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VIRTUAL VEHICLE in a nutshell: virtualt®vehicle

Vehicle EE & Software

Founded: July 2002
Current Staff: 150
Turnover: EUR 12 Mio.
Shareholder:
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Managing Director: Dr. Jost Bernasch

Scientific Director: Prof. Hermann Steffan
(Vehicle Safety / Frank Stronach Institute, TU Graz)
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VIRTUAL catchwords: Vehicle EE & Software

Independent Research Platform
(not tied to specific bodies or corporations)

Applied Research and Scientific Services

Driven by the demand of leading companies
(> 50 industry partners)

Comprehensive international Research Network
(> 35 scientific partners and university institutes)

Extensive financial funding programs available
RS ot (no overhead as in customary funded projects)

<
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Semiconductor vs. Automotive industry

Vehicle EE & Software

“If the automotive industry had advanced as rapidly as the
semiconductor industry we'd all be driving a Rolls Royce, it
would do half a million miles to the gallon and it would be
cheaper to throw away than to park”

Transistors

10 Billion
Moore's Law
Dual-Core Intel® Itanium® £ Processor e 1 Billion
Intel® Itanium® 2 Processor g
Intel® Itanium® Processor e
100 Million
Intel® Pentium® 4 Processor &
Intel® Pentium® Ill Processor _e
Intel* Pentium® Il Processor e 10 Million
And as a friend pointed out, Moore said, el 286 P Processol w il
nion
"n; =
it would only be a half-inch long and a Intel* 386" Processor
. . " 286
quarter-inch high. ‘ 100,000
8085 4

10,000

1,000
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E ronics in car
lectronics in cars Vehicle EE & Software

Vehicles a decade ago
= A few embedded systems per vehicle

Direct fusl Active

injection £ il '1- suspension - .
A _ %/ Vehicles nowadays

Electric throttie fl e .
R vivecostrol f . = Up to a few hundreds of computing
/ . : devices per vehicle
- \ Py et = Multiple networks per vehicle
yARN WA Advantage

= Safety-critical embedded systems have
been key innovation drivers
= E.g. by-wire systems

Disadvantage

Steer-by-wire
gg;;lgg;ﬂa;;um @ = Enormous complexity is challenging
industry (automotive, aerospace, rail,

automation)
= Increasing costs
= Affected product quality =» safety-

| PAST TODAY FUTURE ? critical

Source: AVL List
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Innovation Cycles in Automotive

R&D spending in automotive
industry:

- In 2005 € 68 billion in research &
development

* 4,2 % of sales or € 783 per vehicle

- Additionally € 1.500 of cost reduction
per vehicle forecasted (11 % of costs)

- Through 2015, R&D will rise to € 800
billion

- E&E will remain the most important
enabler for automotive innovations

[H. Gall, austriamicrosystems]

2011-01
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Vehicle EE & Software

Shift from single to system innovation

ESC, +— Anti-heat glass
Brake m #— New wiper blade materials
st . +— Particulate filter

v

— — TV
— D\VD —DVD
— Keyless entry — Keyless entry
— ABS +—— Xenon light +— Xenon light
— Injection — Injection ~— Injection
+«— Air conditioning «— Air conditioning +~— Air conditioning
~— Ignition — lgnition +— [gnition +— Ignition
— Three-point safaty belt +— Three-point safety belt | e— Three-paint safety belt ~— Three-point safety belt
— 12V — 12V — 12V y — 12V
1960 1980 2000 2015

Please note: ABS = anti-lock braking system, ESC = electronic stahility control, EPS = electronic power steering,
APS = adaptive power steering, EMB = electro-mechanical braking, ACC = adaptive cruise control, PSS = predictive safety systems

© VIRTUAL VEHICLE
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automotive electronics

Vehicle EE & Software

80% of the innovation in cars comes from electronics — Software plays a
key role

Evolution of the complexity

Programming language: assembler in the 1970’s, C in the 90’s,
Matlab/Simulink (ASCET) nowadays

100 millions lines of code

up to 80 ECUs

2500 signals

65 millions cars and light commercial vehicles produced each year

Large development teams regrouping different domains and different
institutions

Requirements on automotive electronics

2011-01

High reliability

Functional safety

Real-time behavior

Minimized resource consumption
Robust design
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The development life cycle process wrtual vehicle

