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Message Sequence Charts

REVIEW
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Message Sequence Charts 

 Message Sequence Charts (MSC) is a language to 
describe the interaction between a number of 
independent message-passing instances.

 Defined by ITU (International Telecommunication Union) 
- Z.120 recommendation

 MSC is
 a scenario language
 graphical
 formal
 practical
 widely applicable

REVIEW
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MSC

 In telecommunication industry, MSCs are the first choice to describe 
example traces of the system under development. MSCs are used 
throughout the whole protocol life cycle from requirements analysis 
to testing. 

 To define longer traces hierarchically, simple MSCs can be 
composed by operators in high-level MSC (HMSC). 

 Message Sequence Charts may be used for requirement 
specification, simulation and validation, test-case specification and 
documentation of real-time systems.

REVIEW
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Message sequence charts (MSC)

 Graphical means for representing schedules; time used 
vertically, “geographical” distribution horizontally.

REVIEW
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Basic MSC in a nutshell

User AC System

Code

OK

msc User_accepted

UnlockCard out

Idle

Door unlocked

MSC diagram

MSC heading

Condition
no predicate logic, 

merely a label

Output event

Input event

Instance

Message to 
the 

environment

Instance end

REVIEW
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Timer set and timeout

• User is accepted  forget to push the door

• AC system will detect this through the expiration 
of the timer  Lock

REVIEW
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Preferred situation REVIEW
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MSC reference

• In almost all description/programming/specification 
languages there is a way to isolate subparts of the 
description in a separate named construct 
(procedures, functions, classes, packages)

• In MSC there are MSCs which can be referred from 
other MSCs.

REVIEW
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MSC reference

• Assume that the scenario where the user is accepted is 
part of a larger context where there is an automatic 
door. When the door is unlocked it automatically opens.

• The MSC reference symbol is a box with rounded 
corners.

REVIEW
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HMSC (High Level MSC)

User accepted

Idle

Unlocked_reset Unlocked_timeout

Door unlocked

Unlocked_unclosed

User rejected

msc ACsystemOverview

HMSC Start

MSC Reference

Condition

Alternative

Loop

Conne
ction 
Point

REVIEW
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Data in MSC-2000

 MSC has no data language of its own!

 MSC has parameterized data languages such that

 fragments of your favorite (data) language can be used
• C, C++, SDL, Java, ...

 MSC can be parsed without knowing the details of the chosen 
data language

 the interface between MSC and the chosen data language is 
given in a set of interface functions

REVIEW



- 13 -CS - ES

Data Flow Models

REVIEW
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Data flow modeling

 Def.: The process of identifying, modeling and 
documenting how data moves around an information 
system.

Data flow modeling examines 
 processes (activities that transform data from one form to 

another), 
 data stores (the holding areas for data),
 external entities (what sends data into a system or receives data 

from a system, and
 data flows (routes by which data can flow).

REVIEW
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Dataflow model
 Nodes represent transformations

 May execute concurrently

 Edges represent flow of tokens (data) from one node to 
another
 May or may not have token at any given time

 When all of node’s input edges have at least one token, 
node may fire

 When node fires, it consumes input tokens processes 
transformation and generates output token

 Nodes may fire simultaneously

 Several commercial tools support graphical languages for 
capture of dataflow model
 Can automatically translate to concurrent process model for 

implementation
 Each node becomes a process

modulate convolve

transform

A B C D

Z

Nodes with more complex 
transformations

t1 t2

+ –

*

A B C D

Z

Nodes with arithmetic 
transformations

t1 t2

Z = (A + B) * (C - D)

REVIEW
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Philosophy of Dataflow Languages

 Drastically different way of looking at computation

 Von Neumann imperative language style: program counter 
controls everything 

 Dataflow language: movement of data the priority

 Scheduling responsibility of the system, not the programmer

REVIEW
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Applications of Dataflow

 signal-processing applications

 Anything that deals with a continuous stream of data

 Becomes easy to parallelize

 Buffers typically used for signal processing applications 
anyway

REVIEW
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Kahn Process Networks

 Proposed by Kahn in 1974 as a general-purpose scheme for 
parallel programming

 Theoretical foundation for dataflow
 Unique attribute: deterministic

…
Send();

… 

…
Wait();

… 

REVIEW
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Properties of Kahn process networks (2)

 There is only one sender per channel.
 A process cannot check whether data is available before 

attempting a read.
 A process cannot wait for data for more than one port at a time.
 Therefore, the order of reads depends only on data, not on the 

arrival time.
 Therefore, Kahn process networks are deterministic (!);  for a 

given input, the result will always the same, regardless of the 
speed of the nodes.

