Embedded Systems

CS - ES

SDF Compiler

REVIEW

Task for an SDF compiler:

- Allocation of memory for the passing of data between nodes
- Scheduling of nodes onto processors in such a way that data is available for a block when it is invoked

Assumptions on the SDF graph:

- The SDF graph is nonterminating and does not deadlock
- The SDF graph is connected

Goal:

- Development of a periodic admissible parallel schedule (PAPS)
- or a periodic admissible sequential schedule (PASS)

(admissible = correct schedule, finite amount of memory required)

PAPS REVIEW

Assumption: Block 1: 1 time unit

Block 2: 2 time units

Block 3:3 time units

Trivial Case - All computations are scheduled on same processor

PAPS REVIEW

■ The performance can be improved, if a schedule is constructed that exploits the potential parallelism in the SDF-graph. Here the schedule covers one single period.

Single Period Schedule

PAPS REVIEW

The performance can be further improved, if the schedule is constructed over two periods.

Scheduling Choices

- SDF Scheduling Theorem guarantees a schedule will be found if it exists
- Systems often have many possible schedules
- How can we use this flexibility?
 - Reduced code size
 - Reduced buffer sizes

Looped Code Generation

- Obvious improvement: use loops
- Rewrite the schedule in "looped" form:
 (3 B) C (4 D) (2 A)
- Generated code becomes

Conclusion SDF

- The SDF model is very useful for regular DSP applications
- Used for: simulation, scheduling, memory allocation, code generation for Digital Signal Processors (HW and SW)
- There is a mathematical framework to calculate a PASS or a PAPS and to determine the maximum size of buffers, if a PASS/PAPS exists
- The work on SDF can be used to derive single and multiple processor implementations

Selected Models of computation

Communication/ local computations	Shared memory	Message Synchronous	passing Asynchronous
Undefined components	Plain text, use cases (Message) sequence charts		
Communicating finite state machines	StateCharts		SDL
Data flow	(Not useful)		Kahn networks, SDF
Petri nets		C/E nets, P/T nets,	
Discrete event (DE) model	VHDL*, Verilog*, SystemC*,	Only experimental systems, e.g. distributed DE in Ptolemy	
Imperative (Von Neumann) model	C, C++, Java	C, C++, Java with libraries CSP, ADA	

^{*} Classification based on the **implementation** of HDLs

Models vs. languages

- How can we (precisely) capture behavior?
 - We may think of languages (C, C++), but computation model is the key

- Computation models describe system behavior
 - Conceptual notion, e.g., recipe, sequential program
- Languages capture models
 - Concrete form, e.g., English, C

Models vs. languages

REVIEW

Sequential programs vs. C

- Variety of languages can capture one model
 - E.g., sequential program model → C,C++, Java
- One language can capture variety of models
 - E.g., C++ → sequential program model, object-oriented model, state machine model
- Certain languages better at capturing certain computation models

REVIEW

Architecture Design – Models

Task graphs or dependency graph (DG)

Nodes are assumed to be a "program" described in some programming language, e.g. C or Java.

- **Def.:** A dependence graph is a directed graph G=(V,E) in which $E \subseteq V \times V$ is a partial order.
- If $(v1, v2) \in E$, then v1 is called an immediate predecessor of v2 and v2 is called an immediate successor of v1.

Dependence Graph (DG)

- A dependence graph describes order relations for the execution of single operations or tasks. Nodes correspond to tasks or operations, edges correspond to relations ("executed after").
- Usually, a dependence graph describes a partial ordering between operations and therefore, leaves freedom for scheduling (parallel or sequential). It represents parallelism in a program but no branches in control flow.
- A dependence graph is acyclic.
- Often, there are additional quantities associated to edges or nodes such as
 - execution times, deadlines, arrival times
 - communication demand

Single Assignment Form

REVIEW

Basic block

Single assignment form

dependence graph

sequential program → optimized hardware

Control-Data Flow Graph (CDFG)

- Goal:
 - Description of control structures (for example branches) and data dependencies.
- Applications:
 - Describing the semantics of programming languages.
 - Internal representation in compilers for hardware and software.
- Representation:
 - Combination of control flow (sequential state machine) and dependence representation.
 - Many variants exist.

