
- 1 -CS - ES

Embedded Systems

- 2 -CS - ES

Hardware/System description languages

 VDHL
 VHDL-AMS

 SystemC
 TLM

REVIEW

- 3 -CS - ES

VHDL

 Main goal was modeling of digital circuits
 Modelling at various levels of abstraction
 Technology-independent

Re-Usability of specifications

REVIEW

- 4 -CS - ES

Abstraction Levels
REVIEW

- 5 -CS - ES

Simulation speed

 Relative speeds of different types of simulation/emulation
 1 hour actual execution of SOC

• = 1.2 years instruction-set simulation
• = 10,000,000 hours gate-level simulation

10,000,000 gate-level HDL simulation

register-transfer-level HDL simulation

cycle-accurate simulation

instruction-set simulation

throughput model
hardware emulation

FPGA 1 day

1 hour

4 days

1

10

100

1000

10000

100,000

1,000,000

IC

1.4 months

1.2 years

12 years

>1 lifetime

1 millennium

- 6 -CS - ES

Entity/Architectures

• Architecture body E1_A3 is bound to entity E1
• Architecture body E2_A1 is bound to entity E2
• Component M1 in the AB E2_A1 is bound to entity E3
• Component CX in the AB E1_A3 is bound to entity E2

- 7 -CS - ES

 Structural Description Method: expresses the design as an
arrangement of interconnected components
 It is basically schematic

 Behavioral Description Method: describes the functional
behavior of a hardware design in terms of circuits and signal
responses to various stimuli
 The hardware behavior is described algorithmically

 Data-Flow Description Method: is similar to a register-
transfer language
 This method describes the function of a design by defining the flow of

information from one input or register to another register or output

Definitions of the Description Methods

- 8 -CS - ES

Design Description Methods

 Structural Description Method
 Behavioral Description Method
 Data-Flow Description Method

 These two are similar in that both use a process to
describe the functionality of a circuit

Schematic

- 9 -CS - ES

VHDL Mixed Modeling

 The three types of modeling can be combined within an
architecture body
 component instantiation – structural
 concurrent signal assignments – dataflow
 process statements – behavior

 This is called the mixed style of modeling

- 10 -CS - ES

VHDL Mixed Modeling

- 11 -CS - ES

Putting It All Together

Generics PortsEntity

Architecture Architecture Architecture

Concurrent
Statements

Process

Sequential Statements

Concurrent
Statements

Package
The entity represents

the interface
specification (I/O) of the
component. It defines

the components external
view, sometimes

referred to as its "pins".

REVIEW

- 12 -CS - ES

Putting It All Together

Generics PortsEntity

Architecture Architecture Architecture

Concurrent
Statements

Process

Sequential Statements

Concurrent
Statements

Package
ports provide the
mechanism for a

device to
communication with its

environment

packages are used to
provide a collection of
common declarations,

constants, and/or
subprograms to

entities and
architectures

generics provide a method to
communicate static

information to a architecture
from the external environment

- are passed through the
entity construct

REVIEW

- 13 -CS - ES

Putting It All Together

Generics PortsEntity

Architecture Architecture Architecture

Concurrent
Statements

Process

Sequential Statements

Concurrent
Statements

Package

architecture
describes the structure
of the design in terms
of its sub-components

and their
interconnections

architecture is the
behavioral description
in which the functional

and possibly timing
characteristics are

described using VHDL
concurrent statements
and processes. The

process is a
concurrent statement

of an architecture

architecture,
containing only

concurrent
statements, is

commonly referred to
as a dataflow
description -.

concurrent statements
execute when data is

available on their
inputs.

REVIEW

- 14 -CS - ES

Concurrent Statements
 Basic granularity of concurrency is the process

 Processes are executed concurrently
 Concurrent signal assignment statements are one-line processes

 Mechanism for achieving concurrency :
 Processes communicate with each other via signals
 Signal assignments require delay before new value is assumed
 Simulation time advances when all active processes complete
 Effect is concurrent processing

• I.e. order in which processes are actually executed by simulator
does not affect behavior

REVIEW

- 15 -CS - ES

1) all active processes can execute in the same simulation cycle e.g., tn

2) each active process will suspend at wait statement (sensitive list  process
finish)

3) when all processes are suspended simulation is advanced the minimum time
necessary (one delta delay) so that some signals can take on their new values

