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VIRTUAL VEHICLE in a nutshell:
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Independent Research Platform 
(not tied to specific bodies or corporations)

Applied Research and Scientific Services

Driven by the demand of leading companies 
(> 50 industry partners)

Comprehensive international Research Network
(> 35 scientific partners and university institutes)

Extensive financial funding programs available 
(no overhead as in customary funded projects)

VIRTUAL catchwords:



2011-01 5© VIRTUAL VEHICLE

Semiconductor vs. Automotive industry 

“If the automotive industry had advanced as rapidly as the 

semiconductor industry we’d all be driving a Rolls Royce, it 

would do half a million miles to the gallon and it would be 

cheaper to throw away than to park”

And as a friend pointed out, Moore said, 

"it would only be a half-inch long and a 

quarter-inch high." 
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PAST TODAY FUTURE ?

Vehicles a decade ago

 A few embedded systems per vehicle

Vehicles nowadays

 Up to a few hundreds of computing 

devices per vehicle

 Multiple networks per vehicle

Advantage 

 Safety-critical embedded systems have 

been key innovation drivers

 E.g. by-wire systems

Disadvantage 

 Enormous complexity is challenging 

industry (automotive, aerospace, rail, 

automation)

 Increasing costs

 Affected product quality  safety-

critical

Source: AVL List

Electronics in cars
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Innovation Cycles in Automotive 

R&D spending in automotive 

industry:

- In 2005 € 68 billion in research & 

development

• 4,2 % of sales or € 783 per vehicle

- Additionally € 1.500 of cost reduction 

per vehicle forecasted (11 % of costs)

- Through 2015, R&D will rise to € 800 

billion

- E&E will remain the most important 

enabler for automotive innovations

[H. Gall, austriamicrosystems]
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automotive electronics

80% of the innovation in cars comes from electronics – Software plays a 
key role

Evolution of the complexity

 Programming language: assembler in the 1970’s, C in the 90’s, 
Matlab/Simulink (ASCET) nowadays

 100 millions lines of code

 up to 80 ECUs

 2500 signals

 65 millions cars and light commercial vehicles produced each year

 Large development teams regrouping different domains and different 
institutions

Requirements on automotive electronics 

 High reliability

 Functional safety

 Real-time behavior

 Minimized resource consumption 

 Robust design 
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The model-based approach for early validation and automatic translations 

The development life cycle process

But, different kinds of models for different skills (dysfunctional models

for safety, performance models for timing constraints, …) 

[CESAR Project, 

O. Laurent, AIRBUS]



2011-01 10© VIRTUAL VEHICLE

Needs for improved development processes

Methods for requirement engineering

 First description of the system; contract between OEM and supplier 

 Requirements needs to be precise, unambiguous and complete

 Formalization of multi viewpoint, multi criteria and multi level requirements

Methods for component-based design

 Global understanding of the system for efficient analysis

 Provide traceability during system design and validation

 Design space exploration comprising multi-view, multi-criteria and multi level 
architecture trade-offs

Safety methods and processes

 Ensure the quality of a product via the execution of safety related activities 
and the definition of a standardized development process

 Provide traceability of the development process

 Formalization of the dev. process for analysis, reporting (certification) and 
automation (service orchestration) 
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Software Engineering

“Software engineering (SE) is a profession dedicated to designing, 

implementing, and modifying software so that it is of higher quality, more 

affordable, maintainable, and faster to build. It is a systematic approach to 

the analysis, design, assessment, implementation, test, maintenance and re-

engineering of a software by applying engineering to the software” 

[Wikipedia]
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Requirements Engineering - motivation

Requirements engineering: 

 deals with understanding, documenting, communicating and 
implementing customer needs

 is required to reach a common understanding between the stakeholders 

 is required during the entire development cycle (design, implementation, 
validation)

Related activities

 Requirements elicitation: find out the services the system should provide 
and the operational constraints

 Requirements analysis and negotiation: solve the conflicts between the 
requirements in order to reach a common understanding between the 
stakeholders

 Requirements documentation and validation: write down and check the 
requirements against correctness, completeness, consistency, 
verifiability, unambiguity, traceability…

 Requirements management: managing requirements changes (keep the 
requirement set consistent) 
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Requirements Engineering

