Embedded Systems

O’H‘l’

...........

CS-ES

é'l f)
:

1¢ ﬁ




SDF Compiler REVIEW

Task for an SDF compiler:
= Allocation of memory for the passing of data between nodes

» Scheduling of nodes onto processors in such a way that data is
available for a block when it is invoked

Assumptions on the SDF graph:
» The SDF graph is nonterminating and does not deadlock
» The SDF graph is connected

Goal:

= Development of a periodic admissible parallel schedule (PAPS)
= or a periodic admissible sequential schedule (PASS) ”

(admissible = correct schedule, finite amount of memory required)
CS-ES 0.



PAPS

Assumption:

|/-\ ), 5=
1)

~

Block 1 : 1 time unit
Block 2 : 2 time units
Block 3 : 3 time units

)
/

ol
2 )1

B T . — Time
P
(2/_'\3/‘ 1419
7Ty A
L)— 0 2 4

REVIEW

Trivial Case - All computations are scheduled on same processor

CS-ES



PAPS REVIEW

/‘i
b

,—-//

»@ 1

= The performance can be improved, if a schedule is constructed that exploits
the potential parallelism in the SDF-graph. Here the schedule covers one
single period.

/é —» Time

@_ ,.----'”( Processor 1

Processor 2

Single Period Schedule

CS-ES 4.



PAPS

2

£

REVIEW

The performance can be further improved, if the schedule is constructed over

two periods.

CS-ES

O ™ G—
@_» A
3 / -
Q\_“ D

©

Processor
D ﬁ/ér‘
\

— Time
1-1|1-2| 2-1 |1-4] 2-2
3-1 1-3 32

¢ 1 2 3 4 5 6 7

|Double Period Schedulej




Scheduling Choices REVIEW

= SDF Scheduling Theorem guarantees a schedule will be
found if it exists

» Systems often have many possible schedules

* How can we use this flexibility?

e —

= Reduced code size
= Reduced buffer sizes

CS-ES 6



Looped Code Generation REVIEW

= Obvious improvement: use loops

= Rewrite the schedule in “looped” form:

(3B) C (4 D) (2 A)

= (Generated code becomes
for(i=0;i<3;i++)B;

me——

— C;
for(i=0;i<4;i++)D;
for(i=0;i1<2;i++) A;

CS-ES 7.



Conclusion SDF REVIEW

The SDF model is very useful for regular DSP applications

Used for: simulation, scheduling, memory allocation, code
generation for Digital Signal Processors (HW and@

There is a mathematical framework to calculate a PASS or a
PAPS and to determine the maximum size of buffers, if a
PASS/PAPS exists

The work on SDF can be used to derive single and multiple
processor implementations

CS-ES 8-



Selected Models of computation REVIEW

Communication/ Shared Message passing

local computations | memory Synchronous | Asynchronous
Undefined Plain text, use cases

components | (Message) sequence charts
Communicating finite | StateCharts SDL

state machines

Data flow (Not useful) Kahn networks,
SDF
Petri nets C/E nets, P/T nets, ...
Discrete event (DE) | VHDL", Only experimental systems, e.g.
model Verilog®, distributed DE in Ptolemy
SystemC*, ...
Imperative (Von C, C++, Java C, C++, Java with libraries

Neumann) model

CSP, ADA |

* Classification based on the implementation of HDLs

CS-ES




Models vs. languages REVIEW

» How can we (precisely) capture behavior?
= We may think of languages (C, C++), but computation model is the

key
. Poetry Recipe Story State Sequent. | : Data-
machine program i flow
H \ ‘:;::I:_-,..‘.' .............. H H ____.-..I'.'.'-v.'.:::.-h ', ........... H /
English S ish J C++ J
Languages nglis panis apanese ava y%&
Recipes vs. English Sequential programs vs. C
= Computation models describe system behavior ?