4) processes then determine if the new signal values satisfy the conditions to
proceed from the wait statement at which they are suspended

5) all processes are suspended and no signal update:

tn tn+1 (new entries in the event queue)

Delta Delay
REVIEW

- 16 -CS - ES

The Full Adder

0 0 0 0
0 0 1 1

+ 0 + 1 + 0 + 1
0 1 1 10

Carry-out Sum

1 1 1 1
0 0 1 1

+ 0 + 1 + 0 + 1
1 10 10 11

Carry-in

A B Cin Sum Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Truth Table

- 17 -CS - ES

The Full Adder

Half Adder

Half Adder

A

B

Cin
Sum

Cout

- 18 -CS - ES

The Full Adder in VHDL

- 19 -CS - ES

The Full Adder in VHDL

 Construct Full Adder from two Half Adders
 Use Structural VHDL
 Realize using hierarchical design

 Design half adder
 Interconnect half adders
 Include any additional logic

- 20 -CS - ES

20

The Full Adder in VHDL

(Using the structural model)

Half Adder (ha1)

Half Adder (ha2)

A

B

Cin
Sum

Cout

input
ports

Entity

output
ports

Architecturesignals

s1

c1

c2

- 21 -CS - ES

The Full Adder in VHDL
(The Package File)

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

PACKAGE halfadd_package IS
COMPONENT halfadd

PORT (A, B: IN STD_LOGIC ;
Sum, Cout: OUT STD_LOGIC) ;

END COMPONENT ;
END halfadd_package ;

- 22 -CS - ES

The Full Adder in VHDL
(The Design File)

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE work.halfadd_package.all ;

ENTITY fulladd IS
PORT (Cin, A, B : IN STD_LOGIC ;

Sum, Cout : OUT STD_LOGIC) ;
END fulladd ;

ARCHITECTURE Structure OF fulladd IS
SIGNAL s1, c1, c2: STD_LOGIC ;

BEGIN
ha1 : halfadd PORT MAP (A => A, B => B, Sum => s1, Cout => c1) ;
ha2 : halfadd PORT MAP (s1, Cin, Sum, c2);
Cout <= c1 OR c2 ;

END Structure ;

- 23 -CS - ES

Module Outline

 Introduction

 VHDL Design Example

 VHDL Model Components
 Entity Declarations
 Architecture Descriptions

 Basic VHDL Constructs

 Summary

- 24 -CS - ES

VHDL Model Components

 A complete VHDL component description requires a
VHDL entity and a VHDL architecture
 The entity defines a component’s interface
 The architecture defines a component’s function

 Several alternative architectures may be developed for
use with the same entity

- 25 -CS - ES

VHDL Model Components (cont.)

 Fundamental unit for component behavior
description is the process
 Processes may be explicitly or implicitly defined and are

packaged in architectures

 Primary communication mechanism is the signal
 Process executions result in new values being assigned to

signals which are then accessible to other processes
 Similarly, a signal may be accessed by a process in another

architecture by connecting the signal to ports in the the
entities associated with the two architectures

 Example signal assignment statement :

Output <= My_id + 10;

- 26 -CS - ES

Entity Declarations

 The primary purpose of the entity is to declare the
signals in the component’s interface

 The interface signals are listed in the PORT clause
• In this respect, the entity is akin to the schematic symbol

for the component

x
y

enable

carry
resultHalf

Adder
ENTITY half_adder IS

GENERIC(prop_delay : TIME := 10 ns);

PORT(x, y, enable : IN BIT;
carry, result : OUT BIT);

END half_adder;

- 27 -CS - ES

Entity Declarations
Port Clause

 PORT clause declares the interface signals of the object to the
outside world

 Three parts of the PORT clause
 Name
 Mode
 Data type

 Example PORT clause:

 Note port signals (i.e. ‘ports’) of the same mode and type or
subtype may be declared on the same line

PORT (signal_name : mode data_type);

PORT (input : IN BIT_VECTOR(3 DOWNTO 0);
ready, output : OUT BIT);

- 28 -CS - ES

Entity Declarations
Port Clause (cont.)