This is the 
key beauty 
of KPNs!

REVIEW
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Kahn Process Networks

 Key idea:

Reading an empty channel blocks until data is available

 No other mechanism for sampling communication 
channel’s contents

 Can’t check to see whether buffer is empty
 Can’t wait on multiple channels at once

REVIEW
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Sample parallel program S

(1) … channel declation

processes f, g, h are declared

REVIEW
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A Kahn Process
 From Kahn’s original 1974 paper

process f(in int u, in int v, out int w)
{
int i; bool b = true;
for (;;) {
i = b ? wait(u) : wait(v);
printf("%i\n", i);
send(i, w);
b = !b;

}
}

f

u

v

w

Process alternately reads 
from u and v, prints the data 

value, and writes it to w

What does this do?

REVIEW
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A Kahn Process

 From Kahn’s original 1974 paper:

process f(in int u, in int v, out int w)
{
int i; bool b = true;
for (;;) {
i = b ? wait(u) : wait(v);
printf("%i\n", i);
send(i, w);
b = !b;

}
}

Process 
interface 

includes FIFOs

wait() returns the next 
token in an input FIFO, 

blocking if it’s empty

send() writes a data 
value on an output FIFO

REVIEW
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A Kahn Process

 From Kahn’s original 1974 paper:

process g(in int u, out int v, out int w)
{
int i; bool b = true;
for(;;) {
i = wait(u);
if (b) send(i, v); else send(i, w);
b = !b;

}
}

gu
v

w

Process reads from u and 
alternately copies it to v and w

What does this do?

REVIEW
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A Kahn Process

 From Kahn’s original 1974 paper:

process h(in int u, out int v, int init)
{
int i = init;
send(i, v);
for(;;) {
i = wait(u);
send(i, v);

}
}

hu v

Process sends initial value, 
then passes through values.

What does this do?

REVIEW
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Sample parallel program S

(1) … channel declation

processes f, g, h are declared

(6) … body of the main program: 
- calling instances of the   

processes
- actual names of the channels 

are bound to the formal parameters
- infix operator par  concurrent 

activation of the processes

REVIEW
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A Kahn System

 What does this do?

fg

h
init = 0

h
init = 1

Emits a 1 then copies input to output

Emits a 0 then copies input to output

Prints an alternating sequence of 0’s and 1’s

T2 Z

T2

X

Y

REVIEW
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REVIEW
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Determinism

 Process: “continuous mapping” of input sequence to 
output sequences 

 Continuity: process uses prefix of input sequences to 
produce prefix of output sequences. Adding more 
tokens does not change the tokens already produced

 The state of each process depends on token values 
rather than their arrival time 

 Unbounded FIFO: the speed of the two processes 
does not affect the sequence of data values

F
x1,x2,x3… y1,y2,y3…

REVIEW
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Synchronous Dataflow (SDF)
 Edward Lee and David Messerchmitt,  Berkeley, 1987

Ptolemy System

 Restriction of Kahn Networks to allow compile-time 
scheduling

 Basic idea: each process reads and writes a fixed number of 
tokens each time it fires:

loop
read 3 A, 5 B, 1 C …compute…write 2 D, 1 E, 7 F

end loop

REVIEW



- 31 -CS - ES 31

Synchronous dataflow

 With digital signal-processors (DSPs), data flows at fixed 
rate

ADC DACDSP

0110.. 1110..