= Conceptual notion, e.g., recipe, sequential program

= Languages capture models
= Concrete form, e.g., English, C

CS-ES - 10 -



Models vs. languages

Models

Languages

REVIEW

Poetry Recipe Story
English Spanish Japanese

Recipes vs. English

State Sequent. Data
machine program flow

e v TN \/
C C++ Java

Sequential programs vs. C

= Variety of languages can capture m

= E.g., sequential program model > C,C++, Java

= One language can capture variety of models
= E.g., C++ — sequential program model, object-oriented model, state machine

model

= Certain languages better at capturing certain computation models

CS-ES

>

/

—_——

- 11 -



REVIEW

Architecture Design — Models

CS-ES - 12 -



REVIEW

Task graphs or dependency graph (DG)

T Te—

Sequence
sl ®\ Nodes are assumed to be
a ,program” described in

some programming
language, e.g. C or Java.

» Def.: Adependence graph is a directed graph G=(V,E) in
which E c V x V Is a partial order.

= |f (v1, v2) € E, then vl is called an immediate predecessor
of v2 and v2 is called an immediate successor of v1.

CS-ES - 13 -



Dependence Graph (DG) REVIEW

» A dependence graph describes order relations for the execution of single
operations or tasks. Nodes correspond to tasks or operations, edges
correspond to relations (,executed after”).

= Usually, a dependence graph describes a partial ordering between
operations and therefore, leaves freedom for scheduling (parallel or

sequential). It represents parallelism in a program but no branches in
—

control flow. T M@q
» A dependence graph is acyclic. ~

=D

= Often, there are additional quantities associated to edges or nodes such as
= execution times, deadlines, arrival times
= communication demand

CS-ES - 14 -



Single Assignment Form REVIEW

Basic block dependence graph

o X O 9
+ * v 4+
oS 2o

< N
] I |

&

Single assignment form

X=a+b;
y=c-d;

= *y;
1~£b +d;

sequential program - optimized hardware

CS-ES - 15 -



Control-Data Flow Graph (CDFG) REVIEW

= Goal:

= Description of control structures (for example branches) and data dependencies.
—_ -

= Applications:
» Describing the semantics of programming languages.

» |nternal representation in compilers for hardware and software.
v

» Representation:

- ination of control flow (sequential state machine) and dependence representation.
Many variants exist=

CS-ES - 16 -



CDFG

/_
a) VHDL-Code:

s= k; j -1
LOOP

EXIT WHEN k>9; --2
IF (ock=TRUE) --3

j=itl; -4
ELSE
ji=0; _] -5
ok:= TRUE; --6
END IF;
ki=k+1; -7
END LOOP;
r=j --8

CS-ES

REVIEW

b) CDEG: CFG + DFGs

yooTT T )
. NOP !

~~~~~~~~~~ (SN
} s
:éf © T ;‘(
! |
! !
s

e e e = e G - -

- e e o =




Sequence graph REVIEW

» Hierarchy of chained units
= units model data flow
= hierarchy models control flow

= Special nodes
= start/end nodes: NOP (no operation)
= branch nodes (BR)
= jteration nodes w
= module call nodes (CALL)

= Attributes -

= nodes: computation times, cost, ...
» edges: conditions for branches and iterations

CS-ES - 18 -



Sequence Graph (SG) REVIEW
Unit Branch

2

c¢c=a<b;
IF (c¢) THEN

P=m+n; 3
g=m* n;
ENDIF %

X =a - b;

N K X 5
mwnn
£ 0w
I % +
L.

Loop

=X - Y/
e =d * x;

d = 2¥%x; Y. | P
sub(x, y); £ Y e

WHILE (d<5)DO
write(d) ;
d=d + 1;

ENDWHILE

PROCEDURE sub (m,n)
Pp=m+n; K f
q=m*n; ", $

END sub




Selected Models of computation

REVIEW

Communication/ Shared Message passing

local computations | memory Synchronous | Asynchronous

Undefined Plain text, use cases

components (Message) sequence charts

Communicating finite | StateCharts SDL

state machines

Data flow (Not useful) Kahn networks,
SDF

Petri nets C/E nets, P/T nets, ...

el

Discrete event @

(

VHDL",

Only experimental systems, e.g.

model Verilog®, distributed DE in Ptolemy
S\ystemC*, ..

VVon Neumann model C,ﬁf C, C++, Java with libraries
Java CSP, ADA |

* Classification based on implementation

CS-ES

- 20 -




o REVIEW
Hardware/System description languages

= VDHL
= VHDL-AMS

= SystemC
= TLM

CS-ES - 21 -



Discrete event semantics REVIEW

» Basic discrete event (DE) semantics
= Queue of future actions, sorted by time
= Loop:
* Fetch next entry from queue
« Perform function as listed in entry

— May include generation of new entriesz

= Until termination criterion = true

Gy

J queue
?ﬁ@ 5 10 13 15 19 2¢ | fime
8 C =5 b:=7 c:=8 a:=6 a:=9 < /o action

w—lﬁﬁ .V\/l/f

CS-ES - 22 -




Software-programme
processors

O

intgl. |

pentium®4

Advantage

: Aghvartages: Advantages:

*very high «fills the gap software is very
performance and between hardware flexible to change
efficient and software Disadvantages:

Disadvantages: *much higher *performance can

*not flexible (can’t performance than suffer if clock is not
be altered after software fast
fabrication) *higher level of +fixed instruction set

e expensive flexibility than by hardware

hardware

CS-ES - 23 -



Basic Design Methodology REVIEW

-

carry_in

ASIC or FPGA

CS-ES oa.



HDLs using discrete event (DE) semantics

— — —_—

» Used in hardware description languages (HDLSs):

= Description of concurrency is a must for HW description
languages! ‘

= Many HW components are operating concurrently

» Typically mapped to “processes”

» These processes communicate via “signals”
= =

= Examples:
« MIMOLA [Zimmermann/Marwedel], ~1975

* VHDL (very prominent example in DE modeling)
One of the 3 most important HDLSs:
VHDL, Verilog, SystemC

CS-ES - 25-



VHDL

= HDL = hardware description language
= VHDL = VHSIC hardware description language

= VHSIC = very high speed integrated circuit
= Consortium which developed VHDL (Intermetrics Inc., IBM, Texas
Instruments) —

= Early 80’s, initiated by US Department of Defense

» Modeling of digital circuits

Cs  — oo
« 1987\|EEE Standard 1076 ) 4

» Reviews of standard: 1993, 2000, 2002, 2008

Standard in (European) industry

= Extension: VHDL-AMS, includes analog modeling

CS-ES - 26 -



VHDL

= Main goal was modeling of digital circuits

= Modelling at various levels of abstraction
= Technology-independent
Re-Usability of specifications

macro module

macro module
macro module B

O//

Project ASIC I

CS-ES

F 2oy

Project CPLD Il

[ ]
\‘DDD
D:]

- 27 -



VHDL

» Standard
Portability (different synthesis and analysis tools possible)

= Validation of designs based on the same description language for
different levels of abstraction

