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Thursday

 Midterm exam: December 16th, 2010, AudiMO, 
16:00 - 19:00 

 No lecture on December 16th

 Open book: bring any handwritten or printed notes, or
any books you like. 

 Please bring your ID.
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Exam Policy

 Midterm/End-of-Term Exam/End-of-Semester Exam

Requirement for admission to end-of-term and end-of-semester 
exams:

 > 50% of points in problem sets,
 > 50% of points in each project milestone, and
 > 50% of points in midterm exam 

 Final grade: 
 best grade in end-of-term or end-of-semester exam



- 4 -CS - ES

Structural Descriptions

 Pre-defined VHDL components are ‘instantiated’ and
connected together

 Structural descriptions may connect simple gates or complex, 
abstract components

 Mechanisms for supporting hierarchical description

 Mechanisms for describing highly repetitive structures easily

Input OutputBehavioral 
Entity

These gates can be pulled from
a library of parts

REVIEW
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Behavioral Descriptions

 VHDL provides two styles of describing component behavior
 Data Flow:  concurrent signal assignment statements

 Behavioral:  processes used to describe complex behavior by
means of high-level language constructs

• variables, loops, if-then-else statements, etc.

Input OutputBehavioral 
Description

REVIEW
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Entity Declarations

 The primary purpose of the entity is to declare the
signals in the component’s interface

 The interface signals are listed in the PORT clause
• In this respect, the entity is akin to the schematic symbol

for the component

x
y

enable

carry
resultHalf

Adder
ENTITY half_adder IS

GENERIC(prop_delay : TIME := 10 ns);

PORT( x, y, enable : IN BIT;
carry, result : OUT BIT);

END half_adder;

REVIEW
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Architecture Bodies

 Describe the operation of the component
 Consist of two parts :

 Declarative part -- includes necessary declarations, e.g. : 
• type declarations, signal declarations, component declarations, 

subprogram declarations
 Statement part -- includes statements that describe organization

and/or functional operation of component, e.g. :
• concurrent signal assignment statements, process statements, 

component instantiation statements
ARCHITECTURE half_adder_d OF half_adder IS

SIGNAL xor_res : BIT;     -- architecture declarative part
BEGIN                     -- begins architecture statement part

carry <= enable AND (x AND y);
result <= enable AND xor_res;
xor_res <= x XOR y;

END half_adder_d;

REVIEW
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Data Types

Types

Access

Scalar

Composite

Array Record

Integer Real Enumerated Physical

 All declarations VHDL ports, signals, and variables     
must specify their corresponding type or subtype

REVIEW
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VHDL Objects

 There are four types of objects in VHDL
 Constants
 Variables
 Signals
 Files

 The scope of an object is as follows :
 Objects declared in a package are available to all VHDL 

descriptions that use that package
 Objects declared in an entity are available to all architectures

associated with that entity
 Objects declared in an architecture are available to all 

statements in that architecture
 Objects declared in a process are available only within that

process

REVIEW
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Variables vs. Signal
REVIEW
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Packages and Libraries

 User defined constructs declared inside architectures
and entities are not visible to other VHDL components
 Scope of subprograms, user defined data types, constants, and

signals is limited to the VHDL components in which they are
declared

 Packages and libraries provide the ability to reuse
constructs in multiple entities and architectures
 Items declared in packages can be used (i.e. included) in other

VHDL components

REVIEW
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Packages and Libraries

 User defined constructs declared inside architectures
and entities are not visible to other VHDL components
 Scope of subprograms, user defined data types, constants, and

signals is limited to the VHDL components in which they are
declared

 Packages and libraries provide the ability to reuse
constructs in multiple entities and architectures
 Items declared in packages can be used (i.e. included) in other

VHDL components

REVIEW
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 Packages consist of two parts
 Package declaration -- contains declarations of objects defined

in the package
 Package body -- contains necessary definitions for objects in 

package declaration
• e.g. subprogram descriptions

 Examples of VHDL items included in packages :

