Prof. Dr. Christian Steger Sebastian Altmeyer, M.Sc.
Prof. Dr. Reinhard Wilhelm Michael Gerke, M.Sc.
Dipl.-Inf. Hans-Jorg Peter

Embedded Systems 2010/2011 — Assignment Sheet 10

Due: Tuesday, 15 February 2011, before the lecture (i.e., 10:10)

Please indicate your name, matr. number, email address, and which tutorial you are
planning to attend on your submission. We encourage you to collaborate in groups of up to
three students. Only one submission per group is necessary. However, in the tutorials every
group member must be capable to present each solution.

Exercise 1: May/Must LRU Cache Analysis (30 pts.)

Assume an initially empty 4 way fully-associative LRU cache. Perform the may- and must-
cache on the following control-flow graph. Provide the abstract cache-states at each program
point.

Exercise 2: Comparison LRU/FIFO/PRLU (20 pts.)

Given an initially empty fully-associative cache with 4 ways. Provide a sequence of accesses
such that

(a) LRU outperforms FIFO.
(b) FIFO outperforms LRU.
(c) PLRU outperforms LRU.

(d) PLRU outperforms FIFO.

Note that policy A outperforms policy B iff A exhibits more cache hits than B on the same
sequence of accesses.



Exercise 3: Cache-Predictability (30 pts.)

To be on the safe side, one has to assume that the cache-content is completely unknown at the
beginning of the program execution. This means, every element may or may-not be cached.
Thus, an important cache-predictability metric is the number of cache-misses one has to en-
counter before one can precisely know the cache-content.

Given a 4-way fully associative cache without any knowledge about the cached elements. For
each of the following statements, provide an accesses sequence and an initial cache state to
illustrate it:

(a) In case of LRU, one needs exactly 4 accesses until cache content is known.
(b) In case of FIFO one may need up to 8 accesses until the cache content is known.

(c¢) In case PLRU, even if the number of cache-misses is infinite, one element may survive in
the cache without ever being accessed.

Exercise 4: Hardware/Software Partitioning (20 pts.)

A set of function objects O = {o1,...,0,}, n € N, can either be implemented in hardware
(HW) or software (SW). Each object 0;, 1 < i < n, has HW costs ¢, (i), SW costs c5(i), HW
computation time dj (i), and SW computation time ds(7).

(a) Encode the described partitioning problem as an integer programming problem, where cost
and computation time are weighted “u USD per second” in the cost function.

(b) Extend your problem such that the total number of function object implementations in HW
must not exceed H,puz-

(c) Extend your problem such that the total costs must not exceed C,q; and the total compu-
tation time must not exceed D4 -

(d) Extend your problem such that some pairs of objects must be implemented either both in
HW or both in SW. Assume that these pairs are given by a relation { (o1, 0}), ..., (om,0,,)} C
O x0O,meN.



