
- 1 -CS - ES

Embedded Systems

- 2 -CS - ES

SDF Compiler

Task for an SDF compiler:
 Allocation of memory for the passing of data between nodes
 Scheduling of nodes onto processors in such a way that data is

available for a block when it is invoked

Assumptions on the SDF graph:
 The SDF graph is nonterminating and does not deadlock
 The SDF graph is connected

Goal:
 Development of a periodic admissible parallel schedule (PAPS)
 or a periodic admissible sequential schedule (PASS)

(admissible = correct schedule, finite amount of memory required)

REVIEW

- 3 -CS - ES

PAPS

 Assumption: Block 1 : 1 time unit
Block 2 : 2 time units
Block 3 : 3 time units

Trivial Case - All computations are scheduled on same processor

REVIEW

- 4 -CS - ES

PAPS

 The performance can be improved, if a schedule is constructed that exploits
the potential parallelism in the SDF-graph. Here the schedule covers one
single period.

Single Period Schedule

REVIEW

- 5 -CS - ES

PAPS

 The performance can be further improved, if the schedule is constructed over
two periods.

Double Period Schedule

REVIEW

- 6 -CS - ES

Scheduling Choices

 SDF Scheduling Theorem guarantees a schedule will be
found if it exists

 Systems often have many possible schedules

 How can we use this flexibility?
 Reduced code size
 Reduced buffer sizes

REVIEW

- 7 -CS - ES

Looped Code Generation

 Obvious improvement: use loops

 Rewrite the schedule in “looped” form:
(3 B) C (4 D) (2 A)

 Generated code becomes
for (i = 0 ; i < 3; i++) B;
C;
for (i = 0 ; i < 4 ; i++) D;
for (i = 0 ; i < 2 ; i++) A;

REVIEW

- 8 -CS - ES

Conclusion SDF

 The SDF model is very useful for regular DSP applications

 Used for: simulation, scheduling, memory allocation, code
generation for Digital Signal Processors (HW and SW)

 There is a mathematical framework to calculate a PASS or a
PAPS and to determine the maximum size of buffers, if a
PASS/PAPS exists

 The work on SDF can be used to derive single and multiple
processor implementations

REVIEW

- 9 -CS - ES

Selected Models of computation

Communication/
local computations

Shared
memory

Message passing
Synchronous | Asynchronous

Undefined
components

Plain text, use cases
| (Message) sequence charts

Communicating finite
state machines

StateCharts SDL

Data flow (Not useful) Kahn networks,
SDF

Petri nets C/E nets, P/T nets, …

Discrete event (DE)
model

VHDL*,
Verilog*,
SystemC*, …

Only experimental systems, e.g.
distributed DE in Ptolemy

Imperative (Von
Neumann) model

C, C++, Java C, C++, Java with libraries
CSP, ADA |

* Classification based on the implementation of HDLs

REVIEW

- 10 -CS - ES

Models vs. languages

 How can we (precisely) capture behavior?
 We may think of languages (C, C++), but computation model is the

key

 Computation models describe system behavior
 Conceptual notion, e.g., recipe, sequential program

 Languages capture models
 Concrete form, e.g., English, C

Models

Languages

Recipe

SpanishEnglish Japanese

Poetry Story Sequent.
program

C++C Java

State
machine

Data-
flow

Recipes vs. English Sequential programs vs. C

REVIEW

- 11 -CS - ES

Models vs. languages

 Variety of languages can capture one model
 E.g., sequential program model  C,C++, Java

 One language can capture variety of models
 E.g., C++ → sequential program model, object-oriented model, state machine

model

 Certain languages better at capturing certain computation models

Models

Languages

Recipe

SpanishEnglish Japanese

Poetry Story Sequent.
program

C++C Java

State
machine

Data-
flow

Recipes vs. English Sequential programs vs. C

REVIEW

- 12 -CS - ES

Architecture Design – Models

REVIEW

- 13 -CS - ES

Task graphs or dependency graph (DG)

 Def.: A dependence graph is a directed graph G=(V,E) in
which E  V  V is a partial order.

 If (v1, v2)  E, then v1 is called an immediate predecessor
of v2 and v2 is called an immediate successor of v1.

Nodes are assumed to be
a „program“ described in
some programming
language, e.g. C or Java.

Sequence
constraint

REVIEW

- 14 -CS - ES

Dependence Graph (DG)

 A dependence graph describes order relations for the execution of single
operations or tasks. Nodes correspond to tasks or operations, edges
correspond to relations („executed after“).