= Powerful description language

\—/'
Hersteller 1 Hersteller 2 & Hersteller 3
Technologie A | [Technologie B Technologie C echnologie D | | Technologie C | | Technologie E
(Stand. Zellen) (Stand. Zellen) | |(Stand. Zellen)

(FPGASs) (Gate-Arrays)

1
\ 1 ~ ’J
“l i ‘\\ + /, \\\ + II’ * rf
1 ya Y L AL
CAD- CAD- CAD- CAD-
Hersteller — producer Programm | Programm Il Programm llI \ Programm [V

Technologie — technology
Stand. Zellen — stand. Cells andere
""" - Beschreibungsspra * —  VHOL
other descritiption

Programm - program
language

CS-ES

- 28 -



Modeling Digital Systems

= Reasons for modeling
= requirements specification
= documentation
= testing using sQimuIation
= formal verification
= synthesis

» Goal
= most reliable design process, with mini

= avoid design errors!

CS-ES

um cost and time

- 29.-



VHDL Hierarchical Program Structure

A higher level

architecture instantiates

lower level entities.

euyn VT

architecture A

architecture B

architecture C

rer

entity E ntity F

V0]

entity B Mf:“\/entityc \ \/o’iu

entity D /2}{;

architecture D

architecture E architecture F

CS-ES

- 30 -



Abstraction

» Abstraction is hiding of details:

Differentiation between essential and nonessential
information

= Creation of abstraction levels:

On every abstraction level only the essential information
IS considered, nonessential information is left out

CS-ES - 31-



Output

Abstraction Levels R

Input

e
T (Zn 5 : ’ ) o <= transport i1 +i2 * i3 after 100 ns; \

simfjlsa‘tion pll'::?se System specification, models B h/ ; I Algorithmic |evel
‘4 oystan ) ehaviour glt?:ﬂ:ilng of bus systems,

Machine independent
description

Registers, logic, clock

ASIC/FPGA synthesis
synthesizable models

Gate level

Netlists, gate structure
PLD development -

v
Technology _dependent
slow more Full custom o CMOg O_L)_ss
A | simulation precise g y99 Um

—
% /
IN_A
— :ND2 port map{ A =>n192, B=> n191, Z=> n188);
:ND2 port map{ A=> I3_2,B=> 12_0, Z=> n175);
— :ND2 port map{ A => [2_2, B=> 13_0, Z=> n173);
2 ;sla!e ] :NBR2 po;t:’_TaZp( A:Tgrg;n_es_PHOD_not_o.
IN B - ogic =>nl74, Z=>n ;
= QJ% 7 P 77 - EN port map( A== n181, B == n182, Z = n180);
P :ND2 port map({ A => I3_2, B=> [2_1, Z=>n181):
@? / /;) 2 :I\\IJ%Z port ﬂ1?)[()(A=> I2§g,_§=> I113§12. Z=>n182);
. IVP port map{ A=>n180, Z=>n B
/ % 57 combinatorical —_— : AO6 port map{ A=>n173,B=>ni ;4, C=>nl175,
RESET process C Z=>n172);
:NR2 port map{ A =>n174, B=> n173, Z=> n176),

:ND2 port map{ A=> I3_1,B=> 12_1, Z=>n174);
EN port map{ A=>n183, B => n178,
Z=> productt4_4);

:ND3 port map{ A=>12_2,B =>13_2, C=>ni74,
Z=>n183);

registered process

CS-ES - 32-



VHDL

* Disadvantages:

— A change of culture
» Away from Schematic-based Design
- towards Language-based Design

"We don't know if to 'harden' a
Software engineer or to 'soften' a Hardware engineer",

L —

— Cost of getting-started-

» Selecting and paying for tools

CS-ES

- 33-



Things to Remember

« VHDL is a programming language
— Many good and bad programs have been (will be) written
— Contains also many aspects of imperative programming
languages -
VHDL is able to describe software, too.

—

* Functionality is important@mot enough!

— Style is important (“VHDL cookbook™)
— Clarity is important o

-fSynthesis IS hardj

« Decomposition of alarge design into smaller,
understandable sub-parts is essential
CS-ES

- 34 -



- T~
Y-Chart Behavioral ——___ Structural
b 2

Y-Chart

» 3 design views
= Behavior (functionality)
= Structure (netlist)
» Physical (layout)

— Rectangel/ Polygon-Group

e /
-4 Standard Cell/ Subcell

T4 Macro Cell /

Domains
. i - i and
= 5 abstraction levels oo ysical-y— Block Chip A
Domain/-¢— Chip/ Board of Description
Synthesis
Behavioral Structural
Domain Domain

Optimization

< /
[ “ —
front-end i . - simulatio
|, ey . coding »| compilation > erii Aonr’; Generat .
—_— ef_ﬂl(;a“ eneration xtraction

(painful, but not uncommon)

back-end -/synthesis _|{ fitting/ A _|  timing