Vehicle EE & Software
The model-based approach for early validation and auto

Stakeholder ~Ng@

- — Integl'-?‘telztn L End Product
/ Requirements
\ " Test
~ Definition of End Product _ | Plars &
Req. > Requirements ™ Verftication ' Results
Vanran'on
/
/
! Definition of System Level
| Design N+1
\
N 5
~ a Y e
- Definition of _|_ egment, _ _ | [Integration and | Segments
- -P Requirements w erification s p;i?&
” - Results
e ! . , .
/ \ Design
/ ~ ‘Veﬂﬁcatfon
~ Definition of
I o Design < progel Segment Level
\ - = o N
N\ o T
A Requirements ) K
S Al | redtborm: i v
™ - — ) ReqWrements al Integration and Hardtwars &
- Deﬁr}ltlon of g Test Software Test
(check Requirements Flans &
completeness and Results
correctness) "._ 5

Model

Realization of Hardware / HW/SW Level
HW/SW - Software N-1

But, different kinds of models for different skills (dysfunctional models
for safety, performance models for timing constraints, ...)

[CESAR Project,
O. Laurent, AIRBUS]
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Needs for improved development processes

Vehicle EE & Software

Methods for requirement engineering
= First description of the system; contract between OEM and supplier
» Requirements needs to be precise, unambiguous and complete
= Formalization of multi viewpoint, multi criteria and multi level requirements

Methods for component-based design
= Global understanding of the system for efficient analysis
= Provide traceability during system design and validation

= Design space exploration comprising multi-view, multi-criteria and multi level
architecture trade-offs

Safety methods and processes

= Ensure the quality of a product via the execution of safety related activities
and the definition of a standardized development process

= Provide traceability of the development process

= Formalization of the dev. process for analysis, reporting (certification) and
automation (service orchestration)

2011-01 © VIRTUAL VEHICLE
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Vehicle EE & Software

Software Engineering

“‘Software engineering (SE) is a profession dedicated to designing,
implementing, and modifying software so that it is of higher quality, more
affordable, maintainable, and faster to build. It is a systematic approach to
the analysis, design, assessment, implementation, test, maintenance and re-

engineering of a software by applying engineering to the software”

[Wikipedia]

© VIRTUAL VEHICLE



Requirements Engineering - motivation

Vehicle EE & Software

Requirements engineering:

deals with understanding, documenting, communicating and
implementing customer needs

is required to reach a common understanding between the stakeholders

is required during the entire development cycle (design, implementation,
validation)

Related activities

2011-01

Requirements elicitation: find out the services the system should provide
and the operational constraints

Requirements analysis and negotiation: solve the conflicts between the
requirements in order to reach a common understanding between the
stakeholders

Requirements documentation and validation: write down and check the
requirements against correctness, completeness, consistency,
verifiability, unambiguity, traceability...

Requirements management. managing requirements changes (keep the
requirement set consistent)

© VIRTUAL VEHICLE




Requirements Engineering

virtual@®vehicle

Vehicle EE & Software

Requirement Specification Language
minimize amount of time to write requirements

make requirements understandable and unambiguous
minimize amount of time to validate requirements

differences in:

= formality: formal/semi-formal/informal
= jllustration: textual/graphical/tabular

Requirement Meta-Model
capturing, managing and organizing
requirements into a formalized structure

providing the meta-model for
each RSL

providing the interoperability
model for tools

[MEPAS Project, N. Marko]

CESAR Requirement Specification Languages (RSLs)

Semi-formal RSLs

Guided

Natural
Language

Textual RSLs Graphical RSLs

Pattern
based
RSL

SysML Video

Boilerplate

based RSL based based

RSL RSL

Degree of formality o

Formal RSLs

ftware
Cost Matlab
Reduction Simulink
(SCR)

2011-01
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R irements Engineering - ification lan
equirements Engineering - specification language b 18—

Free text: no constraint

=» no training required
e.g.: the system shall count time between eyelid movement and warn driver if the time is less than 2 sec

Guided natural language: limited vocabulary from a dictionary
=» reduce ambiguity

e.g.: driver: person who drives the car // warn: inform the driver about an event

Structured textual: template for requirement description

=>» further reduce ambiguity, support transition to formal notations
e.g. IF <trigger> THEN <subject> SHALL DO <action list> WITHIN <time bound>

Semi-formal model-based: formal and precise syntax while their semantics are
imprecise and allow different interpretation

=>» support the analysis of the requirements
e.g.: UML modeling

Formal model-based: method for definite, orderly and methodical requirement
definition