CDFG

REVIEW

a) VHDL-Code:

•••

s := k; \longrightarrow --1

LOOP

EXIT WHEN k>9; --2

IF (ok = TRUE) --3

j:=j+1; ---4

ELSE

j:= 0; --5

ok:= TRUE; _____-

END IF;

k := k+1; ---7

END LOOP;

r := j; ---8

•••

Sequence graph

- Hierarchy of chained units
 - units model data flow
 - hierarchy models control flow
- Special nodes
 - start/end nodes: NOP (no operation)
 - branch nodes (BR)
 - iteration nodes (LOOP)
 - module call nodes (CALL)
- Attributes
 - nodes: computation times, cost, ...
 - edges: conditions for branches and iterations

Sequence Graph (SG)

Unit

REVIEW

Branch

Loop

d = 2*x;WHILE (d<5)DO write(d); d = d + 1;ENDWHILE

Call

Selected Models of computation

Communication/ local computations	Shared memory	Message Synchronous	e passing Asynchronous	
Undefined components	Plain	ain text, use cases (Message) sequence charts		
Communicating finite state machines	StateCharts		SDL	
Data flow	(Not useful)		Kahn networks, SDF	
Petri nets		C/E nets, P/T nets,		
Discrete event (DE) (model	VHDL*, Verilog*, SystemC*,	Only experimental systems, e.g. distributed DE in Ptolemy		
Von Neumann model	C, C++, Java	C, C++, Java with libraries CSP, ADA		

^{*} Classification based on implementation

REVIEW

Hardware/System description languages

- VDHL
 - VHDL-AMS
- SystemC
 - TLM

Discrete event semantics

REVIEW

- Basic discrete event (DE) semantics
 - Queue of future actions, sorted by time
 - Loop:
 - Fetch next entry from queue
 - Perform function as listed in entry
 - May include generation of new entries
 - Until termination criterion = true

time action

Methods for executing algorithms

REVIEW

Hardware
(Application Specific Integrated Circuits)

Reconfigurable computing

Software-programmed processors

Advantages:

very high performance and efficient

Disadvantages:

- not flexible (can't be altered after fabrication)
- expensive

Advantages:

- fills the gap between hardware and software
- much higher performance than software
- higher level of flexibility than hardware

Advantages:

- software is very flexible to change <u>Disadvantages:</u>
- performance can suffer if clock is not fast
- fixed instruction set by hardware

Basic Design Methodology

HDLs using discrete event (DE) semantics

- Used in hardware description languages (HDLs):
- Description of concurrency is a must for HW description languages!
 - Many HW components are operating concurrently
 - Typically mapped to "processes"
 - These processes communicate via "signals"
 - Examples:
 - MIMOLA [Zimmermann/Marwedel], ~1975
 - ...
 - VHDL (very prominent example in DE modeling)
 One of the 3 most important HDLs:
 VHDL, Verilog, SystemC

- HDL = hardware description language
- VHDL = VHSIC hardware description language
- VHSIC = very high speed integrated circuit
 - Consortium which developed VHDL (Intermetrics Inc., IBM, Texas Instruments)
 - Early 80's, initiated by US Department of Defense
- Modeling of digital circuits
- 1987 IEEE Standard 1076
- Reviews of standard: 1993, 2000, 2002, 2008

Standard in (European) industry

Extension: VHDL-AMS, includes analog modeling

(> 76 - 220p

- Main goal was modeling of digital circuits
 - Modelling at various levels of abstraction
 - Technology-independent
 Re-Usability of specifications

CS - ES

- Standard
 Portability (different synthesis and analysis tools possible)
- Validation of designs based on the same description language for different levels of abstraction
- Powerful description language

Hersteller – producer
Technologie – technology
Stand. Zellen – stand. Cells
Programm - program

Modeling Digital Systems

- Reasons for modeling
 - requirements specification
 - documentation
 - testing using simulation
 - formal verification
 - synthesis
- Goal
 - most reliable design process, with minimum cost and time
 - avoid design errors!

VHDL Hierarchical Program Structure

CS - ES

Abstraction

- Abstraction is hiding of details:
 Differentiation between essential and nonessential information
- Creation of abstraction levels:
 On every abstraction level only the essential information is considered, nonessential information is left out

Disadvantages:

- A change of culture
 - Away from Schematic-based Design
 - towards Language-based Design

"We don't know if to 'harden' a Software engineer or to 'soften' a Hardware engineer",

- Cost of getting started
 - Selecting and paying for tools

CS - ES

Things to Remember

- VHDL is a programming language
 - Many good and bad programs have been (will be) written
 - Contains also many aspects of imperative programming languages

VHDL is able to describe software, too.

- Functionality is important BUT not enough!
 - Style is important ("VHDL cookbook")
 - Clarity is important
- Synthesis is hard
- Decomposition of a large design into smaller, understandable sub-parts is essential

Y-Chart

- 3 design views
 - Behavior (functionality)
 - Structure (netlist)
 - Physical (layout)
- 5 abstraction levels

CS-ES

- Basic VHDL
- Structural VHDL
- Behavioral VHDL
- VHDL-AMS

ES cource: Only some aspects of VHDL, not complete language.

Basic VHDL

Module Outline

- VHDL Design Example
- VHDL Model Components
 - Entity Declarations
 - Architecture Descriptions
- Basic VHDL Constructs
 - Data types
 - Objects
 - Sequential and concurrent statements
 - Packages and libraries
 - Attributes
 - Predefined operators
- Summary

Entities and architectures

- In VHDL, HW components correspond to "entities"
- Entities comprise processes
- Each design unit is called an entity.
- Entities are comprised of entity declarations and one or several architectures.

