
 - 1 -BF - ES

Embedded Systems 15

 - 2 -BF - ES

A-periodic scheduling

 Given:
 A set of non-periodic tasks {J1, …, Jn} with

• arrival times ai, deadlines di, computation times Ci

• precedence constraints
• resource constraints

 Class of scheduling algorithm:
• Preemptive, non-preemptive
• Off-line / on-line
• Optimal / heuristic
• One processor / multi-processor
• …

 Cost function:
• Minimize maximum lateness (soft RT)
• Minimize maximum number of late tasks (feasibility! – hard RT)

 Find:
Optimal / good schedule according to given cost function

Ji ai si fi di

Ci

0

REVIEW

 - 3 -BF - ES

Case 1: Aperiodic tasks
with synchronous release

 A set of (a-periodic) tasks {J1, …, Jn} with

 arrival times ai = 0 8 1 · i · n, i.e. “synchronous” arrival times

 deadlines di,

 computation times Ci

 no precedence constraints, no resource constraints, i.e.
“independent tasks”

 non-preemptive
 single processor
 Optimal
 Find schedule which minimizes maximum lateness

(variant: find feasible solution)

REVIEW

 - 4 -BF - ES

EDD – Earliest Due Date

EDD: execute the tasks in order of non-decreasing deadlines

 Lemma:
If arrival times are synchronous, then preemption does not help, i.e. if
there is a preemptive schedule with maximum lateness Lmax, then there
is also a non-preemptive schedule with maximum lateness Lmax.

 Theorem (Jackson ’55):

Given a set of n independent tasks with synchronous arrival times,
any algorithm that executes the tasks in order of non-decreasing
deadlines is optimal with respect to minimizing the maximum lateness.

REVIEW

 - 5 -BF - ES

Case 2: aperiodic tasks
with asynchronous release

 A set of (a-periodic) tasks {J1, …, Jn} with

 arbitrary arrival times ai

 deadlines di,

 computation times Ci

 no precedence constraints, no resource constraints, i.e.
“independent tasks”

 preemptive
 Single processor
 Optimal
 Find schedule which minimizes maximum lateness

(variant: find feasible solution)

REVIEW

 - 6 -BF - ES

EDF – Earliest Deadline First

 EDF: At every instant execute the task with the earliest
absolute deadline among all the ready tasks.

 Theorem (Horn ’74):
Given a set of n independent task with arbitrary arrival
times, any algorithm that at every instant executes the
task with the earliest absolute deadline among all the
ready tasks is optimal with respect to minimizing the
maximum lateness.

REVIEW

 - 7 -BF - ES

Non-preemptive version

 Changed problem:
 A set of (a-periodic) tasks {J1, …, Jn} with

• arbitrary arrival times ai

• deadlines di,

• computation times Ci

• no precedence constraints, no resource constraints, i.e.
“independent tasks”

 Non-preemptive instead of preemptive scheduling!
 Single processor
 Optimal
 Find schedule which minimizes maximum lateness (variant: find

feasible solution)

REVIEW

 - 8 -BF - ES

Non-preemptive version

 Theorem (Jeffay et al. ’91): EDF is an optimal non-idle
scheduling algorithm also in a non-preemptive task model.

 When idle schedules are allowed: problem is NP-hard.
 Possible approaches:

 Heuristics
 Bratley’s algorithm: branch-and-bound

REVIEW

 - 9 -BF - ES

Case 3: Scheduling with precedence constraints

 Non-preemptive scheduling with non-synchronous arrival times,
deadlines and precedence constraints is NP-hard.

 Here:
 Restrictions:

• Consider synchronous arrival times (all tasks arrive at 0)

• Allow preemption.
 2 different algorithms:

• Latest deadline “first” (LDF)

• Modified EDF

 Precedences define a partial order, represented as a DAG
 Scheduling determines a compatible total order
 Method: Topological sorting

 - 10 -BF - ES

Example

J1 J2 J3 J4 J5 J6

ai 0 0 0 0 0 0

Ci 1 1 1 1 1 1

di 2 5 4 3 5 6

J2 J3

J4 J5 J6

J1

 - 11 -BF - ES

Example

 One of the following algorithms is optimal. Which one?