=» most precise requirement definition

e.g. Petri nets, timed automata
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Requirements Engineering - structuring (ontology)

Vehicle EE & Software

Traceability: ,,Requirements traceability refers to the ability to describe and
follow the life of a requirement, in both a forwards and backwards
direction, ...“

post-requirements traceability links
= gsatisfies
= verify
= realize

pre-requirements traceability links

= explicit traceability links
* Oowns
« hasRationale
» hasSource

= possible operations performed on requirements
» refine
* decompose

s copy
* depend

2011-01 © VIRTUAL VEHICLE




Model-based design - motivation

Vehicle EE & Software

Motivation

= Describe in a formalized way the different artefacts of a system
=» improved specification of the system

= Explicitly link the different artefacts together
=» improved analysis and optimization capabilities of the system

= Provide a computer-based framework
=>» Support engineers during development activities and improve tool

interaction

Some (non-functional) modeling languages for automotive domain

= EAST-ADL: architecture description language tailored for the automotive
domain (www.atesst.org)

= AUTOSAR: AUTomotiv Open System Architecture (www.autosar.org)
= FIBEX: Field Bus Exchange Format (www.asam.net)
= TIMMO: Timing Model (www.timmo.org)

A modeling language supports your development work but will NEVER
take away the intellectual work of creating and understanding your system

2011-01 © VIRTUAL VEHICLE



http://www.atesst.org/
http://www.autosar.org/
http://www.asam.net/
http://www.timmo.org/

virtual@®vehicle

The Multi-views approach: the double challenge Y= a—

possible views :
* Operational: focus on the system missions
The first challenge:  Functional: focus on the functional aspects of the system
Identify the relevant views * Logical: define system architecture, define abstract components,
allocation of functions on them, behaviour of components and
interfaces between components
* Physical : define concrete hardware and software components,
allocation of functions on hardware and software components
» Safety: define the dysfunctional aspects of the system
* Product line: define the variability points
» Performance: define the system performance
* Interface: define the interfaces of the system components

Saifier
Functions o

Per forrmance

‘0 Interfaces

2 ."'i’.' g Serurity
VewPors The second challenge:
” & Propose the appropriate
Evalation ks TG }‘v =
e foundations to share
Solution commonhn data between

Architecture 4 Components

the different views

The multi-views prism
[CESAR Project, O. Laurent, AIRBUS]

2011-01 © VIRTUAL VEHICLE




virtual@®vehicle

EAST-ADL (www.atesst.org)

Vehicle EE & Software

EAST-ADL is an architecture description language with improved means
for capturing the requirements, characteristics and configurations of
cooperative systems and the related analysis and V&V.

. Vehicle View
Defines

features in \

Refined into
Partially allocated to
=

Refined, ears

into . as
- = # w
Re

Operational Architecture
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AUTOSAR (www.autosar.org) V'rtualveh|de

Vehicle EE & Software

AUTOSAR (AUTomotive Open System ARchitecture) is an open and
standardized automotive software architecture, jointly developed by
automobile manufacturers, suppliers and tool developers.

Interfaces
Components and interfaces view (simplified)

Application Actuator

e Sensor Application
AUTOSAR Software Software Software AUTOSAR Software
Software Component Component Component S Component
Component AUTOSAR AUTOSAR AUTOSAR oftware AUTOSAR
Interface Interface Interface Interface
Interface
AUTOSAR Runtime Environment (RTE)
Standard
Software II I II I I
Standardized e nd Standardized AUTOSAR AUTOSAR
Interface Interface Interface Interface
Interfaces: Interface
5 s ECU
= VFB &RTE Services Communication Ahsiveciion
relevant
o Standardized Standardized Standardized
‘:::' RTE =B Interface Interface Interface
relevant Cpasin = E_ Cumplax
= Bsw System |B & 3;:':;
relevant 88 Standardized
a
Possbl ntrfaces ___Interface
ns Microcontroller
aﬁm Abstraction
not specified
within AUTOSAR)

ECU-Hardware
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FIBEX 3 m.n
(WWW CRE et) Vehicle EE & Software

FIBEX is an XML-based standardised format used for representing the
networks used in the automobile. It has extensibility required for the
various network protocols used.

xxxxxxxx Ray/

— 4+ S Topology: ECUs, comm.
e | channels, HW types

INCLUDED-
PDU

1
t Requirsments |

INCLUDED-

1 CYCLIC-TIMING T 1
- REPEATING-TIMERANGE: Int
- STARTING-TIME-RANGE: Int

Communication matrix: mapping
between data models (signal- -

PDU-
TRIGGERING

Application:

[y / | signals, variable

SIGNAL

PDU-frames), timing information
EWVER 2
DEBOUNCE-TIME-RANGE: Int
[sgnal ]

1 /

POU sTanDaRD-OU [ SIGNALANSTANCE SIGNAL e SIGNAL-GROUP

F———— [@— - sm-rosmion: int >
1 |- =ienaLupDATEBIT-POSITION: Int| 1 1 N F o1
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TIMMO (www.timmo.org)

Vehicle EE & Software

TIMMO develops a common, standardized infrastructure for the handling of
timing information during the design of embedded real-time systems in the
automotive industry. This shortens the development cycle and increases its
predictability.

ECU #1 ECU#3 ECU Wheel FL
._. ss e
RTE!
BhsicSW | | BasicSW | Basicsw |!| |i | Basicsw| |
. VIR ) b o4 oz ST . KRR = e S . “CSTEEENCD !
1/ 1/
Bus 21
Bus #2
— Signal Path RTE Run Time Environment  ECU Electronic Contral Unit
{5 Bbssmable SWC Software Component

Events
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m m ing - vision
Seamless model g - VISIO Vehicle EE & Software

i Safety analysis
system architecture (HiP-HOPS)

Requirements specification and
. — management (EAST-ADL) e e e

i
- whesls
®F=l | 1 Calling the elevator Fake & . i T . . - o
H.Req2 | |[& potentisl passenger can be cr any of the foors and can call an skevator by pressing either e | True gk NaBirzke3 Loss of braking inthree  Catestrophic 8% loss of braking function
up or button o call the elevaior, whesls
NoBrakeFrant  Loss ofbraking in front  Catstophic  65% 1
HLPeq3 The potntisl passenger waits for the doors 1o open befre anterg N te slvator. The Fake rekebTm - ’h ":5 i b = oy I“” “'
poteriial passenger now becomes 2 passenger - vhoels iy lons o
HF=5 | 2 In the elevator Fabe - NoBirskeResr  Loss of braking in rear Critical 35% loss ol
HL_Req 7 | Jlonce in an slevator, a passenger can select e flzor or anumber of flowrs where hewars | True Medum __Te =) whesls P loss af car st 3y
e z;-"“*'n: ¢ o o it Onc e v s boan el by ot | VehicleSpeed ACCSyom = NaBirskeDiag Lass af breking in Critical 5iP4 lass af braking, 15% loss of
_Peq elevator vl have 3 listof foers D vist: slovstor has been callsd by apotenial | False = Cam i ) ! Rk
passenger or 3 passanger has selecied a destraban, ten the skevatr will move o te 1 ¥ disgonally oppasite subility, 153 lost of sieering
peroprisie foor ! T whesls
H P09 | 3 Elevator at selected floor Faloz. | T ¥ ! MaBrakel Loss of braking in Critical Marginalunless caris
vencesgess raaetals ACC Commeier i single whesl while ona curved 1
H._Req 10 Jwhen the eevator has amwed at a floor and the doors have opened, then the passenger can | Troe Hih [k g L oy T g B T o L tle o o gectany
texit the elevator. 000 Tlepseuron pon st 10 Tioqeheans ormetenms which case it may drifi off course
B Y ValLowd Insufficient braking in ~ Catstraghic  Major loss of braking function
=t dlwhesls
WValHighd Excess hraking in all Critical Excess hraking can lead to loss of
wheels if wheels lock, but

ty is mastly maintzinsd

poulos and MoDermid {1999)

behavioral modeling = S Further static analysis
(Matlab / Simulink)

IDE

A ol 1] PEELS
Sensor Application
Fault-Toleram Fuel Comral System Software i
16 e a0 Ay s rE]
bl ERTERIER Ja P s e E L[
& | o]

[ ezl ranan

r ECU
Abstraction Complex
Device
Microcontroller i
Abstraction
o o b o P e e e e o T e
S s S F= G ol i 0
[EEp— -
..... = it ompbeen
L | e e,
£, g i g T

architecture modeling
(AUTOSAR)

2011-01 © VIRTUAL VEHICLE




Functional safety - motivation

Vehicle EE & Software

The ECUs are deployed for safety-relevant operations (e.g., car movement,
power distribution, vehicle stability), where a failure can harm people,
environment or property and has therefore to be avoided.

