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Message Sequence Charts
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Message Sequence Charts REVIEW

* Message Sequence Charts (MSC) is a language to
describe the interaction between a number of
independent message-passing instances.

» Defined by ITU (International Telecommunication Union)
- £.120 recommendation

= MSCis
= a scenario language
graphical
formal
practical
widely applicable
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MSC REVIEW

= In telecommunication industry, MSCs are the first choice to describe
example traces of the system under developmeTlVI%s are used
throughout the whole protocol life cycle from requirements analysis
to testing. — - -

= To define longer traces hierarchically, simple MSCs can be
composed by operators in high-level MSC (HMSC).

T —

» Message Sequence Charts may be used for requirement
specification, simulation and validation, test-case specification and
documentation of real-time systems.

CS-ES 4.



Message sequence charts (MSC) REVIEW

= Graphical means for representing schedules; time used
vertically, “geographical” distribution horizontally.

)
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Basic MSC in a nutshell REVIEW |nstance

MSC di
{ |a@ msc_User_accepted
[dle > Message to

MSC headn@
/< the
{ Condition /‘ Code environment
no predicate logic,
merely a label
Output even / |

/ —Instance end
.~
{Inputevent
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Timer set and timeout

Timer door set

Timer door
timeout

« User is accepted - forget to push the door

msc User_accepted timeout

User

— 1

AC System

— ]
Code

OK

Card out Unlock
—

T - —
____;J@ = Jv(

- Lock
—>
]

R

« AC system will detect this through the expiration

of the timer - Lock
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Preferred situation REVIEW

msc User_accepted reset

User AC System
I | [ |
: Code
Timer door set ] >
: Unlock
4\ Card out

\

Push door ¥

OPTE':H
. ‘_.
Timer door I, :
I
reset ] |
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MSC reference REVIEW

 In almost all description/programming/specification
languages there is a way to isolate subparts of the
description in a separate named construct
(procedures, functions, classes, packages)

e

 |In MSC there are MSCs which can be referred from
other MSCs. -
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REVIEW

msc diagram

MSC reference ~

m'svc User accepted i
msc heading Ser AC System | _~
COllQiFiOIl :’ :"
msc AutoDoor output event [™< e >
; Code message fo the
User AutDo o ?Y_‘_mt o - environment
Card out Unlock .
< Idle - o PO
instance end
Unl l\ < Door unlocked >
‘ User_Accepted ) B rd
4 A > h h
—openeddoor [ ——— |
“ / |
< ‘,f" Door open

msc 1efel ence actual gate

« Assume that the scenario where the user is accepted is
part of a larger context where there is an automatic
door. When the door is unlocked it automatically opens.

 The MSC reference symbol is a box with rounded
corners.
CS-ES

- 10 -



HMSC (High Level MSC)  REVIEW 'HMSC Start

msc ACsystemOverview

MSC Reference

%Ie__

g
<

Door u{n‘locked >‘—4{L Condition ]

Gnlockeﬂé [ocked Timeout )

N

’ \
CUnIocked unclosed ) X
_ AIternativeJ_
L
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Data in MSC-2000 REVIEW

= MSC has no data language of its own!

» MSC has parameterized data languages such that

» fragments of yqur favorite (data) language can be used
s C, C++,‘ Java, ...
—
S
= MSC can be parsed without knowing the details of the chosen
data language

» the interface between MSC and the chosen data language is
given in a set of interface functions
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REVIEW

Data Flow Models
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Data flow modeling REVIEW

= Def.: The process of identifying, modeling and
documenting how data moves around an information

system. T T

Data flow modeling examines

" processes (activities that transform data from one form to
another),

= data stores (the holding areas for data),
= external entities (what sends data into a system or receives data

fro system, and
.@@by which data can flow).

