)

Three phases

 Wakeup: to wake-up the network (active stars, nodes) if it is still asleep

 Startup: to begin communication (initialize schedule) when the nodes are
awake

 Reintegration: to integrate single nodes within a running cluster

2011-01 42© VIRTUAL VEHICLE

Wakeup - illustration

Node A

coldstart

node

Node B

coldstart

node

Node C

non coldstart

node

Channel
A

B

wakeup

pattern

[FlexRay Protocol Specification, V.2.1A, Fig 7-6]

reset config ready
Wup

listen

Wup

send
ready integration listen coldstart listen

power off / reset config ready
Wup

listen

Wup

send
ready coldstart listen

wakeup

pattern

integration

listen
power off / reset config ready

Node‟s state machine
Local wakeup

event

2011-01 43© VIRTUAL VEHICLE

Startup – illustration

Node A

leading

coldstart

Node B

following

coldstart

Node C

non coldstart

node

Channel

[FlexRay Protocol Specification, V.2.1A, Fig 7-10]

coldstart

listen
ready

Node‟s state machine

Cycle

schedule

coldstart collision

resolution

consistency

check
normal active

no schedule cycle 0 cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle 6 cycle 7 cycle 8

A ABCABABABABA A A

CAS S S S S SS SS SS SS SS

coldstart

listen
ready

initialize

schedule

integration

coldstart check
coldstart join normal active

normal

active
integration consistency check

initialize

schedule

integration

listen
ready

2011-01 44© VIRTUAL VEHICLE

Integration issues

2011-01 45© VIRTUAL VEHICLE

Design of the communication architecture – Fibex

[FIBEX - Field Bus Exchange Format, Version 3.0 ASAM AE, 2008, Fig 10-1]

Topology: ECUs, comm.

channels, HW types

Application:

signals, variable

Communication matrix: mapping

between data models (signal-

PDU-frames), timing information

2011-01 46© VIRTUAL VEHICLE

Integration issues within the software architecture

Control flow – integration within the SW architecture

 Event-triggered (action triggered with rxd / txd interrupt)

flexibility but control flow difficult to handle (interrupts)

 Time-triggered (comm. task synchronous to bus schedule)

a-priori known behavior (time domain) but complex dependencies

between operating system and communication system

Data flow – transmission scheme

 Buffer: frame filtering (ID, cycle) performed in hardware,

Time-triggered comm.: latest data stored (old version discarded)

 FIFO: frames stored sequentially, further processing in software

Event-triggered comm.: all frames are available

System configuration – amount of data

 Protocol configuration: FlexRay schedule / syntax (>70 param.)

 Data access and interpretation: buffer configuration, mapping between

frame and signals (>50 parameters)

2011-01 47© VIRTUAL VEHICLE

Interaction between Operating and Communication

system

Operating system

Event-triggered

(interrupts driven)

Time-triggered

(schedule)

C
o

m
m

u
n

ic
a
tio

n
 s

y
s
te

m

Event-

triggered

(e.g. CAN)

 Priority based communication

+ Flexibility, average response

time

- Complex timing analysis,

- No constructive integration

 Static communication scheme

supported by the application

+ Easy timing analysis

- Application overhead (e.g. for

synchronization)

Time-

triggered

(e.g.

FlexRay)

 static comm. scheme with

interrupt based data interface

+ constructive integration

(comm. point of view)

- Complex end-to-end timing

analysis

- No constructive integration

(node’s point of view)

 Asynchronous systems

+ Easy timing analysis

- Non optimal end-to-end delays

(synchronization)

- Frames might be missed

 Synchronous systems

+ Easy timing analysis

+ deterministic and optimal end-

to-end delays

- Flexibility

2011-01 48© VIRTUAL VEHICLE

Conclusion

Cars are forming complex distributed systems, evolving in harsh
environments; in parallel their reliability requirements increase

Automotive embedded systems from two perspectives

 Software engineering (requirement engineering, model-based
development and functional safety)

 System architecture (event- vs. time-triggered)

The question is not anymore “how can I develop a given function”
but “how can I make my system more dependable for lower costs”

 Meta-information for the description of the product are important

 Traceability between the system views required

 Traceability of the development process required

 (model-based) tool-chain as central elements to achieve these
goals

Do not forget Verification and Validation activities!

2011-01 49© VIRTUAL VEHICLE

K2 / K plus Competence Center - Initiated by the Federal Ministry of Transport, Innovation and

Technology (BMVIT). Funded by FFG, Land Steiermark and Steirische Wirtschaftsförderung (SFG)

Thank you

for your attention!

www.v2c2.at

http://www.v2c2.at/
http://www.v2c2.at/
http://www.v2c2.at/
http://www.v2c2.at/
http://www.v2c2.at/