IEC 61508: "Functional safety of electrical/electronic/programmable
electronic safety-related systems™

2011-01

Basic functional safety standard applicable to all kinds of industry
Published 1998, since 2001 as European norm

Covers the entire development cycle (16 phases covering analysis,
realization, operation

Central concepts risk and safety function

Phnosophy
zero risk can never be reached
« safety must be considered from the beginning

* non-tolerable risks must be reduced (ALARP - as low as reasonably
practicable)

© VIRTUAL VEHICLE



Safety methods and development process

Vehicle EE & Software

ISO 26262: “Road vehicles — Functional safety” (www.iso.orq)
= Based on IEC 65801
» Defines safety process for the development of road vehicles
= Draft International Standard — will be released in 2011

Safety
= Freedom from unacceptable risk
» Risk: combination between probability and severity of a failure

Safety related project activities

» Risk: Hazard and risk analysis
e.g. “what could happen if”

= Safety: safety concept
e.g. “what is the safe state”

= Safety functions: safety requirements
e.g. “How to provide the safe state”

= SIL decomposition: Implementation and processes
e.g. “what SIL (Safety Integrity Level) applies for individual units”

2011-01 © VIRTUAL VEHICLE



http://www.iso.org/

ISO 26262

Vehicle EE & Software

/ Vocabulary \
L A}

2. Management of Functional Safety /
‘2-5 QOverall Safety Mangagement ‘ |2-6 Safefy lagemontduring .Bavsm | ‘ 2-7 Safety Mangagement after Release for Produktion ‘

Standardized
development/f 3. Concept Phase | 5 Product Development; System Level |@,_ Poducion

35 Tem-Definitiop——"" o iti — :
p rO Cesses - :arltg)?sr\tg;Plrg\c::F pevelopment e for Production | ‘7-5 Production ‘

3-6 Inition of the Safety 4-10 Functional Safety Assessment |

i n CI U d I n g Safety' Lifecycle 4-6 Specification of the Technical

Safety Requi ts intai
afety Requiremen |4_9 Safety Validation ‘ (Maintainance and

re I ated a CtIVItIeS 3-7 Hazard Analysis and Repair), and

Risk Assessment 4-7 System Design w% Decommissioning
—
3-8 Functional Safety @uct Develow @uct Develow
e Hardware Level Software Level

7-5 Operation , Service,

5-5 |Initiation of Product Development at the 6-5 Initiation of Product Development at the
Hardware Level Software Level

5-6 Specification of the Hardware 6-6 Specification of the Software
Requirements Requirements

6-7 Software Architectual Design
6-8 Software Unit Design and
5-8 Hardware Architectual Metrics Implementation

6-9 Software Unit Testing

5-7 Hardware Design

5-9 Evaluation of Violation of the Safety
Goal due to random HW Failures 6-10 Software Integration and Testing

6-11 Verification of Software Safety
Requirements

5-10 Hardware Integration and Testing

ACCompanylng J\ 8. Supporting Processes )

BubtpterfaeEsWiln Distributed Developments — B.10.Deeurreniation
p ro Ce SS eS — 8-6 Specification and Management of Safety Requirements 8-11 Qualification of Software Tools

8-7 Configuration Management 8-12 Qualification of Software Components

8-8 Change Management 8-13 Qualification of Hardware Components

8-9 Verification 8-14 Proven in Use Argument
—_ —

W&nted and Safety mmmW

9-5 Requirements Decomposition with Respect to ASIL Tailoring 9-7 Analysis of Dependent Failures

9-6 Criteria for Coexistence of Elements 9-8 Safety Analysis
@uideline to ISO 26262 (informativeb

[ISO DIS 26262] —— —
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Challenges

Vehicle EE & Software

Safety concept

Is required to analyze systematically the risks of the controlled system in
its environment

Provides additional requirements to the system

Has a direct influence on the system architecture and functionality (safety
functions)

Traceability of the development process

It must be ensured that the standardized development process has been
followed (audit from external companies)

The tool chain must be reasonably reliable (classification and qualification
activities)

Needs for Software Engineering

2011-01

Development activities are part of the 1ISO 26262 (“What” - which kind of
test, review, analysis)

However specific development methods are not part of the ISO 26262
(“HOW”)

Systematic approach for designing, implementing, and modifying the
software is required to improve system quality while minimizing the costs

© VIRTUAL VEHICLE
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Vehicle EE & Software

Time-triggered architectures for
complex control applications

“...in the event-triggered approach, all communication and processing
activities are initiated whenever a significant change of state, i.e., an event
(e.q., interrupt), is noted. In the time-triggered approach, all communication
and processing activities are initiated at predetermined points in time.”

