
- 1 -CS - ES

Embedded Systems

- 2 -CS - ES

Message Sequence Charts

REVIEW

- 3 -CS - ES

Message Sequence Charts

 Message Sequence Charts (MSC) is a language to
describe the interaction between a number of
independent message-passing instances.

 Defined by ITU (International Telecommunication Union)
- Z.120 recommendation

 MSC is
 a scenario language
 graphical
 formal
 practical
 widely applicable

REVIEW

- 4 -CS - ES

MSC

 In telecommunication industry, MSCs are the first choice to describe
example traces of the system under development. MSCs are used
throughout the whole protocol life cycle from requirements analysis
to testing.

 To define longer traces hierarchically, simple MSCs can be
composed by operators in high-level MSC (HMSC).

 Message Sequence Charts may be used for requirement
specification, simulation and validation, test-case specification and
documentation of real-time systems.

REVIEW

- 5 -CS - ES

Message sequence charts (MSC)

 Graphical means for representing schedules; time used
vertically, “geographical” distribution horizontally.

REVIEW

- 6 -CS - ES

Basic MSC in a nutshell

User AC System

Code

OK

msc User_accepted

UnlockCard out

Idle

Door unlocked

MSC diagram

MSC heading

Condition
no predicate logic,

merely a label

Output event

Input event

Instance

Message to
the

environment

Instance end

REVIEW

- 7 -CS - ES

Timer set and timeout

• User is accepted  forget to push the door

• AC system will detect this through the expiration
of the timer  Lock

REVIEW

- 8 -CS - ES

Preferred situation REVIEW

- 9 -CS - ES

MSC reference

• In almost all description/programming/specification
languages there is a way to isolate subparts of the
description in a separate named construct
(procedures, functions, classes, packages)

• In MSC there are MSCs which can be referred from
other MSCs.

REVIEW

- 10 -CS - ES

MSC reference

• Assume that the scenario where the user is accepted is
part of a larger context where there is an automatic
door. When the door is unlocked it automatically opens.

• The MSC reference symbol is a box with rounded
corners.

REVIEW

- 11 -CS - ES

HMSC (High Level MSC)

User accepted

Idle

Unlocked_reset Unlocked_timeout

Door unlocked

Unlocked_unclosed

User rejected

msc ACsystemOverview

HMSC Start

MSC Reference

Condition

Alternative

Loop

Conne
ction
Point

REVIEW

- 12 -CS - ES

Data in MSC-2000

 MSC has no data language of its own!

 MSC has parameterized data languages such that

 fragments of your favorite (data) language can be used
• C, C++, SDL, Java, ...

 MSC can be parsed without knowing the details of the chosen
data language

 the interface between MSC and the chosen data language is
given in a set of interface functions

REVIEW

- 13 -CS - ES

Data Flow Models

REVIEW

- 14 -CS - ES

Data flow modeling

 Def.: The process of identifying, modeling and
documenting how data moves around an information
system.

Data flow modeling examines
 processes (activities that transform data from one form to

another),
 data stores (the holding areas for data),
 external entities (what sends data into a system or receives data

from a system, and
 data flows (routes by which data can flow).

REVIEW

- 15 -CS - ES

Dataflow model
 Nodes represent transformations

 May execute concurrently

 Edges represent flow of tokens (data) from one node to
another
 May or may not have token at any given time

 When all of node’s input edges have at least one token,
node may fire

 When node fires, it consumes input tokens processes
transformation and generates output token

 Nodes may fire simultaneously

 Several commercial tools support graphical languages for
capture of dataflow model
 Can automatically translate to concurrent process model for

implementation
 Each node becomes a process

modulate convolve

transform

A B C D

Z

Nodes with more complex
transformations

t1 t2

+ –

*

A B C D

Z

Nodes with arithmetic
transformations

t1 t2

Z = (A + B) * (C - D)

REVIEW

- 16 -CS - ES

Philosophy of Dataflow Languages

 Drastically different way of looking at computation

 Von Neumann imperative language style: program counter
controls everything

 Dataflow language: movement of data the priority

 Scheduling responsibility of the system, not the programmer

REVIEW

- 17 -CS - ES

Applications of Dataflow

 signal-processing applications

 Anything that deals with a continuous stream of data

 Becomes easy to parallelize

 Buffers typically used for signal processing applications
anyway

REVIEW

- 18 -CS - ES

Kahn Process Networks

 Proposed by Kahn in 1974 as a general-purpose scheme for
parallel programming

 Theoretical foundation for dataflow
 Unique attribute: deterministic

…
Send();

…

…
Wait();

…

REVIEW

- 19 -CS - ES

Properties of Kahn process networks (2)

 There is only one sender per channel.
 A process cannot check whether data is available before

attempting a read.
 A process cannot wait for data for more than one port at a time.
 Therefore, the order of reads depends only on data, not on the

arrival time.
 Therefore, Kahn process networks are deterministic (!); for a

given input, the result will always the same, regardless of the
speed of the nodes.