Requirement Specification Language

 minimize amount of time to write requirements

 make requirements understandable and unambiguous

 minimize amount of time to validate requirements

 differences in:

 formality: formal/semi-formal/informal

 illustration: textual/graphical/tabular

Requirement Meta-Model

 capturing, managing and organizing 

requirements into a formalized structure

 providing the meta-model for 

each RSL 

 providing the interoperability 

model for tools

[MEPAS Project, N. Marko]
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Requirements Engineering – specification language

Free text: no constraint

 no training required 
e.g.: the system shall count time between eyelid movement and warn driver if the time is less than 2 sec

Guided natural language: limited vocabulary from a dictionary

 reduce ambiguity 
e.g.: driver: person who drives the car // warn: inform the driver about an event

Structured textual: template for requirement description

 further reduce ambiguity, support transition to formal notations
e.g. IF <trigger> THEN <subject> SHALL DO <action list> WITHIN <time bound>

Semi-formal model-based: formal and precise syntax while their semantics are 

imprecise and allow different interpretation

 support the analysis of the requirements
e.g.: UML modeling 

Formal model-based: method for definite, orderly and methodical requirement 

definition

 most precise requirement definition
e.g. Petri nets, timed automata
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Traceability: „Requirements traceability refers to the ability to describe and 
follow the life of a requirement, in both a forwards and backwards 
direction, …“

post-requirements traceability links

 satisfies

 verify

 realize

pre-requirements traceability links

 explicit traceability links
• owns

• hasRationale

• hasSource

 possible operations performed on requirements
• refine

• decompose

• copy

• depend

Requirements Engineering – structuring (ontology)
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Model-based design – motivation 

Motivation

 Describe in a formalized way the different artefacts of a system
 improved specification of the system 

 Explicitly link the different artefacts together 
 improved analysis and optimization capabilities of the system

 Provide a computer-based framework 
 Support engineers during development activities and improve tool 
interaction

Some (non-functional) modeling languages for automotive domain

 EAST-ADL: architecture description language tailored for the automotive 
domain (www.atesst.org) 

 AUTOSAR: AUTomotiv Open System Architecture (www.autosar.org) 

 FIBEX: Field Bus Exchange Format (www.asam.net) 

 TIMMO: Timing Model (www.timmo.org) 

A modeling language supports your development work but will NEVER 
take away the intellectual work of creating and understanding your system

http://www.atesst.org/
http://www.autosar.org/
http://www.asam.net/
http://www.timmo.org/
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The Multi-views approach: the double challenge

possible views :

• Operational: focus on the system missions

• Functional: focus on the functional aspects of the system 

• Logical: define system architecture, define abstract components, 

allocation of functions on them, behaviour of components and 

interfaces between components

• Physical : define concrete hardware and software components, 

allocation of functions on hardware and software components

• Safety: define the dysfunctional aspects of the system

• Product line: define the variability points 

• Performance: define the system performance  

• Interface: define the interfaces of the system components

The first challenge:

Identify the relevant views

The second challenge:

Propose the appropriate 

foundations to share 

common data between 

the different views

The multi-views prism
[CESAR Project, O. Laurent, AIRBUS]
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EAST-ADL (www.atesst.org) 

EAST-ADL is an architecture description language with improved means 
for capturing the requirements, characteristics and configurations of 
cooperative systems and the related analysis and V&V.
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AUTOSAR (www.autosar.org) 

AUTOSAR (AUTomotive Open System ARchitecture) is an open and 
standardized automotive software architecture, jointly developed by 
automobile manufacturers, suppliers and tool developers.



2011-01 20© VIRTUAL VEHICLE

FIBEX (www.asam.net)

FIBEX is an XML-based standardised format used for representing the 
networks used in the automobile. It has extensibility required for the 
various network protocols used.

Topology: ECUs, comm. 

channels, HW types

Application: 

signals, variable

Communication matrix: mapping 

between data models (signal-

PDU-frames), timing information
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TIMMO (www.timmo.org)

TIMMO develops a common, standardized infrastructure for the handling of 
timing information during the design of embedded real-time systems in the 
automotive industry. This shortens the development cycle and increases its 
predictability.
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Seamless modeling - vision

Requirements

system architecture 

specification and 

management (EAST-ADL)

Safety analysis 

(HiP-HOPS)

IDE 

architecture modeling 

(AUTOSAR)

behavioral modeling 

(Matlab / Simulink)

Further static analysis
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Functional safety – motivation 

The ECUs are deployed for safety-relevant operations (e.g., car movement, 
power distribution, vehicle stability), where a failure can harm people, 
environment or property and has therefore to be avoided. 