[Real-Time Systems, Kopetz, 1997, Kluwer Acacemic]

2011-01 © VIRTUAL VEHICLE
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In-Vehicle-Networking for the next generation

Vehicle EE & Software

Example: Volkswagen Golf

1976: Golf | 2006: Golf VI 2004: Golf V

Up to 35 ECU’s

1983: Golf Il Up to 48 ECU’s 1998: Golf IV

/] I I I | 1991: Golf Il

; 7 i .
/ i)

&/ —

e
o

7

18 ECU’s

11 ECU's
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Networks in cars Vehicle EE & Software

\1g{VF]

Snapshot 2004: the VW Phaeton
= 2110 cables
= 3860 meters cable
= Weight: 64kg
= 70 ECUs

Advantage

|
» Safety-critical embedded systems T : : = q %
have been key innovation drivers 65 == o

= E.g. by-wire systems

Disadvantage

= Enormous complexity is challenging
industry (automotive, aerospace,
rail, automation)

» Increasing costs

= Affected product quality =» safety- _
critical Source: Technology review, July 2004
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Automotive communication networks virtudi tua |V€th|e

Vehicle EE & Software

@
data rate (bit/s) G SAE Class D MOST
A >1 MB / S COOPERATICON USB
Multimedia l l
100M | Soft real-time ) Ethernet
QU [IEEE1394]
p
D SAE Class C
125kB/s — 1 MB/s
10M High speed control loops M
Powertrain, chassis Hay
(Hard real-time) )
9
~ G
MM T CAN SAE Class B
10 - 125kB/s
Data exchange between ECU
[ J1850 J U
9
(0
20K —+ SAE Class A
’ Comfort and simple control . .
~10kB/s Relative price
ot HTERCECTHET O Low cost technology ) per node
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Needs for new architectures

Vehicle EE & Software

Automotive electronics organized as complex distributed systems
= Local connection between sensors, processors and actuators
= Information dissemination within the car
= Point to point connection inefficient (reliability, weight)

System complexity difficult to manage
= Number of ECU, intensity of the communication
= Different technologies
= Complexity of the application

The system can not be assumed fault-free
= High temperature range and thermal gradients
= High humidity, splashes from oil, petrol, chemicals...

= Conducted emissions (electric motors) and radiated emissions (power
lines, radio or TV transmitters)

2011-01 © VIRTUAL VEHICLE
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Vehicle EE & Software

Event-Triggered (ET) architecture

Event-triggered architecture

= System activity triggered by an event
= Priority based communication (CAN)

(D ® Communication jitter

® Constructive integration
® Redundancy

© Architecture flexibility

© Bandwidth use (sporadic events)
highest l U
oriority transmission delayed
\ 4

~

>
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Time-triggered (TT) architecture virtual vehicle

Vehicle EE & Software

Time-triggered architecture
= Action derived from progression of time
= Static, periodic, a-priori known schedule
= Global notion of time

(0 © Communication jitter

© Constructive integration

© Redundancy, Agreement

. ® Architecture flexibility

\ @\Bandwidth use (sporadic events)

transmission slot
a-priori known

B N
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ET versus TT Transmission paradigm

Vehicle EE & Software

Event-based communication

A communication is triggered for each new event — i.e. major state
change (e.g. temperature increase of +5 degree)

Each event (communication) has to be detected and processed in the
same time order it arrived

Optimal use of the bandwidth
Not robust — lost of message might lead to system inconsistencies

Status-based communication

2011-01

Periodic communication for updating system state
(e.g. temperature is currently 55 degree)

Events (communication elements) might be missed or processed in
different time order than reception time

Worse-case use of the bandwidth

Robustness: lost of message only induce additional processing delays —
no system inconsistencies

© VIRTUAL VEHICLE
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Vehicle EE & Software

FlexRay

Overview

2011-01 © VIRTUAL VEHICLE 35




FlexRay - TDMA Scheme

Vehicle EE & Software

Periodical communication scheme
=  Static segment for time-triggered communication
= Dynamic segment for event-triggered communication
= Symbol window for medium test
= Network idle time for resynchronization