Each architecture includes a model of the entity. By default, the most recently analyzed architecture is used. The use of another architecture can be requested in a **configuration**.

VHDL Design Example

- Problem: Design a single bit half adder with carry and enable
- Specifications
 - Inputs and outputs are each one bit
 - When enable is high, result gets x plus y
 - When enable is high, carry gets any carry of x plus y
 - Outputs are zero when enable input is low

VHDL Design Example Entity Declaration

- As a first step, the entity declaration describes the interface of the component
 - input and output ports are declared

VHDL Design Example Behavioral Specification

 A high level description can be used to describe the function of the adder

```
ARCHITECTURE half_adder_a OF half_adder IS

BEGIN

PROCESS (x, y, enable)

BEGIN

IF enable = '1' THEN

result <= x XOR y;

carry <= x AND y;

ELSE

carry <= '0';

result <= '0';

END IF:

END PROCESS;

END half_adder_a;
```

The model can then be simulated to verify correct functionality of the component

VHDL Design Example Data Flow Specification

 A second method is to use logic equations to develop a data flow description

```
ARCHITECTURE half_adder_b OF half_adder IS

BEGIN

carry <= enable AND (x AND y);

result <= enable AND (x XOR y);

END half_adder_b;
```

Again, the model can be simulated at this level to confirm the logic equations

VHDL Design Example Structural Specification

 As a third method, a structural description can be created from predescribed components

These gates can be pulled from a library of parts

VHDL Design Example Structural Specification (Cont.)


```
ARCHITECTURE half_adder_c OF half_adder IS
    COMPONENT and 2
      PORT (in), in) : IN BIT;
             out OUT BIT);
    END COMPONENT;
    COMPONENT and 3
                                             A number of locally
      PORT (in0, in1, in2 : IN BIT;
                                              defined idealized
             out0 : OUT BIT);
                                              components are
    END COMPONENT;
                                                 declared
    COMPONENT xor2
      PORT (in0, in1 : IN BIT;
             out0 : OUT BIT);
    END COMPONENT;
    FOR ALL: and2_USE ENTITY gate lib.and2_Nty(and2_a);
    FOR ALL: and3 USE ENTITY gate_lib.and3_Nty(and3_a);
    FOR ALL: xor2 USE ENTITY gate_lib.xor2_Nty(xor2_a);
-- description is continued on next slide
```

These components are then bound to VHDL entities found a library called gate_lip

VHDL Design Example Structural Specification (cont.)

```
-- continuing half_adder_c description

SIGNAL xor_res : BIT; -- internal signal
-- Note that other signals are already declared in entity

BEGIN

A0 : and2 PORT MAP (lenable, xor_res, result);
A1 : and3 PORT MAP (x, y, enable, carry);
X0 : xor2 PORT MAP (x, y, xor_res);

END half_adder_c;
```

body of the architecture shows the component *instantiations* and how they are interconnected to each other and the outside world via the attaching of signals in their PORT MAPs

- 46 -

Putting It All Together

Putting It All Together

Simulation Cycle Sequential vs Concurrent Statements

- VHDL is inherently a concurrent language
 - All VHDL processes execute concurrently
 - Concurrent signal assignment statements are actually one-line processes
- VHDL statements execute sequentially within a process
- Concurrent processes with sequential execution within a process offers maximum flexibility
 - Supports various levels of abstraction
 - Supports modeling of concurrent and sequential events as observed in real systems

Concurrent Statements

- Basic granularity of concurrency is the process
 - Processes are executed concurrently
 - Concurrent signal assignment statements are one-line processes

- Mechanism for achieving concurrency :
 - Processes communicate with each other via signals
 - Signal assignments require delay before new value is assumed
 - Simulation time advances when all active processes complete
 - Effect is concurrent processing
 - I.e. order in which processes are actually executed by simulator does not affect behavior

Delta Delay

- Default signal assignment propagation delay if no delay is explicitly prescribed
 - VHDL signal assignments do not take place immediately
 - Delta is an infinitesimal VHDL time unit so that all signal assignments can result in signals assuming their values at a future time
 - Output <= NOT Input;
 -- Output assumes new value in one delta cycle
- Supports a model of concurrent VHDL process execution
- Order in which processes are executed by simulator does not affect simulation output

Delta Delay

- 1) all active processes can execute in the same simulation cycle
- 2) each active process will suspend at wait statement (sensitive list → process finish)
- 3) when all processes are suspended simulation is advanced the minimum time necessary so that some signals can take on their new values
- 4) processes then determine if the new signal values satisfy the conditions to proceed from the wait statement at which they are suspended
- 5) all processes are suspended and no signal update:

 $t_n \rightarrow t_{n+1}$ (new entries in the event queue)