This is the
key beauty
of KPNs!

REVIEW

- 20 -CS - ES

Kahn Process Networks

 Key idea:

Reading an empty channel blocks until data is available

 No other mechanism for sampling communication
channel’s contents

 Can’t check to see whether buffer is empty
 Can’t wait on multiple channels at once

REVIEW

- 21 -CS - ES

Sample parallel program S

(1) … channel declation

processes f, g, h are declared

REVIEW

- 22 -CS - ES

A Kahn Process
 From Kahn’s original 1974 paper

process f(in int u, in int v, out int w)
{
int i; bool b = true;
for (;;) {
i = b ? wait(u) : wait(v);
printf("%i\n", i);
send(i, w);
b = !b;

}
}

f

u

v

w

Process alternately reads
from u and v, prints the data

value, and writes it to w

What does this do?

REVIEW

- 23 -CS - ES

A Kahn Process

 From Kahn’s original 1974 paper:

process f(in int u, in int v, out int w)
{
int i; bool b = true;
for (;;) {
i = b ? wait(u) : wait(v);
printf("%i\n", i);
send(i, w);
b = !b;

}
}

Process
interface

includes FIFOs

wait() returns the next
token in an input FIFO,

blocking if it’s empty

send() writes a data
value on an output FIFO

REVIEW

- 24 -CS - ES

A Kahn Process

 From Kahn’s original 1974 paper:

process g(in int u, out int v, out int w)
{
int i; bool b = true;
for(;;) {
i = wait(u);
if (b) send(i, v); else send(i, w);
b = !b;

}
}

gu
v

w

Process reads from u and
alternately copies it to v and w

What does this do?

REVIEW

- 25 -CS - ES

A Kahn Process

 From Kahn’s original 1974 paper:

process h(in int u, out int v, int init)
{
int i = init;
send(i, v);
for(;;) {
i = wait(u);
send(i, v);

}
}

hu v

Process sends initial value,
then passes through values.

What does this do?

REVIEW

- 26 -CS - ES

Sample parallel program S

(1) … channel declation

processes f, g, h are declared

(6) … body of the main program:
- calling instances of the

processes
- actual names of the channels

are bound to the formal parameters
- infix operator par  concurrent

activation of the processes

REVIEW

- 27 -CS - ES

A Kahn System

 What does this do?

fg

h
init = 0

h
init = 1

Emits a 1 then copies input to output

Emits a 0 then copies input to output

Prints an alternating sequence of 0’s and 1’s

T2 Z

T2

X

Y

REVIEW

- 28 -CS - ES

REVIEW

- 29 -CS - ES

Determinism

 Process: “continuous mapping” of input sequence to
output sequences

 Continuity: process uses prefix of input sequences to
produce prefix of output sequences. Adding more
tokens does not change the tokens already produced

 The state of each process depends on token values
rather than their arrival time

 Unbounded FIFO: the speed of the two processes
does not affect the sequence of data values

F
x1,x2,x3… y1,y2,y3…

REVIEW

- 30 -CS - ES

Synchronous Dataflow (SDF)
 Edward Lee and David Messerchmitt, Berkeley, 1987

Ptolemy System

 Restriction of Kahn Networks to allow compile-time
scheduling

 Basic idea: each process reads and writes a fixed number of
tokens each time it fires:

loop
read 3 A, 5 B, 1 C …compute…write 2 D, 1 E, 7 F

end loop

REVIEW

- 31 -CS - ES 31

Synchronous dataflow

 With digital signal-processors (DSPs), data flows at fixed
rate

ADC DACDSP

0110.. 1110..