- Basic declarations
• Types, subtypes
• Constants
• Subprograms - no VHDL entities, architectures
• Use clause

- Signal declarations
- Attribute declarations
- Component declarations

Packages
REVIEW
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Libraries

 Analogous to directories of files
 VHDL libraries contain analyzed (i.e. compiled) VHDL entities, 

architectures, and packages

 Facilitate administration of configuration and revision
control
 E.g. libraries of previous designs

 Libraries accessed via an assigned logical name
 Current design unit is compiled into the Work library
 Both Work and STD libraries are always available
 Many other libraries usually supplied by VHDL simulator vendor

• E.g. proprietary libraries and IEEE standard libraries
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Attributes

 Attributes provide information about certain items in 
VHDL, e.g :
 Types, subtypes, procedures, functions, signals, variables, 

constants, entities, architectures, configurations, packages, 
components

 General form of attribute use :

 VHDL has several predefined, e.g :
 X'EVENT  -- TRUE when there is an event on signal X
 X'LAST_VALUE -- returns the previous value of signal X
 Y'HIGH -- returns the highest value in the range of Y
 X'STABLE(t) -- TRUE when no event has occurred on signal X 

in the past ‘t’ time

name'attribute_identifier  -- read as “tick” 

REVIEW
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Delay models and VHDL semantics
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1. Transport delay

 signal <= transport expression after delay;

 This corresponds to models for simple wires

Pulses will be propagated, no matter how short they are - idealized 
wire.

1a
b

c

OR gate

a
b
c

c <= transport a or b after 10 ns;
20 40 60 80

Pulse of 5 ns

ns
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1. Transport delay (2) – LRM rule

 “All old transactions that are projected to occur at or after 
the time at which the earliest of the new transactions is 
projected to occur are deleted from the projected output 
waveform” [VHDL LRM, chap. 8.4]
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2. Inertial delay

 By default, inertial delay is assumed.
 Suppression of all “spikes” shorter than the delay,

resp. shorter than the indicated suppression threshold.
 Inertial delay models the behavior of gates.

 Example:

1a
b

c

OR gate

a
b
c

20 40 60 80

No pulse of 5 ns

ns

c <= a or b after 10 ns;
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2. Inertial delay (2) – LRM rules

 “All old transactions that are projected to occur at or after the time at 
which the earliest of the new transactions is projected to occur are 
deleted from the projected output waveform”

 The new transactions are then appended

 “All of the new transactions are marked

 An old transaction is marked if it immediately precedes a marked 
transaction and its value component is the same as that of the 
marked transaction;

 The transactions that determines the current value of the driver is 
marked;

 All unmarked transactions … are deleted from the projected output 
waveform”

[VHDL LRM, chap. 8.4]
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2. Inertial delay (3)

 Assume that we are executing a signal assignment
output <= ‘1’ after 11 ns at time t=2 ns and the projected waveform is:

'0''1' '1' '1' '1' '0' '1'

50 10 15

 Transactions to occur at or after 13 ns are deleted from the output waveform
 The new transactions are then appended
 All of the new transactions are marked
 Transactions immediately preceding a marked transaction and their value 

component is the same as that of the marked transaction;
 The transactions that determines the current value of the driver is marked;
 All unmarked transactions … are deleted from the projected output waveform

'0''1' '1' '1' '0' '1'

50 10 15
t [ns]

t [ns]x

x
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Example

Suppression of all 
“spikes” 

shorter than the 
delay

shorter than the 
indicated 

suppression 
threshold
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VHDL 
Simulator

start

stop

Init
t = 0

more event

get earliest
event

delta delay

update
signals

advance
time

execute triggered
processes

during process execution,
new events may be added
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VHDL semantics: global control 

 According to the original standards document: 
 The execution of a model consists of an initialization 

phase followed by the repetitive execution of process 
statements in the description of that model. 

 Initialization phase executes each process once. 