IEC 61508: "Functional safety of electrical/electronic/programmable 
electronic safety-related systems"

 Basic functional safety standard applicable to all kinds of industry

 Published 1998, since 2001 as European norm

 Covers the entire development cycle (16 phases covering analysis, 
realization, operation

 Central concepts risk and safety function

 Philosophy
• zero risk can never be reached

• safety must be considered from the beginning

• non-tolerable risks must be reduced (ALARP - as low as reasonably 
practicable)
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Safety methods and development process

ISO 26262: “Road vehicles – Functional safety” (www.iso.org) 

 Based on IEC 65801

 Defines safety process for the development of road vehicles 

 Draft International Standard – will be released in 2011

Safety

 Freedom from unacceptable risk

 Risk: combination between probability and severity of a failure 

Safety related project activities

 Risk: Hazard and risk analysis 
e.g. “what could happen if”

 Safety: safety concept 
e.g. “what is the safe state”

 Safety functions: safety requirements
e.g. “How to provide the safe state”

 SIL decomposition: Implementation and processes 
e.g. “what SIL (Safety Integrity Level) applies for individual units”

http://www.iso.org/
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ISO 26262

Standardized 
development 
processes 
including safety-
related activities

Accompanying 
processes 

[ISO DIS 26262]
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Challenges

Safety concept

 Is required to analyze systematically the risks of the controlled system in 
its environment

 Provides additional requirements to the system

 Has a direct influence on the system architecture and functionality (safety 
functions)

Traceability of the development process

 It must be ensured that the standardized development process has been 
followed (audit from external companies)

 The tool chain must be reasonably reliable (classification and qualification 
activities)

Needs for Software Engineering

 Development activities are part of the ISO 26262 (“What” - which kind of 
test, review, analysis) 

 However specific development methods are not part of the ISO 26262 
(“How”)

 Systematic approach for designing, implementing, and modifying the 
software is required to improve system quality while minimizing the costs
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Time-triggered architectures for 

complex control applications

“… in the event-triggered approach, all communication and processing 

activities are initiated whenever a significant change of state, i.e., an event 

(e.g., interrupt), is noted. In the time-triggered approach, all communication 

and processing activities are initiated at predetermined points in time.”

[Real-Time Systems, Kopetz, 1997, Kluwer Acacemic]
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In-Vehicle-Networking for the next generation

1976: Golf I

1983: Golf II
1991: Golf III

1998: Golf IV

2004: Golf V

Example: Volkswagen Golf

5 ECU„s

0 ECU„s

11 ECU„s

18 ECU„s

Up to 35 ECU„s

2006: Golf VI

Up to 48 ECU„s
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Networks in cars

Snapshot 2004: the VW Phaeton

 2110 cables

 3860 meters cable

 Weight: 64kg 

 70 ECUs

Advantage 

 Safety-critical embedded systems 
have been key innovation drivers

 E.g. by-wire systems

Disadvantage 

 Enormous complexity is challenging 
industry (automotive, aerospace, 
rail, automation)

 Increasing costs

 Affected product quality  safety-
critical Source: Technology review, July 2004

Source: Volkswagen Beetle, 1960
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Automotive communication networks

Relative price 

per node

data rate (bit/s)

CAN

J1850

SAE Class A

Comfort and simple control

~10kB/s

Low cost technology

SAE Class B

10 - 125kB/s

Data exchange between ECU

SAE Class C

125kB/s – 1 MB/s

High speed control loops

Powertrain, chassis

(Hard real-time)

SAE Class D

>1MB/s

Multimedia 

Soft real-time
Ethernet

IEEE1394

USB

20K

1M

10M

100M
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Needs for new architectures

Automotive electronics organized as complex distributed systems

 Local connection between sensors, processors and actuators 

 Information dissemination within the car

 Point to point connection inefficient (reliability, weight) 

System complexity difficult to manage

 Number of ECU, intensity of the communication

 Different technologies 

 Complexity of the application 

The system can not be assumed fault-free

 High temperature range and thermal gradients

 High humidity, splashes from oil, petrol, chemicals…

 Conducted emissions (electric motors) and radiated emissions (power 
lines, radio or TV transmitters)
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Event-Triggered (ET) architecture

Event-triggered architecture
 System activity triggered by an event

 Priority based communication (CAN)

ID 5

ID 3

ID 1
 Communication jitter

 Constructive integration

 Redundancy 

 Architecture flexibility

 Bandwidth use (sporadic events)