steps b b | place+route “| verification

4 |block diagram

Physical / Geometrical
Domain
35 -



 Basic VHDL

e Structural VHDL

« Behavioral VHDL

* VHDL-AMS

ES cource: Only some aspects of VHDL, not complete

language.
CS-ES - 36 -



CS-ES

« Basic VHDL

_ 37-



Module Outline

VHDL Design Example

VHDL Model Components
= Entity Declarations

= Architecture Descriptions

Basic VHDL Constructs

» Data types

= Objects

= Sequential and concurrent statements
» Packages and libraries

= Attributes

= Predefined operators

Summary

CS-ES - 38 -



Entities and architectures

= |In VHDL, HW components correspond m

» Entities comprise processes
= Each design unit is called an entity.
[] L] \'/ L] - -
= Entities are comprised of entity declarations and one or_swl

architectures.
T EET T
y

Entity declaration )

-

TN

7y

Architecture 1 Architecture 3

%rchiteoture

~_

Each architecture includes a model of the entity. By default,
the most recently analyzed architecture is used. The use of
another architecture can be requested in a M.

CS-ES - 39-




VHDL Design Example

* Problem: Design a single bit half adder with carry and

enable -
endbu’e

» Specifications
= Inputs and outputs are each one bit__
= When enabile is high, result gets x plus y

= When enable is high, carry gets any carry of x plus y
= Qutputs are zero when enable input is low

—

X carry
y Half Adder
result
enable

CS-ES - 40 -



VHDL Design Example
Entity Declaration

» As a first step, the entity declaration describes the

interface of the component
* input and output ports are declared

ENTITY half_adder IS

PORT( X, W, enable: IN BIT;
carry, result: OUT BIT);

————

END half_adder;

X

y
enable
CS-ES

ﬁ
L

Half
Adder

i

carry

result

- 41 -



VHDL Design Example
Behavioral Specification

e

= A high level description can be used to describe the

function of the adder

ARCHITECTURE half_adder_a OF half _adder 1S

— — BEGIN

PROCESS| (x, y, enable) \
[ — BEGIN L .
IF enable = “1” THEN '

result <= x XOR Vi
carry <= x AND y;
ELSE ' =
carry < “07;
result <=_“07;
END IF;o
¥ END PROCESS;
ND half _adder_a

The model can then be simulated to verify correct
qucLona/Ii’gy of the component

CS-ES



VHDL Design Example
Data Flow Specification

= A second method is to use logic equations to
develop a data flow description

CS-ES

ARCHITECTURE half_adder_b OF half _adder 1S

BEGIN
-_ﬁcarry enable AND (x AND y); t—
L &

result @nable AND (X XOR y);
= ——eneneme—
END half_adder b;

Again, the model can be simulated at this level to
confirm the logic equations -

- 43 -



VHDL Design Example
Structural Specification

* As a third method, a structural description can be

created from Qredescribed componeﬂg

X Q :
y 3 Dﬁ carry
enable 1 /

—?DD

These gates can be pu

(D
(D
S
D
3
T

)

CS-ES - 44 -



VHDL Design Example
Structural Specification (Cont.)

T

ARCHITECTURE half _adder_c OF half _adder 1S

COMPONENT _and2

PORT - (\BIT: R
“eutl_z"0UT BIT);

END COMPONENT;

COMPONENT and3
PORT (in0, inl, in2 : IN BIT;
outo = OUT BIT);
END COMPONENT;

COMPONENT (xor
PORT (inO5;—inl : IN BIT;
outO : OUT BIT);

END COMPONENT; )

A number of locally
defined idealized
components are

declared

FOR ALL :Qndz USE ENTITY gate Lib.and2 Nty(and2 a);
FOR ALL : and3 USE ENTITY gate lib.and3 Nty(and3_a);

FOR ALL

-— description i1s continued on next slide

xor2 USE ENTITY gate lib.xor2_Nty(xor2_a);

CS-E

These
components are
then bound to
vHDC enties
found a library
caIIe

- 45 -



VHDL Design Example
Structural Specification (cont.)

—- continuing half _adder_c description

SIGNAL xor_res : BIT; -- 1nternal signal
-—- Note that other signals are already declared in entity

BEGIN

A
.PORT MAP ((—nable Xor refé result);

Al : and3 PORT MAP (X, y, enable, Carryy;

X0 : xor2 PORT MAP (X%, VY, §9£=£g§)

ND half_adder_c;

body of the architecture shows the component instantiations and
how they are interconnected+to each other and the outside-weorte—
via the attaching of signals in their PQRT MAPs