 The port mode of the interface describes the direction in
which data travels with respect to the component

 The five available port modes are:
 In - data comes in this port and can only be read

 Out - data travels out this port

 Buffer - data may travel in either direction, but only one signal
driver may be on at any one time

 Inout - data may travel in either direction with any number of
active drivers allowed; requires a Bus Resolution Function

- 29 -CS - ES

Entity Declarations
Generic Clause

 Generics may be used for readability, maintenance and
configuration

 Generic clause syntax :

 Generic clause example :

 The generic My_ID, with a default value of 37, can be
referenced by any architecture of the entity with this generic
clause

 The default can be overridden at component instantiation

GENERIC (generic_name : type [:= default_value]);

GENERIC (My_ID : INTEGER := 37);

- 30 -CS - ES

Architecture Bodies

 Describe the operation of the component
 Consist of two parts :

 Declarative part -- includes necessary declarations, e.g. :
• type declarations, signal declarations, component declarations,

subprogram declarations
 Statement part -- includes statements that describe organization

and/or functional operation of component, e.g. :
• concurrent signal assignment statements, process statements,

component instantiation statements
ARCHITECTURE half_adder_d OF half_adder IS

SIGNAL xor_res : BIT; -- architecture declarative part
BEGIN -- begins architecture statement part

carry <= enable AND (x AND y);
result <= enable AND xor_res;
xor_res <= x XOR y;

END half_adder_d;

- 31 -CS - ES

Structural Descriptions

 Pre-defined VHDL components are ‘instantiated’ and
connected together

 Structural descriptions may connect simple gates or complex,
abstract components

 Mechanisms for supporting hierarchical description

 Mechanisms for describing highly repetitive structures easily

Input OutputBehavioral
Entity

- 32 -CS - ES

Behavioral Descriptions

 VHDL provides two styles of describing component behavior
 Data Flow: concurrent signal assignment statements

 Behavioral: processes used to describe complex behavior by
means of high-level language constructs

• variables, loops, if-then-else statements, etc.

Input OutputBehavioral
Description

- 33 -CS - ES

Module Outline

 Introduction

 VHDL Design Example

 VHDL Model Components

 Basic VHDL Constructs
 Data types
 Objects
 Packages and libraries
 Attributes
 Predefined operators

 Summary

- 34 -CS - ES

Data Types

Types

Access

Scalar

Composite

Array Record

Integer Real Enumerated Physical

 All declarations VHDL ports, signals, and variables
must specify their corresponding type or subtype

- 35 -CS - ES

VHDL Data Types
Scalar Types

 Integer
 Minimum range for any implementation as defined by standard:

- 2,147,483,647 to 2,147,483,647
 Example assignments to a variable of type integer :

ARCHITECTURE test_int OF test IS
BEGIN

PROCESS (X)
VARIABLE a: INTEGER;

BEGIN
a := 1; -- OK
a := -1; -- OK
a := 1.0; -- illegal

END PROCESS;
END test_int;

- 36 -CS - ES

ARCHITECTURE test_real OF test IS
BEGIN

PROCESS (X)
VARIABLE a: REAL;

BEGIN
a := 1.3; -- OK
a := -7.5; -- OK
a := 1; -- illegal
a := 1.7E13; -- OK
a := 5.3 ns; -- illegal

END PROCESS;
END test_real;

VHDL Data Types
Scalar Types (Cont.)

 Real
 Minimum range for any implementation as defined by standard:

-1.0E38 to 1.0E38
 Example assignments to a variable of type real :

- 37 -CS - ES

TYPE binary IS (ON, OFF);
... some statements ...
ARCHITECTURE test_enum OF test IS
BEGIN

PROCESS (X)
VARIABLE a: binary;

BEGIN
a := ON; -- OK
... more statements ...
a := OFF; -- OK
... more statements ...

END PROCESS;
END test_enum;

VHDL Data Types
Scalar Types (Cont.)

 Enumerated
 User specifies list of possible values
 Example declaration and usage of enumerated data type :

- 38 -CS - ES

 Physical
 Require associated units
 Range must be specified
 Example of physical type declaration :

 Time is the only physical type predefined in VHDL standard

TYPE resistance IS RANGE 0 TO 10000000

UNITS
ohm; -- ohm
Kohm = 1000 ohm; -- i.e. 1 K
Mohm = 1000 kohm; -- i.e. 1 M
END UNITS;

VHDL Data Types
Scalar Types (Cont.)