CS-ES - 14 -




Dataflow model

Nodes represent transformations

= May execute concurrently
/

Edges represent flow of tokens (data) from one node to
another

= May or may not have token at any given time

When all of node’s input edges have at least one token,

REVIEW

Z=(A+B)*(C-D)

node may fire
nay fire

When node fires, it consumes input tokens processes

transformation and generates output token

Nodes may fire simultaneously
‘_¥’

Several cammercial fools suppertgraphieattanguages for

capture of dataflow model

Nodes with arithmetic
—— transformations

= Can automatically translate to concurrent process model for Nodes with pfore comp

implementation
= Each node becomes a process—

CS-ES

transfdrmations
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Philosophy of Dataflow Languages REVIEW

Drastically different way of looking at computation

-

Von Neumann imperative language style: program counter
controls everything

Dataflow language: movement of data the priority

Scheduling responsibility of the system, not the@

S~—
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Applications of Dataflow REVIEW

» signal-processing applications

= Anything that deals with a continuous stream of data

/ < ]
» Becomes easy to parallelize

» Buffers typically used for signal processing applications
anyway

CS-ES - 17 -



Kahn Process Networks REVIEW

il

Seﬁ.(.j(); Wél.ii();

» Proposed by Kahn in 1974 as a general-purpose scheme for
parallel programming

. Thg)retical foundation for dataflow

= Unique attribute: deterministic
_—

CS-ES - 18 -



Properties of Kahn process networks (2) REVIEW

CS -

ES

There is only one sender per channel. —

A process cannot check whether data is available before
attempting a read. o

A process cannot wait for data for more than one port at a time.
Therefore, the order of reads aepends only on data, not on the

arrival time.
Therefore, Kahn process networks are@!); for a
given input, the result will always the sameg; rdless of the

speed of the nodes. \

This is the
key beauty
of KPNs!
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Kahn Process Networks REVIEW

= Key idea:

Reading an empty channel blocks until data is available

» No other mechanism for sampling communication
channel’s contents
nnel’'s contents.

» Can’t check to see whether buffer is empty
= Can'’t wait on multiple channels at once

CS-ES - 20 -



Sample parallel program S REVIEW

Begin
(1) Integer el X, Y, 2, T1, T2 ;
Proces integer 1in U,V: integer out W) ; . .
) ogin integer T ; togical B 5 = ) (1) ... channel declation
B := true ;
Repeat Begin
(4) 1 := if B then wait(U) else wait(V) ;
(N print (I) ;
(5) send T on W ;
B := =B ;
end ;
End ;
Process integer in U ; integer out V, W) ;
Begin initeger 1 ; logical B ; : r
B i= true ; processes e declared
Repeat Begin

I := wait (U) ;
if B thon send 1 on V else send I on W ;
B :=TB ;

‘nteger in Ujinteger out V; integer INIT);
eger 1 ;
send INIT on V ;
Repeat Begin
I := watt(V) ;
send 1 onV ;

Comment : body of mainprogram ;

(6) £(Y,2,X) par g(X,T1,T2) par h(T1,Y,0) par h(T2,Z,1
End ;
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A Kahn Process REVIEW
= From Kahn's original 1974 paper

process int u, in int v, out int w)

{
Int i; bool b = true;
for (;;) {
| = b ? wait(u) : wait(v); \
printf("%i\n", 1);
send(i, w); /
b = Ib;
} What does this do?

}

Process alternately reads
from u and v, prints the data
value, and writes it to w

CS-ES - 22 -



A Kahn Process REVIEW

= From Kahn's original 1974 paper:

Process
i i int w interface
process f(in int u, in int v, out int w) includes FIFOs

{

Int i; bool b = true; .
’ ’ wait() returns the next
for (;;) { / token in an input FIFO,

| = b ? wait(u) : wait(v); blocking if it's empty
printf("%i\n", i);
send(l, w);
b=Ilb; —  send() writes a data
) value on an output FIFO

}

CS-ES - 23 -



A Kahn Process REVIEW

* From Kahn's original 1974 paper:

process g(in int u, out int v, out int w)

{ LY
int i; bool b = true; u—| g 1
for(;;) { T Rw

| = wait(u);
iIf (b) send(i, v); else send(i, w);
b = Ib;
) What does this do?
}

Process reads from_u and
alternately copies it to v.and w
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A Kahn Process REVIEW

* From Kahn's original 1974 paper:

process h(in int u, out int v, int@ _ -
{ u_ — L v
Int i = init;
send(i, v); What does this do?
for(;;) {
| = wait(u);
send(i, v); Process sends initl
} then passes through values.
}

CS-ES - 25-



Sample parallel program S REVIEW

DO chomel X, ¥, 2, TI, T2 : (1) ... channel declation

»