CS-ES

- 46 -



Putting It All Together

The entity represents
the interface
specification (1/0) of the Package
component. It defines

_—

the components external |

view, sometimes

referred to as its "pins".

Generics)| Entity

— >

Architecture Architecture

Ports

Concurrent

Concurrent J_‘ Process

Statements

Architecture

Statements

Sequential Statement:

\JJ

CS-ES



Putting It All

generics provide a method to
communicate static
information to & architecture
from the external environment

packages are used to
provide a collection of

- are passed throughrthe
entity construct

Gene

TO g et h er common declarations,
constants, and/or
~subprograms to

entities and
Pac kage architectures
V
T = Lo~Je |
14
ricsi/ Entity Ports

itecture
T

Architecture

ports provide the
mechanism for a
device to
communication with its
environment

Architectureg

7/3——

Concurrent
Statements

Concurrent

J-‘ Process

Statements

CS-ES

Sequential Statement:

\JJ

- 48 -



Putting It All Together

architecture,
containing only
concurrent
statements, is
commonly referred to
as a dataflow

description - )enerics _ Ent|

concurrent statements

execute when data is
available on their

nguts.

Architecture

%

Concurrent
Statements

CS-ES

Package

architecture is the
behavioral description
in ' which the funetional

and possibly timing

characteristics are  'tS
described using VHDL
concurrent statements

and processes The

process is a /
concurrent statement

of an architecture
Architectur Architectu re
architecture
describes the structure
of the design in terms
- ————
C _ of its sub-components
oncurren Process and their
Statements 1 interconnections -

Sequential Statement:

\JJ

- 49 -



Simulation Cycle
Sequential vs Concurrent Statements

= VHDL is inherently a concurrent language
= All VHDL processes execute concurrently

= Concurrent signal assignment statements are actually one-line
processes

» VHDL statements execute sequentially within a process

= Concurrent processes with sequential execution within a
process offers maximum flexibility

= Supports various levels of abstraction

= Supports modeling of concurrent and sequential events as
observed in real systems

CS-ES - 50 -



Concurrent Statements

= Basic granularity of concurrency is the,lprocess \

» Processes are executed concurrently J
= Concurrent signal assignment statements are one-line processes
parallel
( V=
g = __:

process

= Mechanism for achievin rrency :
= Processes communicate with each other via signals_

] [ [ z [

= Signal assignments require delay before new value is assumed
= Simulation time advances when all active processes complete
» Effect is concurrent processing

 |.e. order in which processes are actually executed by simulator
does not affect behavior

CS-ES 51



Process
Evaluation

Delta Delay

-ﬁ

th ‘?n Time
» Default signal assignment propagation delay if no
delay is explicitly prescribed
= VHDL signal assignments do not take place immediately

» Delta is an infinitesimal VHDL time unit so that all signal
assignments can result in signals assuming their values at

a future time -

= E.qg. N
Output/<=) NOT Input;
—— Output assumes new value 1In one delta cycle

= Supports a model of concurrent VHDL process
execution

= Order in which processes are executed by simulator

does not affect simulation output
CS-ES - 52 -




Process
Evaluation

Delta Delay

1) all active processes can execute in tr:t same simulation cycle

\/

2) each active process will suspend at wait statement (sensitive list > process
finish)

3) when all processes are suspended simulation is advanced the minimum time
necessary so that some signals can take on their new values

—_—

4) processes then determine if the new signal values satisfy the conditions to
proceed from the wait statement at which they are fu/s;ﬁnded

SL; processes are suspeﬁand o signal update:
oo In the svent queue)
t >t., (new entriesin the event queue

CS-ES .53