Cycle
n-1 | Cycle n | Cycle n+1 Cycle n+2
Dynamic Dynamic
segment el N7 segment S NIT

Network idle time

Symbol Window (synchronization)

+1i+2| .. [ ]| K

minislot
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Medium access

Vehicle EE & Software

Static segment: static schedule for time-triggered
communication

Dynamic segment: prioritized access for event-triggered
communication

Static segment Dynamic segment

a N N
A | R [Nl o (] ||| | s | T
1 2 4 5 6 7 8 9 10
cne | \Nsb\lum\-\msww NIT |
1 2

3 5 6789 111213

v

v
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FlexRay controller overview vir tualveh' cle

Vehicle EE & Software

P
Controller Host Interface: Host 0 Protocol operation control:
» Data exchange with host + Configuration: provides
» Data exchange with C I mechanisms for configuration
communication controller > ontroller < + Control: control the protocol
o » host interface [« state (stopped, normal, error...)
L
) ) W, 5 I | &)
(D Clock synchronization: : Macrotick _generatlon:
M EEELET AT O R e > Protocol opera’uon ) . macrotick: _co_mmonly agreed
(state and rate) differences s control < time ba_se within the network
- Computation of a fault-tolerant 7y 7 * Required to generate the
correction term schedule J
* Provides both rate and offset v v L [ P
correction J|| Macrotick | X Clock (D
ti < > h izati Media access control:
~ generation synchronization » Generate communication
* schedule
| | * Provide time information
| Media access | Frame and symbol | | (segment siot...)
Coding / Decoding: e e . Y,
. Signal processing Contrgl ch. A | Processﬂlng ch.(A | o
* Adding / removing (D
bit sequences [ Frame apd .symbol
* Syntax check processing: .
> Coding & decoding ch. A * Packing / unpacking contents
) ] into frames
* Error check (content)
. : Channel g
[FlexRay Protocol Specification, V.2.1A, Fig 2-2] interface ~
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FlexRay: time synchronization

Vehicle EE & Software

Aim: provide a global time base within the network to
correct the quartz drift and avoid collision on the bus

Slot 1 Slot2 Slot3 Slot4 Slot5S Slot 6 Slot7 Slot8

Node 1 | iFramei | | IWmel | | | | >
Slot 1}, Slot 2, Slot 3 Slot 4, Slot 5, Slot 6, Slot 7, Slot 8!

Node 2 | |—|| ] | | |—|| | | | | >
Slot1 Slot2, Slot 3 ,Slot 4, Slot 5, Slot ¢ , Slot 7, Slot §

i e N 11 N 11 R

Requirement: fault tolerant algorithm
= No single point of error
= Single faults are discarded

2011-01 © VIRTUAL VEHICLE




Clock synchronization - overview

Vehicle EE & Software

Goal nodes’

= Synchronize the macroticks between the time base
nodes

= Keep the system precision (maximal time
difference between any two nodes) bounded synchronization

period
Offset correction

= Goal: minimize the clock state difference at - ! —
cycle start time

= Correct the number of microticks per cycle
= Discrete correction (once per cycle)

|

‘nodes’
Rate correction time base
= (Goal: minimize the clock state difference within
the cycle
. Mggi& itChkeS number of microticks per synchronization
=  Continuous correction period
( A .

2011-01
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FlexRay: Wake-up & Start-up

Vehicle EE & Software

Motivation
= \Wake-up the network and provide initial synchronization
= Fault tolerant (network operation relies on start-up)
= Fast operation (fault recovery)

Three phases
= Wakeup: to wake-up the network (active stars, nodes) if it is still asleep

= Startup: to begin communication (initialize schedule) when the nodes are
awake

= Reintegration: to integrate single nodes within a running cluster
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k - 1 ration
Wakeup - illustratio Vehicle EE & Software

Local wakeu
P Node’s state machine

event
Node A | ‘ | |
coldstart | reset config ready Wup Wup ready integration listen coldstart listen
| ‘ ‘ listen  send \
node
Node B | | | W Wos |
coldstart power off / reset config ready P "UP ready coldstart listen
| | , 'listen  send. | |
node
Node C ; :
non coldstart power off / reset config ready 'Medration
| ~ listen
node
Channel wakeup
A pattern
B wakeup
pattern

[FlexRay Protocol Specification, V.2.1A, Fig 7-6]
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r - 1 ration
Startup - illustratio Vehicle EE & Software