REVIEW

- 32 -CS - ES 32

Synchronous dataflow
 Multiple tokens consumed and produced per firing

 Synchronous dataflow model takes advantage of this
 Each edge labeled with number of tokens

consumed/produced each firing
 Can statically schedule nodes, so can easily use sequential

program model
• Don’t need real-time operating system and its overhead

 Algorithms developed for scheduling nodes into “single-
appearance” schedules
 Only one statement needed to call each node’s associated

procedure
• Allows procedure inlining without code explosion, thus reducing

overhead even more

modulate convolve

transform

A B C D

Z

Synchronous dataflow

mt1 ct2

mA mB mC mD

tZ

tt1 tt2

t1 t2

REVIEW

- 33 -CS - ES

SDF and Signal Processing

 Restriction natural for multirate signal processing

 Typical signal-processing processes:

 Unit-rate
• Adders, multipliers

 Upsamplers (1 in, n out)
 Downsamplers (n in, 1 out)

- 34 -CS - ES

Asynchronous message passing:
Synchronous data flow (SDF)
 Asynchronous message passing=

tasks do not have to wait until output is accepted.
 Synchronous data flow =

all tokens are consumed at the same time.

SDF model allows static scheduling of token production and
consumption.

In the general case, buffers may be needed at edges.

- 35 -CS - ES

Synchronous DataFlow

 Actor enabling = each incoming arc carries at
least weight tokens

 Actor execution = atomic
consumption/production of tokens by an enabled
actor
 i.e., consume weight tokens on each incoming arcs and

produce weight tokens on each outgoing arc
 Delay is an initial token load on an arc.

SDF firing rules:

- 36 -CS - ES

SDF Example

AABAA
CC

BStatic
schedule:

- 37 -CS - ES

Parallel Scheduling of SDF Models

A

C

D

B

Sequential
periodic admissible sequential

schedule (PASS)

Parallel
periodic admissible parallel

schedule (PAPS)

SDF is suitable
for automated
mapping onto

parallel
processors and

synthesis of
parallel circuits.

(admissible = correct schedule, finite amount of memory required)

- 38 -CS - ES

SDF Scheduling Algorithm
Lee/Messerschmitt 1987

1. Establish relative execution rates
 Generate balance equations
 Solve for smallest positive integer vector q

2. Determine periodic schedule
 Form an arbitrarily ordered list of all nodes in the system
 Repeat:

• For each node in the list, schedule it if it is runnable,
trying each node once

• If each node has been scheduled qn times, stop.
• If no node can be scheduled, indicate deadlock.

Source: Lee/Messerschmitt, Synchronous Data Flow (1987)

- 39 -CS - ES

Multi-rate SDF System

 DAT (digital audio tape) -to-CD rate converter
 Converts a 44.1 kHz sampling rate to 48 kHz

1 1 2 3 2 7 8 7 5 1

Upsampler Downsampler

- 40 -CS - ES

SDF: restriction of Kahn networks

An SDF graph is a tuple (V, E, cons, prod, d) where
 V is a set of nodes (activities)
 E is a set of edges (buffers)
 cons: E  N number of tokens consumed
 prod: E  N number of tokens produced
 d: E  N number of initial tokens

d: „delay“ (sample offset between input and output)

- 41 -CS - ES

Delays

 Kahn processes often have an initialization phase

 SDF doesn’t allow this because rates are not always
constant

 Alternative: an SDF system may start with tokens in its
buffers

 These behave like delays (signal-processing)

 Delays are sometimes necessary to avoid deadlock

- 42 -CS - ES

Example SDF System
 Finite Impulse Response

FIR Filter (all single-rate)

dup

*c0

dup

*c1

+

dup

*c2

+

dup

*c3

+

*c(N-1)

+

One-cycle delay
Duplicate

Constant
multiply

(filter
coefficient)

Adder

yn

xn

Yn = xn*c0 + xn-1*c1 + … + xn-(N-1)*c(N-1)

…

…

…

- 43 -CS - ES

SDF Scheduling

 Schedule can be determined completely before the
system runs

 Two steps:

1. Establish relative execution rates by solving a system
of linear equations

2. Determine periodic schedule by simulating system for a
single round

- 44 -CS - ES

SDF Scheduling

 Goal: a sequence of process firings that:
 Runs each process at least once in proportion to its rate
 Avoids underflow

• no process fired unless all tokens it consumes are available
 Returns the number of tokens in each buffer to their initial state

 Result: the schedule can be executed repeatedly without
accumulating tokens in buffers

- 45 -CS - ES

Balance equations

 Number of produced tokens must equal number of
consumed tokens on every edge

 Repetitions (or firing) vector vS of schedule S: number
of firings of each actor in S
 vS(A) np = vS(B) nc

must be satisfied for each edge

np nc
A B

- 46 -CS - ES

Balance equations

B C

A
3

1

1

1

2
2

1
1

 Balance for each edge:
 3 vS(A) - vS(B) = 0
 vS(B) - vS(C) = 0
 2 vS(A) - vS(C) = 0
 2 vS(A) - vS(C) = 0