 Usually, a dependence graph describes a partial ordering between
operations and therefore, leaves freedom for scheduling (parallel or
sequential). It represents parallelism in a program but no branches in
control flow.

 A dependence graph is acyclic.

 Often, there are additional quantities associated to edges or nodes such as
 execution times, deadlines, arrival times
 communication demand

REVIEW

- 15 -CS - ES

Single Assignment Form

Basic block dependence graph

x = a + b;
y = c - d;
z = x * y;
y = b + d;

Single assignment form

x = a + b;
y = c - d;
z = x * y;
y1 = b + d;

-

a b
d

* +

y

z y1

c

x

+

sequential program optimized hardware

REVIEW

- 16 -CS - ES

Control-Data Flow Graph (CDFG)

 Goal:
 Description of control structures (for example branches) and data dependencies.

 Applications:
 Describing the semantics of programming languages.
 Internal representation in compilers for hardware and software.

 Representation:
 Combination of control flow (sequential state machine) and dependence representation.
 Many variants exist.

REVIEW

- 17 -CS - ES

CDFG REVIEW

- 18 -CS - ES

Sequence graph

 Hierarchy of chained units
 units model data flow
 hierarchy models control flow

 Special nodes
 start/end nodes: NOP (no operation)
 branch nodes (BR)
 iteration nodes (LOOP)
 module call nodes (CALL)

 Attributes
 nodes: computation times, cost, ...
 edges: conditions for branches and iterations

REVIEW

- 19 -CS - ES
19

Unit Branch

Loop Call

Sequence Graph (SG) REVIEW

- 20 -CS - ES

Selected Models of computation

Communication/
local computations

Shared
memory

Message passing
Synchronous | Asynchronous

Undefined
components

Plain text, use cases
| (Message) sequence charts

Communicating finite
state machines

StateCharts SDL

Data flow (Not useful) Kahn networks,
SDF

Petri nets C/E nets, P/T nets, …

Discrete event (DE)
model

VHDL*,
Verilog*,
SystemC*, …

Only experimental systems, e.g.
distributed DE in Ptolemy

Von Neumann model C, C++,
Java

C, C++, Java with libraries
CSP, ADA |

* Classification based on implementation

REVIEW

- 21 -CS - ES

Hardware/System description languages

 VDHL
 VHDL-AMS

 SystemC
 TLM

REVIEW

- 22 -CS - ES

Discrete event semantics

 Basic discrete event (DE) semantics
 Queue of future actions, sorted by time
 Loop:

• Fetch next entry from queue
• Perform function as listed in entry

– May include generation of new entries
 Until termination criterion = true

a
b
c

time
actiona:=5 b:=7 c:=8 a:=6 a:=9

queue

5 10 13 15 195
7
8

6

REVIEW

- 23 -CS - ES

Methods for executing algorithms

Advantages:
•very high
performance and
efficient

Disadvantages:
•not flexible (can’t
be altered after
fabrication)

• expensive

Hardware
(Application Specific
Integrated Circuits)

Software-programmed
processors

Advantages:
•software is very
flexible to change

Disadvantages:
•performance can
suffer if clock is not
fast

•fixed instruction set
by hardware

Reconfigurable
computing

Advantages:
•fills the gap
between hardware
and software

•much higher
performance than
software

•higher level of
flexibility than
hardware

REVIEW

- 24 -CS - ES

Basic Design Methodology

Requirements

SimulateRTL Model

Gate-level
Model

Synthesize

Simulate Test Bench

ASIC or FPGA Place & Route

Timing
Model Simulate

REVIEW

- 25 -CS - ES

HDLs using discrete event (DE) semantics

 Used in hardware description languages (HDLs):
 Description of concurrency is a must for HW description

languages!
 Many HW components are operating concurrently

 Typically mapped to “processes“

 These processes communicate via “signals“

 Examples:

• MIMOLA [Zimmermann/Marwedel], ~1975

• …

• VHDL (very prominent example in DE modeling)
One of the 3 most important HDLs:
VHDL, Verilog, SystemC

- 26 -CS - ES

VHDL
 HDL = hardware description language
 VHDL = VHSIC hardware description language
 VHSIC = very high speed integrated circuit

 Consortium which developed VHDL (Intermetrics Inc., IBM, Texas
Instruments)

 Early 80’s, initiated by US Department of Defense

 Modeling of digital circuits

 1987 IEEE Standard 1076
 Reviews of standard: 1993, 2000, 2002, 2008

Standard in (European) industry

 Extension: VHDL-AMS, includes analog modeling

- 27 -CS - ES

VHDL

 Main goal was modeling of digital circuits
 Modelling at various levels of abstraction
 Technology-independent

Re-Usability of specifications

- 28 -CS - ES

VHDL
 Standard

Portability (different synthesis and analysis tools possible)

 Validation of designs based on the same description language for
different levels of abstraction

 Powerful description language

Hersteller – producer

Technologie – technology
Stand. Zellen – stand. Cells
Programm - program other descritiption

language

- 29 -CS - ES

Modeling Digital Systems

 Reasons for modeling
 requirements specification
 documentation
 testing using simulation
 formal verification
 synthesis

 Goal
 most reliable design process, with minimum cost and time
 avoid design errors!