REVIEW
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Synchronous dataflow
 Multiple tokens consumed and produced per firing

 Synchronous dataflow model takes advantage of this
 Each edge labeled with number of tokens 

consumed/produced each firing
 Can statically schedule nodes, so can easily use sequential 

program model
• Don’t need real-time operating system and its overhead

 Algorithms developed for scheduling nodes into “single-
appearance” schedules
 Only one statement needed to call each node’s associated 

procedure
• Allows procedure inlining without code explosion, thus reducing 

overhead even more

modulate convolve

transform

A B C D

Z

Synchronous dataflow

mt1 ct2

mA mB mC mD

tZ

tt1 tt2

t1 t2

REVIEW
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SDF and Signal Processing

 Restriction natural for multirate signal processing

 Typical signal-processing processes:

 Unit-rate
• Adders, multipliers

 Upsamplers (1 in, n out)
 Downsamplers (n in, 1 out)



- 34 -CS - ES

Asynchronous message passing:
Synchronous data flow (SDF)
 Asynchronous message passing=

tasks do not have to wait until output is accepted.
 Synchronous data flow =

all tokens are consumed at the same time.

SDF model allows static scheduling of token production and 
consumption.

In the general case, buffers may be needed at edges.
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Synchronous DataFlow

 Actor enabling = each incoming arc carries at 
least weight tokens

 Actor execution = atomic 
consumption/production of tokens by an enabled 
actor
 i.e., consume weight tokens on each incoming arcs and 

produce weight tokens on each outgoing arc 
 Delay is an initial token load on an arc.

SDF firing rules:
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SDF Example

AABAA
CC

BStatic 
schedule:
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Parallel Scheduling of SDF Models

A

C

D

B

Sequential
periodic admissible sequential 

schedule (PASS)

Parallel
periodic admissible parallel 

schedule (PAPS)

SDF is suitable 
for automated 
mapping onto 

parallel 
processors and 

synthesis of 
parallel circuits.

(admissible = correct schedule, finite amount of memory required)
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SDF Scheduling Algorithm
Lee/Messerschmitt 1987

1. Establish relative execution rates
 Generate balance equations
 Solve for smallest positive integer vector q

2. Determine periodic schedule
 Form an arbitrarily ordered list of all nodes in the system
 Repeat:

• For each node in the list, schedule it if it is runnable, 
trying each node once

• If each node has been scheduled qn times, stop.
• If no node can be scheduled, indicate deadlock.

Source: Lee/Messerschmitt, Synchronous Data Flow (1987)
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Multi-rate SDF System

 DAT (digital audio tape) -to-CD rate converter
 Converts a 44.1 kHz sampling rate to 48 kHz

1 1 2 3 2 7 8 7 5 1

Upsampler Downsampler
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SDF: restriction of Kahn networks

An SDF graph is a tuple (V, E, cons, prod, d) where
 V is a set of nodes (activities)
 E is a set of edges (buffers)
 cons: E  N number of tokens consumed
 prod: E  N number of tokens produced
 d: E  N number of initial tokens

d: „delay“ (sample offset between input and output)
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Delays

 Kahn processes often have an initialization phase

 SDF doesn’t allow this because rates are not always 
constant

 Alternative: an SDF system may start with tokens in its 
buffers

 These behave like delays (signal-processing)

 Delays are sometimes necessary to avoid deadlock
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Example SDF System
 Finite Impulse Response

FIR Filter (all single-rate)

dup

*c0

dup

*c1

+

dup

*c2

+

dup

*c3

+

*c(N-1)

+

One-cycle delay
Duplicate

Constant 
multiply 

(filter 
coefficient)

Adder

yn

xn

Yn = xn*c0 + xn-1*c1 + … + xn-(N-1)*c(N-1)

…

…

…
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SDF Scheduling

 Schedule can be determined completely before the 
system runs

 Two steps:

1. Establish relative execution rates by solving a system 
of linear equations

2. Determine periodic schedule by simulating system for a 
single round 
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SDF Scheduling

 Goal: a sequence of process firings that:
 Runs each process at least once in proportion to its rate
 Avoids underflow 

• no process fired unless all tokens it consumes are available
 Returns the number of tokens in each buffer to their initial state

 Result: the schedule can be executed repeatedly without 
accumulating tokens in buffers
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Balance equations

 Number of produced tokens must equal number of 
consumed tokens on every edge

 Repetitions (or firing) vector vS of schedule S: number 
of firings of each actor in S
 vS(A) np = vS(B) nc

must be satisfied for each edge

np nc
A B
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Balance equations

B C

A
3

1

1

1

2
2

1
1

 Balance for each edge:
 3 vS(A) - vS(B) = 0
 vS(B) - vS(C) = 0
 2 vS(A) - vS(C) = 0
 2 vS(A) - vS(C) = 0
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Balance equations