Algorithm 1:

1. Among all sources in the
precedence graph select the
task T with earliest deadline.
Schedule T first.

2. Remove T from G.

3. Repeat.

Algorithm 2:

1. Among all sinks in the
precedence graph select the
task T with latest deadline.
Schedule T last.

2. Remove T from G.

3. Repeat.

Forward topological sorting Backward topological sorting

 - 12 -BF - ES

Example (continued)

 Algorithm 1:

0 1 2 3 4 5 6 7
t

d1 d5d3d4 d2

J2 J3

J4 J5 J6

J1 2

5 4

3 5 6

d6

J1 J2 J3 J4 J5 J6

ai 0 0 0 0 0 0

Ci 1 1 1 1 1 1

di 2 5 4 3 5 6

 - 13 -BF - ES

Example (continued)

 Algorithm 2:

J2 J3

J4 J5 J6

J1 2

5 4

3 5 6

0 1 2 3 4 5 6 7
t

d1 d5d3d4 d2 d6

J1 J2 J3 J4 J5 J6

ai 0 0 0 0 0 0

Ci 1 1 1 1 1 1

di 2 5 4 3 5 6

 - 14 -BF - ES

Example (continued)

 Algorithm 1 is not optimal.
 Algorithm 1 is the generalization of EDF to the case with

precedence constraints.

 Is Algorithm 2 optimal?
 Algorithm 2 is called Latest Deadline First (LDF).

 Theorem (Lawler 73):
LDF is optimal wrt. maximum lateness.

 - 15 -BF - ES

Proof of optimality

 - 16 -BF - ES

Jl B JKA

JlJKBA

 - 17 -BF - ES

Optimal scheduling algorithms for
periodic tasks

 - 18 -BF - ES

Periodic scheduling

 Given:
 A set of periodic tasks Γ = {τ1, …, τn} with

• phases Φi (arrival times of first instances of tasks),

• periods Ti (time difference between two consecutive activations)

• relative deadlines Di (deadline relative to arrival times of instances)

• computation times Ci

 ⇒ j th instance τi, j of task τi with

• arrival time ai, j = Φi + (j-1) Ti,

• deadline di, j = Φi + (j-1) Ti + Di,

 Find a feasible schedule
• start time si, j and

• finishing time fi, j

τi Φi

Ci

Ti

Di

Φi+(j-1)Ti

Instance τi, jInstance τi, 1

0

 - 19 -BF - ES

Assumptions

A.1. Instances of periodic task τi are regularly activated with constant
period Ti.

A.2. All instances have same worst case execution time Ci.

A.3. All instances have same relative deadline Di, here in most cases
equal to Ti (i.e., di, j = Φi + j ⋅ Ti)

A.4. All tasks in Γ are independent. No precedence relation, no resource
constraints.

A.5. Overhead for context switches is neglected, i.e. assumed to be 0 in
the theory.

 Basic results based on these assumptions form the core of
scheduling theory.

 For practical applications, assumptions A.3. and A.4. can be relaxed,
but results have to be extended.

 - 20 -BF - ES

Examples for periodic scheduling (1)

τ1 τ2

Φi
0 0

Ti 2 4

Ci 1 2

Di 1 4

τ1

τ2
0 1 2 3 4 5 6 7 8 9 10 11 12

 Schedulable, but only preemptive schedule possible.

 - 21 -BF - ES

Examples for periodic scheduling (2)

τ1 τ2

Φi
0 0

Ti 2 4

Ci 1 2

Di 2 4

τ1

τ2
0 1 2 3 4 5 6 7 8 9 10 11 12

 Schedulable with non-preemptive schedule.

 - 22 -BF - ES

Examples for periodic scheduling (3)

τ1 τ2

Φi
0 0

Ti 3 4

Ci 2 2

Di 3 4

 No feasible schedule for single processor.

 - 23 -BF - ES

Processor utilization

Definition:
Given a set Γ of n periodic tasks, the processor
utilization U is given by

 - 24 -BF - ES

Processor utilization:
using it as a schedulability criterion

 Given: a scheduling algorithm A

 Define Ubnd(A) = inf {U(Γ) | Γ is not schedulable by algorithm A}.

 If Ubnd(A) > 0 then a simple, sufficient criterion for schedulability by A
can be based on processor utilization:
 If U(Γ) < Ubnd(A) then Γ is schedulable by A.

 However, if Ubnd(A) < U(Γ) ≤ 1, then Γ may or may not be schedulable
by A.

 Question:
Does a scheduling algorithm A exist with Ubnd(A) = 1?

 - 25 -BF - ES

Processor utilization

 Question:
Does a scheduling algorithm A exist with Ubnd(A) = 1?

 Answer:
 No, if Di < Ti allowed.

 Example:

 Yes, if Di = Ti (or Di ≥ Ti)) Earliest Deadline First (EDF)

 In the following: assume Di = Ti

τ1 τ2

Φi
0 0

Ti 2 2

Ci 1 1

Di 1 1

 - 26 -BF - ES

Earliest Deadline First (EDF)

 EDF is applicable to both periodic and a-periodic tasks.