- 30 -CS - ES

VHDL Hierarchical Program Structure

architecture A

entity A

architecture B

entity B

architecture C

entity C

architecture D

entity D

architecture E

entity E

architecture F

entity F

A higher level
architecture instantiates

lower level entities.

- 31 -CS - ES

Abstraction

 Abstraction is hiding of details:
Differentiation between essential and nonessential
information

 Creation of abstraction levels:
On every abstraction level only the essential information
is considered, nonessential information is left out

- 32 -CS - ES

Abstraction Levels

- 33 -CS - ES

VHDL

• Disadvantages:

– A change of culture
• Away from Schematic-based Design
• towards Language-based Design

"We don't know if to 'harden' a
Software engineer or to 'soften' a Hardware engineer",

– Cost of getting started
• Selecting and paying for tools

- 34 -CS - ES

Things to Remember

• VHDL is a programming language
– Many good and bad programs have been (will be) written
– Contains also many aspects of imperative programming

languages
VHDL is able to describe software, too.

• Functionality is important BUT not enough!
– Style is important (“VHDL cookbook”)
– Clarity is important

• Synthesis is hard

• Decomposition of a large design into smaller,
understandable sub-parts is essential

- 35 -CS - ES

Y-Chart

 3 design views
 Behavior (functionality)
 Structure (netlist)
 Physical (layout)

 5 abstraction levels

- 36 -CS - ES

• Basic VHDL

• Structural VHDL

• Behavioral VHDL

• VHDL-AMS

ES cource: Only some aspects of VHDL, not complete
language.

- 37 -CS - ES

• Basic VHDL

- 38 -CS - ES

Module Outline

 VHDL Design Example

 VHDL Model Components
 Entity Declarations
 Architecture Descriptions

 Basic VHDL Constructs
 Data types
 Objects
 Sequential and concurrent statements
 Packages and libraries
 Attributes
 Predefined operators

 Summary

- 39 -CS - ES

Entities and architectures

 In VHDL, HW components correspond to “entities”
 Entities comprise processes
 Each design unit is called an entity.
 Entities are comprised of entity declarations and one or several

architectures.

Each architecture includes a model of the entity. By default,
the most recently analyzed architecture is used. The use of
another architecture can be requested in a configuration.

- 40 -CS - ES

VHDL Design Example

 Problem: Design a single bit half adder with carry and
enable

 Specifications
 Inputs and outputs are each one bit
 When enable is high, result gets x plus y
 When enable is high, carry gets any carry of x plus y
 Outputs are zero when enable input is low

x
y

enable

carry
resultHalf Adder

- 41 -CS - ES

VHDL Design Example
Entity Declaration

 As a first step, the entity declaration describes the
interface of the component
 input and output ports are declared

x
y

enable

carry
result

Half
Adder

ENTITY half_adder IS

PORT(x, y, enable: IN BIT;
carry, result: OUT BIT);

END half_adder;

- 42 -CS - ES

VHDL Design Example
Behavioral Specification

 A high level description can be used to describe the
function of the adder

The model can then be simulated to verify correct
functionality of the component

ARCHITECTURE half_adder_a OF half_adder IS
BEGIN

PROCESS (x, y, enable)
BEGIN

IF enable = ‘1’ THEN
result <= x XOR y;
carry <= x AND y;

ELSE
carry <= ‘0’;
result <= ‘0’;

END IF;
END PROCESS;

END half_adder_a;

- 43 -CS - ES

VHDL Design Example
Data Flow Specification

 A second method is to use logic equations to
develop a data flow description

Again, the model can be simulated at this level to
confirm the logic equations

ARCHITECTURE half_adder_b OF half_adder IS
BEGIN

carry <= enable AND (x AND y);

result <= enable AND (x XOR y);
END half_adder_b;

- 44 -CS - ES

VHDL Design Example
Structural Specification

 As a third method, a structural description can be
created from predescribed components

These gates can be pulled from a library of parts

x
y

enable
carry

result

- 45 -CS - ES

VHDL Design Example
Structural Specification (Cont.)