- 39 -CS - ES

TYPE data_bus IS ARRAY(0 TO 31) OF BIT;

VARIABLE X : data_bus;
VARIABLE Y : BIT;

Y := X(12); -- Y gets value of element at index 12

0 31
0 1
...element indices...

...array values...

VHDL Data Types
Composite Types

 Array
 Used to group elements of the same type into a single VHDL

object
 Range may be unconstrained in declaration

• Range would then be constrained when array is used
 Example declaration for one-dimensional array (vector) :

- 40 -CS - ES

 Example one-dimensional array using DOWNTO :

DOWNTO keyword must be used if leftmost index is greater than
rightmost index
 ‘Big-endian’ bit ordering, for example

TYPE reg_type IS ARRAY(15 DOWNTO 0) OF BIT;

VARIABLE X : reg_type;
VARIABLE Y : BIT;

Y := X(4); -- Y gets value of element at index 4

15 0
0 1
...element indices...

...array values...

VHDL Data Types
Composite Types (Cont.)

- 41 -CS - ES

TYPE binary IS (ON, OFF);
TYPE switch_info IS

RECORD
status : BINARY;
IDnumber : INTEGER;

END RECORD;

VARIABLE switch : switch_info;
switch.status := ON; -- status of the switch
switch.IDnumber := 30; -- e.g. number of the switch

VHDL Data Types
Composite Types (Cont.)

 Records
 Used to group elements of possibly different types into a single

VHDL object
 Elements are indexed via field names
 Examples of record declaration and usage :

- 42 -CS - ES

VHDL Data Types
Access Type

 Access
 Analogous to pointers in other languages

 Allows for dynamic allocation of storage

 Useful for implementing queues, fifos, etc.

- 43 -CS - ES

 Subtype
 Allows for user defined constraints on a data type

• e.g. a subtype based on an unconstrained VHDL type
 May include entire range of base type
 Assignments that are out of the subtype range are illegal

• Range violation detected at run time rather than compile time
because only base type is checked at compile time

 Subtype declaration syntax :

 Subtype example :

SUBTYPE name IS base_type RANGE <user range>;

VHDL Data Types
Subtypes

SUBTYPE first_ten IS INTEGER RANGE 0 TO 9;

- 44 -CS - ES

VHDL Data Types
Summary

 All declarations of VHDL ports, signals, and variables
must included their associated type or subtype

 Three forms of VHDL data types are :
 Access -- pointers for dynamic storage allocation
 Scalar -- includes Integer, Real, Enumerated, and Physical
 Composite -- includes Array, and Record

 A set of built-in data types are defined in VHDL
standard
 User can also define own data types and subtypes

- 45 -CS - ES

VHDL Objects

 There are four types of objects in VHDL
 Constants
 Variables
 Signals
 Files

 The scope of an object is as follows :
 Objects declared in a package are available to all VHDL

descriptions that use that package
 Objects declared in an entity are available to all architectures

associated with that entity
 Objects declared in an architecture are available to all

statements in that architecture
 Objects declared in a process are available only within that

process

- 46 -CS - ES

VHDL Objects
Constants

 Name assigned to a specific value of a type
 Allow for easy update and readability
 Declaration of constant may omit value so that the value

assignment may be deferred
 Facilitates reconfiguration

 Declaration syntax :

 Declaration examples :

CONSTANT constant_name : type_name [:= value];

CONSTANT PI : REAL := 3.14;
CONSTANT SPEED : INTEGER;

- 47 -CS - ES

VHDL Objects
Variables

 Provide convenient mechanism for local storage
 E.g. loop counters, intermediate values, etc.

 Scope is process in which they are declared

 All variable assignments take place immediately
 No delta or user specified delay is incurred

 Declaration syntax:

 Declaration examples :

VARIABLE opcode : BIT_VECTOR(3 DOWNTO 0) := "0000";
VARIABLE freq : INTEGER;

VARIABLE variable_name : type_name [:= value];

- 48 -CS - ES

VHDL Objects
Signals

 Used for communication between VHDL components
 Real, physical signals in system often mapped to VHDL signals
 ALL VHDL signal assignments require either delta cycle or user-

specified delay before new value is assumed
 Declaration syntax :

 Declaration and assignment examples :

SIGNAL signal_name : type_name [:= value];