 If there are only periodic tasks, priority-based schemes
like “rate monotonic scheduling (RM)” (see later) are
often preferred, since
 They are simpler due to fixed priorities

⇒ use in “standard OS” possible
 sorting wrt. to deadlines at run time is not needed

 - 27 -BF - ES

EDF and processor utilization factor

 Theorem: A set of periodic tasks τ 1, ..., τ n with Di = Ti
is schedulable with EDF iff U = ∑ i=1

n Ci / Ti · 1.

 - 28 -BF - ES

t1 t2

 - 29 -BF - ES

 - 30 -BF - ES

 - 31 -BF - ES

Rate monotonic scheduling (RM)

 Rate monotonic scheduling (RM) (Liu, Layland ’73):
 Assign fixed priorities to tasks τi:

• priority(τi) = 1/Ti

• I.e., priority reflects release rate
 Always execute ready task with highest priority
 Preemptive: currently executing task is preempted by newly arrived task with shorter

period.

 - 32 -BF - ES

Example for RM (1)

τ2

τ3

0 1 2 3 4 5 6 7 8 9 10 11 12

τ1 τ2 τ3

Φi
0 0 0

Ti 4 6 12

Ci 2 1 4

Di 4 6 12

τ1

 - 33 -BF - ES

Example for RM (2)

τ1 τ2 τ3

Φi
0 0 0

Ti 4 5 10

Ci 2 2 1

Di 4 5 10

τ2

τ3

0 1 2 3 4 5 6 7 8 9 10 11 12

τ1

 - 34 -BF - ES

Optimality of Rate Monotonic Scheduling

 Theorem (Liu, Layland, 1973):
RM is optimal among all fixed-priority scheduling
algorithms.

 Def.: The response time Ri, j of an instance j of task i is
the time (measured from the arrival time) at which the
instance is finished: Ri, j = fi, j – ai, j.

 The critical instant of a task is the time at which the arrival
of the task will produce the largest response time.

 - 35 -BF - ES

Response times and critical instants

 Observation:
For RM, the critical instant t of a task τi is given by the
time when τi, j arrives together with all tasks τ1, ..., τi-1 with
higher priority.

 - 36 -BF - ES

Response times and critical instants

 For our “worst case task sets” we can assume that there
are critical instants where an instance of a task arrives
together with all higher priority tasks.

 A task set is schedulable, if the response time at these
critical instants is not larger than the relative deadline.

 - 37 -BF - ES

Non-RM Schedule

τ2

τ1

0 T2

Schedule feasible iff C1 + C2 ≤ T1

T1

 - 38 -BF - ES

RM-Schedule

 Let F = T2 / T1 be the number of periods of τ1 entirely
contained in T2.

 Case 1:
• The computation time C1 is short enough, so that all requests

of τ1 within period of τ2 are completed before second request
of τ2.

• I.e. C1 ≤ T2 – F T1

• Schedule feasible if (F+1)C1 + C2 ≤ T2

τ2

τ1

0 FT1 T2

 - 39 -BF - ES

RM-Schedule

 Case 2:

• The second request of τ2 arrives when τ1 is running.

• I.e. C1 ≥ T2 – F T1

Schedule feasible if FC1 + C2 ≤ FT1

τ2

τ1

0 FT1 T2

 - 40 -BF - ES

Proof of Liu/Layland

 - 41 -BF - ES

	Embedded Systems 15
	A-periodic scheduling
	Case 1: Aperiodic tasks with synchronous release
	EDD – Earliest Due Date
	Case 2: aperiodic tasks with asynchronous release
	EDF – Earliest Deadline First
	Non-preemptive version
	Slide 8
	Case 3: Scheduling with precedence constraints
	Example
	Slide 11
	Example (continued)
	Slide 13
	Slide 14
	Proof of optimality
	Folie 16
	Optimal scheduling algorithms for periodic tasks
	Periodic scheduling
	Assumptions
	Examples for periodic scheduling (1)
	Examples for periodic scheduling (2)
	Examples for periodic scheduling (3)
	Processor utilization
	Processor utilization: using it as a schedulability criterion
	Slide 25
	Earliest Deadline First (EDF)
	EDF and processor utilization factor
	Folie 28
	Folie 29
	Folie 30
	Rate monotonic scheduling (RM)
	Example for RM (1)
	Example for RM (2)
	Optimality of Rate Monotonic Scheduling
	Response times and critical instants
	Slide 36
	Non-RM Schedule
	RM-Schedule
	Slide 39
	Proof of Liu/Layland
	Folie 41