ARCHITECTURE half_adder_c OF half_adder IS

COMPONENT and2
PORT (in0, in1 : IN BIT;

out0 : OUT BIT);
END COMPONENT;

COMPONENT and3
PORT (in0, in1, in2 : IN BIT;

out0 : OUT BIT);
END COMPONENT;

COMPONENT xor2
PORT (in0, in1 : IN BIT;

out0 : OUT BIT);
END COMPONENT;

FOR ALL : and2 USE ENTITY gate_lib.and2_Nty(and2_a);
FOR ALL : and3 USE ENTITY gate_lib.and3_Nty(and3_a);
FOR ALL : xor2 USE ENTITY gate_lib.xor2_Nty(xor2_a);

-- description is continued on next slide

A number of locally
defined idealized
components are

declared

These
components are
then bound to
VHDL entities
found a library
called gate_lib

- 46 -CS - ES

VHDL Design Example
Structural Specification (cont.)

-- continuing half_adder_c description

SIGNAL xor_res : BIT; -- internal signal
-- Note that other signals are already declared in entity

BEGIN

A0 : and2 PORT MAP (enable, xor_res, result);
A1 : and3 PORT MAP (x, y, enable, carry);
X0 : xor2 PORT MAP (x, y, xor_res);

END half_adder_c;

body of the architecture shows the component instantiations and
how they are interconnected to each other and the outside world

via the attaching of signals in their PORT MAPs

- 47 -CS - ES

Putting It All Together

Generics PortsEntity

Architecture Architecture Architecture

Concurrent
Statements

Process

Sequential Statements

Concurrent
Statements

Package
The entity represents

the interface
specification (I/O) of the
component. It defines

the components external
view, sometimes

referred to as its "pins".

- 48 -CS - ES

Putting It All Together

Generics PortsEntity

Architecture Architecture Architecture

Concurrent
Statements

Process

Sequential Statements

Concurrent
Statements

Package
ports provide the
mechanism for a

device to
communication with its

environment

packages are used to
provide a collection of
common declarations,

constants, and/or
subprograms to

entities and
architectures

generics provide a method to
communicate static

information to a architecture
from the external environment

- are passed through the
entity construct

- 49 -CS - ES

Putting It All Together

Generics PortsEntity

Architecture Architecture Architecture

Concurrent
Statements

Process

Sequential Statements

Concurrent
Statements

Package

architecture
describes the structure
of the design in terms
of its sub-components

and their
interconnections

architecture is the
behavioral description
in which the functional

and possibly timing
characteristics are

described using VHDL
concurrent statements
and processes. The

process is a
concurrent statement

of an architecture

architecture,
containing only

concurrent
statements, is

commonly referred to
as a dataflow
description -.

concurrent statements
execute when data is

available on their
inputs.

- 50 -CS - ES

Simulation Cycle
Sequential vs Concurrent Statements

 VHDL is inherently a concurrent language
 All VHDL processes execute concurrently
 Concurrent signal assignment statements are actually one-line

processes

 VHDL statements execute sequentially within a process

 Concurrent processes with sequential execution within a
process offers maximum flexibility
 Supports various levels of abstraction

 Supports modeling of concurrent and sequential events as
observed in real systems

- 51 -CS - ES

Concurrent Statements
 Basic granularity of concurrency is the process

 Processes are executed concurrently
 Concurrent signal assignment statements are one-line processes

 Mechanism for achieving concurrency :
 Processes communicate with each other via signals
 Signal assignments require delay before new value is assumed
 Simulation time advances when all active processes complete
 Effect is concurrent processing

• I.e. order in which processes are actually executed by simulator
does not affect behavior

- 52 -CS - ES

 Default signal assignment propagation delay if no
delay is explicitly prescribed
 VHDL signal assignments do not take place immediately
 Delta is an infinitesimal VHDL time unit so that all signal

assignments can result in signals assuming their values at
a future time

 E.g.

 Supports a model of concurrent VHDL process
execution

 Order in which processes are executed by simulator
does not affect simulation output

Delta Delay

Output <= NOT Input;
-- Output assumes new value in one delta cycle

- 53 -CS - ES

1) all active processes can execute in the same simulation cycle

2) each active process will suspend at wait statement (sensitive list  process
finish)

3) when all processes are suspended simulation is advanced the minimum time
necessary so that some signals can take on their new values

4) processes then determine if the new signal values satisfy the conditions to
proceed from the wait statement at which they are suspended

5) all processes are suspended and no signal update:

tn tn+1 (new entries in the event queue)

Delta Delay