SIGNAL sig_a : BIT;

event queue for sig_a

- 49 -CS - ES

Variables vs. Signal

- 50 -CS - ES

Signals and Variables

 This example highlights the difference between
signals and variables

ARCHITECTURE test1 OF mux IS
SIGNAL x : BIT := '1';
SIGNAL y : BIT := '0';

BEGIN
PROCESS (in_sig, x, y)
BEGIN
x <= in_sig XOR y;
y <= in_sig XOR x;

END PROCESS;
END test1;

ARCHITECTURE test2 OF mux IS
SIGNAL y : BIT := '0';

BEGIN
PROCESS (in_sig, y)
VARIABLE x : BIT := '1';

BEGIN
x := in_sig XOR y;
y <= in_sig XOR x;

END PROCESS;
END test2;

 Assuming a 1 to 0 transition on in_sig, what are the
resulting values for y in the both cases?

- 51 -CS - ES

VHDL Objects
Signals vs Variables

 A key difference between variables and signals is
the assignment delay

ARCHITECTURE sig_ex OF test IS
SIGNAL a, b, c, out_1, out_2 : BIT;

BEGIN
PROCESS (a, b, c, out_1)
BEGIN
out_1 <= a NAND b;
out_2 <= out_1 XOR c;

END PROCESS;
END sig_ex;

Time a b c out_1 out_2

0 0 1 1 1 0
1 1 1 1 1 0

1+d 1 1 1 0 0
1+2d 1 1 1 0 1

- 52 -CS - ES

Time a b c out_3 out_4

0 0 1 1 1 0
1 1 1 1 0 0

1+d 1 1 1 0 1

VHDL Objects
Signals vs Variables (Cont.)

ARCHITECTURE var_ex OF test IS
SIGNAL a,b,c,out_4 : BIT;

BEGIN
PROCESS (a, b, c)
VARIABLE out_3 : BIT;
BEGIN
out_3 := a NAND b;
out_4 <= out_3 XOR c;

END PROCESS;
END var_ex;

- 53 -CS - ES

VHDL Objects
Files

 Files provide a way for a VHDL design to
communicate with the host environment

 File declarations make a file available for use to a
design

 Files can be opened for reading and writing

 The package STANDARD defines basic file IO
routines for VHDL types

 The package TEXTIO defines more powerful
routines handling IO of text files

- 54 -CS - ES

Packages and Libraries

 User defined constructs declared inside architectures
and entities are not visible to other VHDL components
 Scope of subprograms, user defined data types, constants, and

signals is limited to the VHDL components in which they are
declared

 Packages and libraries provide the ability to reuse
constructs in multiple entities and architectures
 Items declared in packages can be used (i.e. included) in other

VHDL components

- 55 -CS - ES

 Packages consist of two parts
 Package declaration -- contains declarations of objects

defined in the package
 Package body -- contains necessary definitions for objects

in package declaration
• e.g. subprogram descriptions

 Examples of VHDL items included in packages :

- Basic declarations
• Types, subtypes
• Constants
• Subprograms
• Use clause

- Signal declarations
- Attribute declarations
- Component declarations

Packages

- 56 -CS - ES

Packages
Declaration

 An example of a package declaration :

 Note some items only require declaration while others
need further detail provided in subsequent package
body
 for type and subtype definitions, declaration is sufficient
 subprograms require declarations and descriptions

PACKAGE my_stuff IS
TYPE binary IS (ON, OFF);
CONSTANT PI : REAL := 3.14;
CONSTANT My_ID : INTEGER;
PROCEDURE add_bits3(SIGNAL a, b, en : IN BIT;

SIGNAL temp_result, temp_carry : OUT BIT);
END my_stuff;

- 57 -CS - ES

Packages
Package Body

 The package body includes the necessary functional
descriptions for objects declared in the package
declaration
 e.g. subprogram descriptions, assignments to constants

PACKAGE BODY my_stuff IS
CONSTANT My_ID : INTEGER := 2;

PROCEDURE add_bits3(SIGNAL a, b, en : IN BIT;
SIGNAL temp_result, temp_carry : OUT BIT) IS

BEGIN -- this function can return a carry
temp_result <= (a XOR b) AND en;
temp_carry <= a AND b AND en;

END add_bits3;
END my_stuff;

- 58 -CS - ES

Packages
Use Clause

 Packages must be made visible before their
contents can be used
 The USE clause makes packages visible to entities,

architectures, and other packages
-- use only the binary and add_bits3 declarations
USE my_stuff.binary, my_stuff.add_bits3;

... ENTITY declaration...