- 47 -CS - ES

Balance equations

 M vS = 0
iff S is periodic
 Full rank (as in this case)

• no non-zero solution
• no periodic schedule

(too many tokens accumulate on A->B or B->C)

3 -1 0
0 1 -1
2 0 -1
2 0 -1

M =

B C

A
3

1

1

1

2
2

1
1

topology matrix

the (c, r)th entry in the
matrix is the amount of data
produced by node c on arc

r each time it is involved

- 48 -CS - ES

Balance equations

 Non-full rank
• infinite solutions exist

 Any multiple of vS = |1 2 2|T satisfies the balance
equations
 ABCBC and ABBCC are minimal valid schedules

2 -1 0
0 1 -1
2 0 -1
2 0 -1

M =

B C

A
2

1

1

1

2
2

1
1

- 49 -CS - ES

Static SDF scheduling

 Main SDF scheduling theorem (Lee ‘86):
 A connected SDF graph with n actors has a

periodic schedule iff its topology matrix M has rank
n-1
 If M has rank n-1 then there exists a unique

smallest integer solution vS to
M vS = 0

 Rank must be at least n-1 because we need
at least n-1 edges (connected-ness),
providing each a linearly independent row
 Admissibility is not guaranteed, and depends

on initial tokens on cycles

- 50 -CS - ES

Admissibility of schedules

 No admissible schedule:
BACBA, then deadlock…
 Adding one token on A->C makes

BACBACBA valid
 Making a periodic schedule admissible is always

possible, but changes specification...

B C

A
1

2

1

3

2

3

- 51 -CS - ES

An Inconsistent System

 No way to execute it without an unbounded
accumulation of tokens

 Only consistent solution is “do nothing”

b

1

ca
1

32

1

1

a – c = 0
a – 2b = 0
3b – c = 0

3a – 2c = 0

- 52 -CS - ES

Calculating Rates

 Each arc imposes a constraint

b

d

1
2

3

2

c

a

3

41

3

2
1

6

3a – 2b = 0
4b – 3d = 0

b – 3c = 0
2c – a = 0
d – 2a = 0

Solution:
a = 2c
b = 3c
d = 4c

- 53 -CS - ES

Scheduling Example

 Theorem guarantees any valid simulation will produce a
schedule

b

d

1
2

3

2

c

a

3

41

3

2
1

6

a=2 b=3 c=1 d=4

Possible schedules:
BBBCDDDDAA
BDBDBCADDA
BBDDBDDCAA
… many more

BC … is not valid

- 54 -CS - ES

SDF Compiler

Task for an SDF compiler:
 Allocation of memory for the passing of data between nodes
 Scheduling of nodes onto processors in such a way that data is

available for a block when it is invoked

Assumptions on the SDF graph:
 The SDF graph is nonterminating and does not deadlock
 The SDF graph is connected

Goal:
 Development of a periodic admissible parallel schedule (PAPS)
 or a periodic admissible sequential schedule (PASS)

(admissible = correct schedule, finite amount of memory required)

- 55 -CS - ES

Does a PASS exist?

- 56 -CS - ES

Does a PASS exist?

 A PSS (periodic sequential schedule) exists if rank (M) = s -1, where s is the
number if nodes in a graph.

 There is a v such that Mv = O where O is a vector full of zeros. v describes
the number of firings in each scheduling period.

- 57 -CS - ES

A PASS exists

 The rank of the matrix M = is s – 1 = 2 and v =

 A valid schedule is Φ = {a, b, c, c}, but not Φ = {b, a, c, c}

 The maximum buffer sizes for the arcs are b =< 1, 2, 2 >

- 58 -CS - ES

A PASS does not exist

 The graph has sample rate inconsistencies.

 A schedule for the graph will result in unbounded buffer sizes.

 No PASS can be found (rank (M) = s = 3).

- 59 -CS - ES

PAPS

 Assumption: Block 1 : 1 time unit
Block 2 : 2 time units
Block 3 : 3 time units

Trivial Case - All computations are scheduled on same processor

- 60 -CS - ES

PAPS

 The performance can be improved, if a schedule is constructed that exploits
the potential parallelism in the SDF-graph. Here the schedule covers one
single period.

Single Period Schedule

- 61 -CS - ES

PAPS

 The performance can be further improved, if the schedule is constructed over
two periods.

Double Period Schedule