ID 5ID 3ID 1

transmission delayed
highest 

priority
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Time-triggered (TT) architecture

Time-triggered architecture
 Action derived from progression of time

 Static, periodic, a-priori known schedule

 Global notion of time

ID 5

ID 3

ID 1

 Communication jitter

 Constructive integration

 Redundancy, Agreement 

 Architecture flexibility

 Bandwidth use (sporadic events)

ID 1 ID 3 ID 5

transmission slot 

a-priori known
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ET versus TT Transmission paradigm

Event-based communication

 A communication is triggered for each new event – i.e. major state 
change (e.g. temperature increase of +5 degree)

 Each event (communication) has to be detected and processed in the 
same time order it arrived

 Optimal use of the bandwidth

 Not robust – lost of message might lead to system inconsistencies

Status-based communication

 Periodic communication for updating system state 
(e.g. temperature is currently 55 degree)

 Events (communication elements) might be missed or processed in 
different time order than reception time

 Worse-case use of the bandwidth

 Robustness: lost of message only induce additional processing delays –
no system inconsistencies
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FlexRay 

Overview
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FlexRay – TDMA Scheme

Periodical communication scheme

 Static segment for time-triggered communication

 Dynamic segment for event-triggered communication

 Symbol window for medium test

 Network idle time for resynchronization

Static 

segment

Dynamic 

segment
SW NIT

Static 

segment

Dynamic 

segment
SW NIT

Cycle n Cycle n+1

NIT

Slot 1 Slot 2 … … Slot i

Network idle time

(synchronization)

i+1 i+2 … … … … k

minislot

Static 

segment

Cycle n+2
Cycle 

n-1

Symbol Window
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Medium access

Static segment: static schedule for time-triggered 

communication

Dynamic segment: prioritized access for event-triggered 

communication

Static segment Dynamic segment

SW NITCh A

Ch B

1 2 3 4 5

1 2 3 4 5 6 7 8 9

SW NIT

N1a N3aN2a N1b

N1a N3b N1b

N2b

6 7 8 9

N1c

N1c

10 11 1213

10
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FlexRay controller overview

Controller 

host interface

Media access 

control

Frame and symbol 

processing

Clock 

synchronization

Coding & decoding

Protocol operation 

control

Macrotick 

generation

[FlexRay Protocol Specification, V.2.1A, Fig 2-2]

Frame and symbol 

Processing ch. A

Media access 

Control ch. A

Coding & decoding ch. A

Coding / Decoding:

• Signal processing

• Adding / removing 

bit sequences

• Syntax check

Frame and symbol 

processing:

• Packing / unpacking contents 

into frames

• Error check (content)

Media access control:

• Generate communication 

schedule

• Provide time information 

(segment, slot…)

Macrotick generation:

• macrotick: commonly agreed

time base within the network

• Required to generate the 

schedule

Clock synchronization:

• Measurement of the clock

(state and rate) differences

• Computation of a fault-tolerant

correction term

• Provides both rate and offset

correction

Protocol operation control:

• Configuration: provides 

mechanisms for configuration

• Control: control the protocol 

state (stopped, normal, error…)

Controller Host Interface:

• Data exchange with host

• Data exchange with 

communication controller 

Channel 

interface

Host
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FlexRay: time synchronization 

Aim: provide a global time base within the network to 

correct the quartz drift and avoid collision on the bus

Requirement: fault tolerant algorithm
 No single point of error

 Single faults are discarded

Node 1

Node 2

Node 3

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot 8

Frame Frame

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot 8

Frame

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot 8

Frame Frame
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Clock synchronization – overview 

Goal

 Synchronize the macroticks between the 
nodes

 Keep the system precision (maximal time 
difference between any two nodes) bounded

Offset correction 

 Goal: minimize the clock state difference at 
cycle start

 Correct the number of microticks per cycle

 Discrete correction (once per cycle)

Rate correction

 Goal: minimize the clock state difference within 
the cycle

 Modify the number of microticks per 
macroticks

 Continuous correction

synchronization 

period

time

nodes’

time base

time

nodes’

time base

synchronization 

period
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FlexRay: Wake-up & Start-up

Motivation

 Wake-up the network and provide initial synchronization

 Fault tolerant (network operation relies on start-up)

 Fast operation (fault recovery)