Activate all processes
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VHDL semantics: initialization 

 At the beginning of initialization, the current time, Tc is  0 ns. 
 The driving value and the effective value of each explicitly declared 

signal are computed, and the current value of the signal is set to the 
effective value. … 

 Each ... process … is executed until it suspends.
 The time of the next simulation cycle (… in this case … the 1st 

cycle), Tn is calculated according to the rules of step f of the 
simulation cycle, below.

Activate all processes
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VHDL semantics: The simulation cycle (1)
 Each simulation cycle starts with setting Tc to Tn. Tn was 

either computed during the initialization or during the last 
execution of the simulation cycle. Simulation terminates 
when the current time reaches its maximum, TIME'HIGH. 
According to the standard, the simulation cycle is as 
follows:

a) The current time, Tc is set to Tn. Stop if Tn= TIME'HIGH 
and not  active drivers or process resumptions at Tn.

?
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VHDL semantics: The simulation cycle (2)

b) Each active explicit signal in the model is updated. (Events may 
occur as a result.)
Previously computed entries in the queue are now assigned if their 
time corresponds to the current time Tc. 
New values of signals are not assigned before the next simulation 
cycle, at the earliest.
Signal value changes result in events  enable the execution of 
processes that are sensitive to that signal.

c) .. 
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VHDL semantics: The simulation cycle (3)

d)  P sensitive to s: if event on s in current cycle: P 
resumes.

e) Each ... process that has resumed in the current 
simulation cycle is executed until it suspends*.
*Generates future values for signal drivers.
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VHDL semantics: The simulation cycle (4)

f) Time Tn of the next simulation cycle = earliest of
1. TIME'HIGH (end of simulation time).
2. The next time at which a driver becomes active
3. The next time at which a process resumes

(determined by wait for statements).
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Signals and Variables

 This example highlights the difference between 
signals and variables

ARCHITECTURE test1 OF mux IS
SIGNAL x : BIT := '1';
SIGNAL y : BIT := '0';

BEGIN
PROCESS (in_sig, x, y)
BEGIN
x <= in_sig XOR y;
y <= in_sig XOR x;

END PROCESS;
END test1;

ARCHITECTURE test2 OF mux IS 
SIGNAL y : BIT := '0';

BEGIN
PROCESS (in_sig, y)
VARIABLE x : BIT := '1';

BEGIN
x := in_sig XOR y;
y <= in_sig XOR x;

END PROCESS;
END test2;

 Assuming a 1 to 0 transition on in_sig, what are the 
resulting values for y in the both cases?
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VHDL Objects
Signals vs Variables

 A key difference between variables and signals is 
the assignment delay

ARCHITECTURE sig_ex OF test IS
SIGNAL a, b, c, out_1, out_2 : 

BIT; 
BEGIN

PROCESS (a, b, c, out_1)
BEGIN
out_1 <= a NAND b;
out_2 <= out_1 XOR c;

END PROCESS;
END sig_ex;

Time   a  b  c  out_1  out_2

0    0  1  1    1      0
1    1  1  1    1      0

1+d    1  1  1    0      0
1+2d   1  1  1    0      1 

Time   a  b  c  out_3  out_4  

0    0  1  1    1      0
1    1  1  1    0      0

1+d    1  1  1    0      1

ARCHITECTURE var_ex OF test IS
SIGNAL a,b,c,out_4 : BIT;

BEGIN
PROCESS (a, b, c)
VARIABLE out_3 : BIT;
BEGIN
out_3 := a NAND b;
out_4 <= out_3 XOR c;

END PROCESS;
END var_ex;
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Behavioral vs. Structural
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Modeling Interfaces

 Entity declaration reg4
 describes the input/output ports of a module

entity reg4 is
port ( d0, d1, d2, d3, en, clk : in bit;

q0, q1, q2, q3 : out bit );
end entity reg4;

entity name port names port mode (direction)

port typereserved words

punctuation
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Modeling Behavior

 Architecture body
 describes an implementation of an entity
 may be several per entity

 Behavioral architecture
 describes the algorithm performed by the module
 contains