 M vS = 0
iff S is periodic
 Full rank (as in this case) 

• no non-zero solution 
• no periodic schedule

(too many tokens accumulate on A->B or B->C)

3 -1 0
0 1 -1
2 0 -1
2 0 -1

M =

B C

A
3

1

1

1

2
2

1
1

topology matrix 

the (c, r)th  entry in the 
matrix is the amount of data 
produced by node c on arc 

r each time it is involved
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Balance equations

 Non-full rank
• infinite solutions exist 

 Any multiple of vS = |1   2   2|T satisfies the balance 
equations
 ABCBC and ABBCC are minimal valid schedules

2 -1 0
0 1 -1
2 0 -1
2 0 -1

M =

B C

A
2

1

1

1

2
2

1
1
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Static SDF scheduling

 Main SDF scheduling theorem (Lee ‘86):
 A connected SDF graph with n actors has a 

periodic schedule iff its topology matrix M has rank 
n-1
 If M has rank n-1 then there exists a unique 

smallest integer solution vS to 
M vS = 0

 Rank must be at least n-1 because we need 
at least n-1 edges (connected-ness), 
providing each a linearly independent row
 Admissibility is not guaranteed, and depends 

on initial tokens on cycles
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Admissibility of schedules

 No admissible schedule:
BACBA, then deadlock…
 Adding one token on A->C makes

BACBACBA  valid
 Making a periodic schedule admissible is always 

possible, but changes specification...

B C

A
1

2

1

3

2

3
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An Inconsistent System

 No way to execute it without an unbounded 
accumulation of tokens

 Only consistent solution is “do nothing”

b

1

ca
1

32

1

1

a – c = 0
a – 2b = 0
3b – c = 0

3a – 2c = 0
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Calculating Rates

 Each arc imposes a constraint

b

d

1
2

3

2

c

a

3

41

3

2
1

6

3a – 2b = 0
4b – 3d = 0

b – 3c = 0
2c – a  = 0
d – 2a = 0

Solution:
a = 2c
b = 3c
d = 4c
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Scheduling Example

 Theorem guarantees any valid simulation will produce a 
schedule

b

d

1
2

3

2

c

a

3

41

3

2
1

6

a=2  b=3  c=1  d=4

Possible schedules:
BBBCDDDDAA
BDBDBCADDA
BBDDBDDCAA
… many more

BC … is not valid
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SDF Compiler

Task for an SDF compiler:
 Allocation of memory for the passing of data between nodes
 Scheduling of nodes onto processors in such a way that data is 

available for a block when it is invoked

Assumptions on the SDF graph:
 The SDF graph is nonterminating and does not deadlock
 The SDF graph is connected

Goal:
 Development of a periodic admissible parallel schedule (PAPS)
 or a periodic admissible sequential schedule (PASS)

(admissible = correct schedule, finite amount of memory required)
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Does a PASS exist?
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Does a PASS exist?

 A PSS (periodic sequential schedule) exists if rank (M) = s -1, where s is the 
number if nodes in a graph.

 There is a v such that Mv = O where O is a vector full of zeros. v describes 
the number of firings in each scheduling period.
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A PASS exists

 The rank of the matrix M =  is s – 1 = 2 and v =  

 A valid schedule is  Φ = {a, b, c, c}, but not  Φ = {b, a, c, c}

 The maximum buffer sizes for the arcs are b =< 1, 2, 2 >
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A PASS does not exist

 The graph has sample rate inconsistencies.

 A schedule for the graph will result in unbounded buffer sizes.

 No PASS can be found (rank (M) = s = 3).
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PAPS

 Assumption: Block 1 : 1 time unit
Block 2 : 2 time units
Block 3 : 3 time units

Trivial Case - All computations are scheduled on same processor
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PAPS

 The performance can be improved, if a schedule is constructed that exploits 
the potential parallelism in the SDF-graph. Here the schedule covers one 
single period.

Single Period Schedule
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PAPS

 The performance can be further improved, if the schedule is constructed over 
two periods.

Double Period Schedule