Three phases

 Wakeup: to wake-up the network (active stars, nodes) if it is still asleep

 Startup: to begin communication (initialize schedule) when the nodes are 
awake

 Reintegration: to integrate single nodes within a running cluster
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Wakeup - illustration

Node A

coldstart 

node

Node B

coldstart 

node

Node C

non coldstart 

node

Channel
A

B

wakeup

pattern

[FlexRay Protocol Specification, V.2.1A, Fig 7-6]

reset config ready
Wup

listen

Wup

send
ready integration listen coldstart listen

power off / reset config ready
Wup

listen

Wup

send
ready coldstart listen

wakeup

pattern

integration 

listen
power off / reset config ready

Node‟s state machine
Local wakeup 

event
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Startup – illustration 

Node A

leading 

coldstart 

Node B

following 

coldstart 

Node C

non coldstart 

node

Channel

[FlexRay Protocol Specification, V.2.1A, Fig 7-10]

coldstart 

listen
ready

Node‟s state machine

Cycle 

schedule

coldstart collision 

resolution

consistency 

check
normal active

no schedule cycle 0 cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle 6 cycle 7 cycle 8

A ABCABABABABA A A

CAS S S S S SS SS SS SS SS

coldstart 

listen
ready

initialize 

schedule

integration 

coldstart check
coldstart join normal active

normal 

active
integration consistency check

initialize 

schedule

integration 

listen
ready
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Integration issues



2011-01 45© VIRTUAL VEHICLE

Design of the communication architecture – Fibex 

[FIBEX - Field Bus Exchange Format, Version 3.0 ASAM AE, 2008, Fig 10-1]

Topology: ECUs, comm. 

channels, HW types

Application: 

signals, variable

Communication matrix: mapping 

between data models (signal-

PDU-frames), timing information
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Integration issues within the software architecture

Control flow – integration within the SW architecture

 Event-triggered (action triggered with rxd / txd interrupt)

flexibility but control flow difficult to handle (interrupts)

 Time-triggered (comm. task synchronous to bus schedule) 

a-priori known behavior (time domain) but complex dependencies 

between operating system and communication system

Data flow – transmission scheme

 Buffer: frame filtering (ID, cycle) performed in hardware, 

Time-triggered comm.: latest data stored (old version discarded)

 FIFO: frames stored sequentially, further processing in software

Event-triggered comm.: all frames are available

System configuration – amount of data

 Protocol configuration: FlexRay schedule / syntax (>70 param.)

 Data access and interpretation: buffer configuration, mapping between 

frame and signals (>50 parameters)
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Interaction between Operating and Communication 

system

Operating system

Event-triggered

(interrupts driven)

Time-triggered 

(schedule)

C
o

m
m

u
n

ic
a
tio

n
 s

y
s
te

m

Event-

triggered 

(e.g. CAN)

 Priority based communication

+ Flexibility, average response 

time

- Complex timing analysis, 

- No constructive integration

 Static communication scheme 

supported by the application

+ Easy timing analysis

- Application overhead (e.g. for

synchronization)

Time-

triggered

(e.g. 

FlexRay)

 static comm. scheme with 

interrupt based data interface

+ constructive integration 

(comm. point of view)

- Complex end-to-end timing 

analysis

- No constructive integration 

(node’s point of view)

 Asynchronous systems

+ Easy timing analysis

- Non optimal end-to-end delays 

(synchronization)

- Frames might be missed

 Synchronous systems

+ Easy timing analysis

+ deterministic and optimal end-

to-end delays

- Flexibility 
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Conclusion

Cars are forming complex distributed systems, evolving in harsh 
environments; in parallel their reliability requirements increase

Automotive embedded systems from two perspectives

 Software engineering (requirement engineering, model-based 
development and functional safety)

 System architecture (event- vs. time-triggered) 

The question is not anymore “how can I develop a given function” 
but “how can I make my system more dependable for lower costs”

 Meta-information for the description of the product are important

 Traceability between the system views required

 Traceability of the development process required

 (model-based) tool-chain as central elements to achieve these 
goals

Do not forget Verification and Validation activities! 
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K2 / K plus Competence Center - Initiated by the Federal Ministry of Transport, Innovation and 

Technology (BMVIT). Funded by FFG, Land Steiermark and Steirische Wirtschaftsförderung (SFG)

Thank you 

for your attention!

www.v2c2.at

http://www.v2c2.at/
http://www.v2c2.at/
http://www.v2c2.at/
http://www.v2c2.at/
http://www.v2c2.at/