• process statements, each containing
• sequential statements, including
• signal assignment statements and
• wait statements
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Behavior Example

architecture behav of reg4 is
begin

storage : process is
variable stored_d0, stored_d1, stored_d2, stored_d3 : bit;

begin
if en = '1' and clk = '1' then

stored_d0 := d0;
stored_d1 := d1;
stored_d2 := d2;
stored_d3 := d3;

end if;
q0 <= stored_d0 after 5 ns;
q1 <= stored_d1 after 5 ns;
q2 <= stored_d2 after 5 ns;
q3 <= stored_d3 after 5 ns;
wait on d0, d1, d2, d3, en, clk;

end process storage;
end architecture behav;
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Modeling Structure

 Structural architecture
 implements the module as a composition of subsystems
 contains

• signal declarations, for internal interconnections
– the entity ports are also treated as signals

• component instances
– instances of previously declared entity/architecture pairs

• port maps in component instances
– connect signals to component ports

• wait statements
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Structure Example

int_clk

d0

d1

d2

d3

en

clk

q0

q1

q2

q3

bit0
d_latch
d

clk

q

bit1
d_latch
d

clk

q

bit2
d_latch
d

clk

q

bit3
d_latch
d

clk

q

gate
and2

a

b

y
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Structure Example

 First declare D-latch and and-gate entities and 
architectures

entity d_latch is
port ( d, clk : in bit;  q : out bit );

end entity d_latch;

architecture basic of d_latch is
begin

latch_behavior : process is
begin

if clk = ‘1’ then
q <= d after 2 ns;

end if;
wait on clk, d;

end process latch_behavior;
end architecture basic;

entity and2 is
port ( a, b : in bit;  y : out bit );

end entity and2;

architecture basic of and2 is
begin

and2_behavior : process is
begin

y <= a and b after 2 ns;
wait on a, b;

end process and2_behavior;
end architecture basic;
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Structure Example

 Now use them to implement a register

architecture struct of reg4 is
signal int_clk : bit;

begin
bit0 : entity work.d_latch(basic)

port map ( d0, int_clk, q0 );
bit1 : entity work.d_latch(basic)

port map ( d1, int_clk, q1 );
bit2 : entity work.d_latch(basic)

port map ( d2, int_clk, q2 );
bit3 : entity work.d_latch(basic)

port map ( d3, int_clk, q3 );
gate : entity work.and2(basic)

port map ( en, clk, int_clk );
end architecture struct;
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Mechanisms for Incorporating
VHDL Design Objects

 VHDL mechanisms to incorporate design objects
 Using direct instantiation (not available prior to VHDL-93) (slide 44)
 Using component declarations and instantiations

• Create idealized local components (i.e. declarations) and connect
them to local signals (i.e. instantiations)

• Component instantiations are then bound to VHDL design objects
either :

– Locally -- within the architecture declaring the component
– At higher levels of design hierarchy, via configurations

 Consider structural descriptions for the following entity :

USE work.resources.all;

ENTITY reg4 IS -- 4-bit register with no enable
GENERIC(tprop : delay := 8 ns;

tsu : delay := 2 ns);
PORT(d0,d1,d2,d3 : IN level;

clk : IN level;
q0,q1,q2,q3 : OUT level);

END reg4;
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4-Bit Register as Running Example

USE work.resources.all;

ENTITY dff IS

GENERIC(tprop : delay := 8 ns;
tsu : delay := 2 ns);

PORT(d      : IN level;
clk : IN level;
enable : IN level;
q      : OUT level;
qn : OUT level);

END dff;

ARCHITECTURE behav OF dff IS
BEGIN
one : PROCESS (clk)

BEGIN
-- rising clock edge

IF ((clk = '1' AND clk'LAST_VALUE = '0')
AND enable = '1') THEN     -- ff enabled

-- check setup
IF (d'STABLE(tsu)) THEN

-- check valid input data
IF (d = '0') THEN

q <= '0' AFTER tprop;
qn <= '1' AFTER tprop;

ELSIF (d = '1') THEN
q <= '1' AFTER tprop;
qn <= '0' AFTER tprop;