... ARCHITECTURE declaration ...

-- use all of the declarations in package my_stuff
USE my_stuff.ALL;

... ENTITY declaration...

... ARCHITECTURE declaration ...

- 59 -CS - ES

Libraries

 Analogous to directories of files
 VHDL libraries contain analyzed (i.e. compiled) VHDL entities,

architectures, and packages

 Facilitate administration of configuration and revision
control
 E.g. libraries of previous designs

 Libraries accessed via an assigned logical name
 Current design unit is compiled into the Work library
 Both Work and STD libraries are always available
 Many other libraries usually supplied by VHDL simulator vendor

• E.g. proprietary libraries and IEEE standard libraries

- 60 -CS - ES

Attributes

 Attributes provide information about certain items in
VHDL, e.g :
 Types, subtypes, procedures, functions, signals, variables,

constants, entities, architectures, configurations, packages,
components

 General form of attribute use :

 VHDL has several predefined, e.g :
 X'EVENT -- TRUE when there is an event on signal X
 X'LAST_VALUE -- returns the previous value of signal X
 Y'HIGH -- returns the highest value in the range of Y
 X'STABLE(t) -- TRUE when no event has occurred on signal X

in the past ‘t’ time

name'attribute_identifier -- read as “tick”

- 61 -CS - ES

Operators

 Operators can be chained to form complex
expressions, e.g. :

 Can use parentheses for readability and to control the
association of operators and operands

 Defined precedence levels in decreasing order :
 Miscellaneous operators -- **, abs, not
 Multiplication operators -- *, /, mod, rem
 Sign operator -- +, -
 Addition operators -- +, -, &
 Shift operators -- sll, srl, sla, sra, rol, ror
 Relational operators -- =, /=, <, <=, >, >=
 Logical operators -- AND, OR, NAND, NOR, XOR, XNOR

res <= a AND NOT(B) OR NOT(a) AND b;

- 62 -CS - ES

Operators
Examples

 The concatenation operator &
VARIABLE shifted, shiftin : BIT_VECTOR(0 TO 3);
...
shifted := shiftin(1 TO 3) & '0';

1

1 2 3

 The exponentiation operator **

SHIFTIN

SHIFTED

x := 5**5 -- 5^5, OK
y := 0.5**3 -- 0.5^3, OK
x := 4**0.5 -- 4^0.5, Illegal
y := 0.5**(-2) -- 0.5^(-2), OK

0
0 0 1

0 0 1 0

- 63 -CS - ES

Module Outline

 Introduction

 VHDL Design Example

 VHDL Model Components

 Basic VHDL Constructs

 Summary

- 64 -CS - ES

Summary

 VHDL is a worldwide standard for the description and
modeling of digital hardware

 VHDL gives the designer many different ways to
describe hardware

 Familiar programming tools are available for complex
and simple problems

 Sequential and concurrent modes of execution meet a
large variety of design needs

 Packages and libraries support design management and
component reuse

- 65 -CS - ES

Delay models and VHDL semantics

- 66 -CS - ES

1. Transport delay

 signal <= transport expression after delay;

 This corresponds to models for simple wires

Pulses will be propagated, no matter how short they are - idealized
wire.

1a
b

c

OR gate

a
b
c

c <= transport a or b after 10 ns;
20 40 60 80

Pulse of 5 ns

ns

- 67 -CS - ES

1. Transport delay (2)

 “All old transactions that are projected to occur at or after
the time at which the earliest of the new transactions is
projected to occur are deleted from the projected output
waveform” [VHDL LRM, chap. 8.4]

- 68 -CS - ES

2. Inertial delay

 By default, inertial delay is assumed.
 Suppression of all “spikes” shorter than the delay,

resp. shorter than the indicated suppression threshold.
 Inertial delay models the behavior of gates.

 Example:

1a
b

c

OR gate

 Tricky rules for removing events from projected waveform ()

a
b
c

20 40 60 80

No pulse of 5 ns

ns

c <= a or b after 10 ns;