(2) Process f(tntegcr in U,V; mteger out W) ;
Begin integer 1 logwal B;
B := true ;

Repeat Begin
@ Peat Bagin e vais(y) else wait(V) : processes f, g, h are declared
(N print (I) ;
(5) gend T on W ;
B :=—8B ;
end ;

End ;
Ppocess g(mteger in U ; integer out V, W) ;
Begin integer 1 ; logical B ;

body of the main progl

gin Lite - calling instances of the
Repeat Begin _ processes
I := wait (Ur):d; ; nd _ f
if B then sand 1 on V else send I on W ; -
e actual names of the channels
gy T | are bound to the formal parameters

(3)Process h(integer in U;integer out V; integer INIT); - infix operat > concurrent
Begin integer 1 ; . .
send INIT on V ; activation of the processes
Repeat Begin .
I := watt(VU) ;
send 1 onV ;
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A Kahn System REVIEW

= \What does this do?

CS-ES

Prints an alternating sequence of O’'s and 1's

——
—

Emits a 1 then copies input to output

T2

T2

:I=1

Emits a 0 then copies input to output
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Determinism REVIEW

CS -

x1,x2,x3... —I ylLy2,y3...

Process: “continuous mapping” of input sequence to
output sequences

Continuity: process uses prefix of input sequences to
produce prefix of output sequences. Adding more
tokens does not change the tokens already produced

The state of each process depends on token values
rather than their arrival time

Unbounded FIFO: the speed of the two processes
does not affect the sequence of data values

ES - 29 -



Synchronous Dataflow (SDF) REVIEW

e

= Edward Lee and David Messerchmitt, Berkeley, 1987
Ptolemy System

» Restriction of Kahn Networks to allow compile-time
scheduling

= Basic idea: each process reads and writes a fixed number of
tokens each time it fires:

loop
read 3A,5B,1C ...compute...writ@D, 1E,7F
end loop

CS-ES - 30 -



Synchronous dataflow REVIEW

» With digital signal-processors (DSPs), data flows at fixed
rate

P
-3
593@% .“%
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Synchronous dataflow REVIEW

» Multiple tokens consumed and produced per firing

= Synchronous dataflow model takes advantage of this
» Each edge labeled with number of tokens.

consumed/produced each firing
= Can statically schedule nodes, so can easily use sequentia|

program mode
.—/ . . .
« Don’t need¢eal-time operating s¥stem and its overhead

» Algorithms developed for scheduling nodes into “single-
appearance” schedules

= Only one statement needed to call each node’s associated
procedure Synchronous dataflow

* Allows procedure inlining without code explosion, thus reducing
overhead even more

91’}28/'” q[(} Z/
2

4
0 92
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SDF and Signal Processing

» Restriction natural for multirate signal processing

= Typical signal-processing processes:

= Unit-ra
 Adders, multipliers
= Upsamplers-(1 in, n out)
. W (nin, 1 out)
(o7 m ot )

CS-ES
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Asynchronous message passing:
Synchronous data flow (SDF)

= Asynchronous message passing=
tasks do not have to wait until output is accepted.

= Synchronous data flow =
all tokens are consumed at the same time.

1
A B
~ 1 1
1 %

SDF model allows static scheduling of token production and
consumption

In the general case, blﬂﬁeﬁ‘ﬁ/ﬁﬂiﬂﬁd@é at edges.

CS-ES
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Synchronous DataFlow

SDF firing rules:

CS -

Actor enabling = each incoming arc carrles at
least @okens
Actor execution = atomic

consumption/production of tokens by an enabled
actor

= j.e., consume weight tokens on each incoming arcs and
produce weight tokens on each outgoing arc

Delay is an initial token load on an arc.