Node’s state machine

Node A T B E _\t ]
leading ready %co. sta coldsta cg ision consistency normal active
. listen resolution ‘ check
coldstart
Node B ) (e : ~
following | ready codstart initiaize | integration coldstart join normal active
; listen schedule coldstart check ,
coldstart
Node C SR S S |
non coldstart| ready :lnte.gratlon nitialize integration consistency check norma
listen 'schedule active
node
CyCIe hedul | le 0 le 1 le 2 le 3 le 4 le 5 le 6 le 7 le 8
schedule no schedule | cycle O cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle 6 cycle 7 cycle
CAS S S S S SS SS SS SS SS
Channel | IXI Q IXI Q AB AlB AB AB AB|C
A A A

[FlexRay Protocol Specification, V.2.1A, Fig 7-10]
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Integration issues
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Design of th mmunication archi re - Fibex
esign of the communication architecture - Fibe Vehicle EE & Software

cd Flnsum::ay/

Communication

JW@E“EL; . > HrLor OUTPUT-PORT INPUT-PORT
IS w7 N Topology: ECUs, comm.
e e Ecunor channels, HW types

|- wevmwER: | 4

1 CYCLIC-TIMING T 1
- REPEATING-TIME-RANGE: Int
- STARTING-TIME-RANGE: Int

INCLUDED-
PDU4ANSTANCE 1
- EIT-POSITION: Int

PDU

- POU-UPDATEBIT-POSITION Int ;
TIANG
PDU-
I-TIM NG TRIGGERING . Require mants
-
0.1 1
INCLUDED-
SIGNAL PORTREQ

Communication matrix: mapping |~
between data models (signal- / .

PDU-frames), timing information e Application:
%’f SIGNALANSTANCE SIGHAL ORDEH Siq nalsj Va riable

PDU STANDARD-PDU
SIGNAL
e [»——-  BIT-POSITION: Int N —

1 |- sienaLurPDATEBT-FOSTION: Int| 1 1 1

[FIBEX - Field Bus Exchange Format, Version 3.0 ASAM AE, 2008, Fig 10-1]
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Integration issues within the software architecture

Vehicle EE & Software

Control flow — integration within the SW architecture

= Event-triggered (action triggered with rxd / txd interrupt)
flexibility but control flow difficult to handle (interrupts)

= Time-triggered (comm. task synchronous to bus schedule)
a-priori known behavior (time domain) but complex dependencies
between operating system and communication system

Data flow — transmission scheme

= Buffer: frame filtering (ID, cycle) performed in hardware,
Time-triggered comm.: latest data stored (old version discarded)

= FIFO: frames stored sequentially, further processing in software
Event-triggered comm.: all frames are available

System configuration — amount of data
= Protocol configuration: FlexRay schedule / syntax (>70 param.)

= Data access and interpretation: buffer configuration, mapping between
frame and signals (>50 parameters)
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Interaction between Operating and Communication virtual {ki vehicle

system Vehicle EE & Software

Operating system

Event-triggered Time-triggered
(interrupts driven) (schedule)
=>» Priority based communication | =» Static communication scheme
O Event- + Flexibility, average response supported by the application
O | triggered |time + Easy timing analysis
= (e.g. CAN) | - Complex timing analysis, - Application overhead (e.g. for
3 - No constructive integration synchronization)
::s =>» static comm. scheme with = Asynchronous systems
o interrupt based data interface + Easy timing analysis
&’.. + constructive integration - Non optimal end-to-end delays
o Time- (comm. point of view) (synchronization)
> triggered | - Complex end-to-end timing - Frames might be missed
~c<n (e.g. analysis o _ = Synchronous systems
g!l FlexRay) |- No c,onstructlve_lntegratlon + Easy timing analysis
o (node’s point of view) + deterministic and optimal end-
3 to-end delays
- Flexibility
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ion
Conclusio Vehicle EE & Software

Cars are forming complex distributed systems, evolving in harsh
environments; in parallel their reliability requirements increase

Automotive embedded systems from two perspectives

= Software engineering (requirement engineering, model-based
development and functional safety)

= System architecture (event- vs. time-triggered)

The question is not anymore “how can | develop a given function”
but “how can | make my system more dependable for lower costs”

= Meta-information for the description of the product are important
= Traceability between the system views required
= Traceability of the development process required

» (model-based) tool-chain as central elements to achieve these
goals

Do not forget Verification and Validation activities!
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Vehicle EE & Software

Thank you
for your attention!
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