ES - 35-



SDF Example

schedule:

CS-ES
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SDF is suitable

for automated

mapping onto
parallel

processors and

[ ]
Sequential Parallel
periodic admissible sequential periodic admissible parallel
schedule (PASS) schedule (PAPS)

(admissible = correct schedule, finite amount of memory required)
CS-ES - 37



SDF Scheduling Algorithm

Lee/Messerschmitt 1987
-

1. Establish relative execution rates
= (Generate balance equations
= Solve for smallest positive integer vector q

2. Determine periodic schedule

» Form an arbitrarily ordered list of all nodes in the system
= Repeat:
 For each node in the list, schedule it if it is runnable,

trying each node once
« If each node has been scheduled g, times, stop.
« If no node can be scheduled, indicate\ieadloc@

Source: Lee/Messerschmitt, Synchronous Data Flow (1987)

CS-ES
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Multi-rate SDF System

= DAT (digital audio tape) -to-CD rate converter
= Converts a 44.1 kHz sampling rate to 48 kHz

o

23[R, 187151

Il

Upsampler Downsampler
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SDF: restriction of Kahn networks

An SDF graph is a tuple (V, E, cons, prod, d) where
= Vis a set of nodes (activities)

* E is a set of edges (buffers)

= cons: E - N number of tokens consumed

= prod: E - N number of tokens produced

L

= d: E > N number of initial tokens

d/: ,2delay“ (sample offset between input and output)

CS-ES
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Delays

Kahn processes often have an initialization phase

SDF doesn't allow this because rates are not always
constant

Alternative: an SDF system may start with tokens in its
buffers

These behave like delays (signal-processing)

Delays are sometimes necessary to avoid deadlock

CS-ES - 41 -



Example SDF System

= Finite Impulse Response  Duplicate

FIR Filter (all Single-rate/ One-cycle delay
A /

-
p s N Constant
X, —dup g‘ dup dup dup multiply
7 (filter
e ' y y [ y coefficient)
“Cy “Cy *C, Cy| - [ona) —
+ o + o + ->... ] + }— yn

- x x x
Yo = Xp"Co¥ XpgmCp ¥ o * XNty C(N-D)
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SDF Scheduling

» Schedule can be determined completely before the
_
system runs

= Two steps:

1. Establish relative execution rates by solving a system

of linear equations

—

2. Determine periodic schedule by simulating s m for a

single roun

CS-ES
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SDF Scheduling

» Goal: a sequence of process firings that:
» Runs each process at least once in propoﬁon to its rate
= Avoids underflow o
* no process fired unless all tokens it consumes are available
= Returns the number of tokens in each buffer to their initial state

g —————— W

= Result: schedule can be executed repeatedly without
accumulating fokens in buffers

CS-ES - 44 -



Balance equations

—_—

= Number of produced tokens must equal number of
consumed tokens on every edge

o—@
= Repetitions (or firing) vector vg of schedule S: number
of firings of each actorin S

" vs(A)n, = vg(B) ng
must be satisfied for each edge

CS-ES .45



Balance equations

3‘2
y)
1 1
1
o

= Balance for each edge:

= 3vg(A)-vg(B)=0
" ve(B) - vo(C) =

" 2Vg(A)-vg(C)=0
" 2Vg(A)-vg(C)=0

CS-ES
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Balance equations
topology matrix

(30 1 o0

m=0 1 -

1 — |2 0 -1

‘ 2 0 -

1 1
_ the (c, r)th entry in the

= M Vs = 0 matrix is the amount of data
iff S is periodic produced by node c on arc

_ _ r each time it is involved
* Full rank (as in this case) —

* NO non-zero solution
* no periodic schedule

(too many tokens on A->B or B->C)
CS -ES 47 -




Balance equations

@, 21 o0
Z@’yz\

1
01@ 1

/f/
= Non-full rank 7‘
 infinite solutions eX|st

= Any multiple of vg = [1 2 2|T satisfies the balance
equatlons -

. _B_CBC nd ABBCC are minimal valid schedules
\b T In ocrc | g

CS-ES - 48 -




Static SDF scheduling

» Main SDF scheduling theorem (Lee ‘86):

* A connected SDF graph with n actors has a
periodic schedule iff its topology matrix M has rank
n-1 — —

—_—

= If M has rank n-1 then there exists a unique

smallest integer soluti to

Mvg=0

» Rank must be at least n-1 because we need
at least n-1 edges (connected-ness),
providing each a linearly independent row

= Admissibility is not guaranteed, and depends
on initial tokens on cycles

CS-ES - 49 -



Admissibility of schedules

e —

—

= No admissible schedule:
BACBA)then deadlock. .. z

= Adding one token on A->C makes
|BACBACBA |Valid<>——

» Making a periodic schedule admissible is always
possible, but changes specification...

CS-ES
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An Inconsistent System

= No way to execute it without an unbounded
accumulation of tokens

= Only consistent solution is “do nothing”

1 a—c=0
a 1 C a—-2b=0
1 1“ 3b—-c=0

b 3a—2c=0

CS-ES
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Calculating Rates

» Each arc imposes a constraint

1 4
b
3 2 3
c @6 |d
2
3 1
1 2
a:

CS-ES

3a—-2b=0
4b-3d =0
b-3c=0
2c—a =0

d—2a=0/\

Solution:

a=2c
b=3c
d =4c

- 52.-



Scheduling Example

* Theorem guarantees any valid simulation will produce a

schedule 9=2 b=3 c=1 d=4
14 -
Possible schedules:
3 2 3 \BBBCDDDDAA)
. 5 q BDBDBCADDA
> - BBEDDBDDCAA
3 1 ... many more
1 2
a <

BC ... is not valid

CS-ES - 63 -



O — O

SDF Compiler

Q

Task for an SDF compiler: O

= Allocation of memory for the passing of data between nodes

" Scheduling of nodes onto processors in such a way that data is
available for a block when it is invoked

Assumptions on the SDF graph:

* The SDF graph is nonterminating and does not deadlock

* The SDF graph is connected-

Goal:
= Development of a periodic admissible parallel schedule (PAPS)
= or a periodic admissible sequential schedule (PASS)

(admissible = correct schedule, finite amount of memory required)
CS-ES .54



Does a PASS exist? Lt (5)

c/ /N
b _ D \i
Sa¥ I3
{ /g
2T (E\ -
f h "/’

The SDF graph is described by the topology matrix

c —e 0
M=|d 0 -—f
0 —-i g

The entry of row r and column c is the number of tokens produced (positive

number) or consumed (negative nu r)by nodeconarcr.
/ ‘/mb—e

Connections to the outside world are not considered.

CS-ES
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Does a PASS exist?

1,-—» — - l//b\\ /l' R
¢ Nt
b ./’;\ b
Mih 13
{ /g
R
2 “'*———fr '\?/‘ S

A PSS (periodic sequential schedule) exists if rank (M) = s -1, where s is the
number if nodes in a graph.

There is a v_such that Mv = O where O is a vector full of zeros. v describes
the number of firings in each scheduling period.
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A PASS exists

= The rank of the matrix M =
-

]iss—1=23ndv=%}
2

= Avalid scheduleis ® =/{a) b, c, c}, but not ¢ ={b, a, c, c}
T -

= The maximum buffer sizes for the arcs are b =@

CS-ES - 57 -




A PASS does not exist A cc

J
L YD X7
Y

——

The graph has sample rate inconsistencies.

A schedule for the graph will result in unbounded buffer sizes.

No PASS can be found (rank (M) = s = 3).

CS-ES
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PAPS

1 e B
(\# W s,
Y, 3)

1 .‘...‘.‘k_ “ 1

\\ p /'

/
‘Q\\ o D,
2 (2)1

Assumption: Block 1 : 1 time unit
Block 2 : 2 time units
Block 3 : 3 time units

@ﬁ T § — Time
.
@—0G) [l > 3 | =
7Ty A — -
— 0 1 2 3 45 6 7

Trivial Case - All computations are scheduled on same processor

CS-ES
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PAPS

The performance can be improved, if a schedule is constructed that exploits

the potential parallelism in the SDF-graph. Here the schedule covers one
single period.

o [Py’
®____,..---"’( Processor 1 | T[4 | 2

Processor 2 5, j"f’/
@ 0 1 2 $—

CS-ES
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PAPS

2D
12
@ ®
1 \ ‘ 1
\ ‘_/,4
2 (2)1

» The performance can be further improved, if the schedule is constructed over

. \/
two periods.
/(\
RN
. —— |
@_,___,../(O Q ™ Time
Processor 1 51-2@ 1-4 ( 2.5
-@— Processor 2 31 <i§> 3.2
@/ \‘® 01 2 3 4 5 6 7
\\"---,, ,@_ ) /4
DBoublePeriod Schedule
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