ELSE -- else invalid data
q <= 'X';
qn <= 'X';

END IF;
ELSE -- else no setup

q <= 'X';
qn <= 'X';

END IF;
END IF;

END PROCESS one;
END behav;

 First, need to find the
building block(s)
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General Steps to Incorporate VHDL Design 
Objects

 A VHDL design object to be incorporated into an 
architecture must generally be :
 declared -- where a local interface is defined
 instantiated -- where local signals are connected to the local

interface
• Regular structures can be created easily using

GENERATE statements in component instantiations
 bound -- where an entity/architecture object which

implements it is selected for the instantiated object
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Using Component Declarations and Local
Bindings
 Component declaration defines interface for idealized local

object
 Component declarations may be placed in architecture

declarations or in package declarations
 Component instantiation connects local signals to component

interface signals

USE work.resources.all;

ARCHITECTURE struct_2  OF reg4 IS
COMPONENT reg1 IS

PORT (d, clk : IN level;
q : OUT level);

END COMPONENT reg1;
CONSTANT enabled : level := '1';
FOR ALL : reg1 USE work.dff(behav)

PORT 
MAP(d=>d,clk=>clk,enable=>enabled,q=>q,qn=>OPEN);

BEGIN
r0 : reg1 PORT MAP (d=>d0,clk=>clk,q=>q0);
r1 : reg1 PORT MAP (d=>d1,clk=>clk,q=>q1);
r2 : reg1 PORT MAP (d=>d2,clk=>clk,q=>q2);
r3 : reg1 PORT MAP (d=>d3,clk=>clk,q=>q3);

END struct_2;

declared -- where a local interface is defined

instantiated -- where local signals are
connected to the local interface

bound -- where an entity/architecture
object which implements it is selected
for the instantiated object
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Using Component Declarations and
Configurations

USE work.resources.all;

ARCHITECTURE struct_3  OF reg4 IS
COMPONENT reg1 IS

PORT (d, clk : IN level;
q : OUT level);

END COMPONENT reg1;
CONSTANT enabled : level := '1';

BEGIN
r0 : reg1 PORT MAP (d<=d0,clk<=clk,q<=q0);
r1 : reg1 PORT MAP (d<=d1,clk<=clk,q<=q1);
r2 : reg1 PORT MAP (d<=d2,clk<=clk,q<=q2);
r3 : reg1 PORT MAP (d<=d3,clk<=clk,q<=q3);

END struct_3;

USE work.resources.all;

CONFIGURATION reg4_conf_1 OF reg4 IS
CONSTANT enabled : level := '1';
FOR struct_3

FOR all : reg1 USE work.dff(behav)
PORT MAP(d=>d,clk=>clk,enable=>enabled,q=>q,qn=>OPEN);

END FOR;
END FOR;

END reg4_conf_1;

-- Architecture in which a COMPONENT for reg4 is declared
...

FOR ALL : reg4_comp USE CONFIGURATION work.reg4_conf_1;
...

• three separate VHDL files

• first file above shows the architecture
description in which the reg1
component is declared and
instantiated.

• second file shows a configuration
declaration in which the reg1
components in the struct_3 
architecture of entity reg4 are bound
to dff(behav).

• The third example shows a small
excerpt from an architecture
description in which a locally visible
component named reg4_comp is
bound to a VHDL design object via 
the configuration declaration
reg4_conf_1 found in the work library
(i.e. this is configuration declaration
shown in the middle section of this
slide).
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Power of Configuration Declarations

 Reasons to use configuration declarations :
 Large design may span multiple levels of hierarchy
 When the architecture is developed, only the component

interface may be available
 Mechanism to put the pieces of the design together

 Configurations can be used to customize the use VHDL 
design objects interfaces as needed :
 Entity name can be different than the component name

 Entity of incorporated design object may have more ports than
the component declaration

 Ports on the entity declaration of the incorporated design object
may have different names than the component declaration
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r0 : reg1 PORT MAP (d=>d0,clk=>clk,q=>q0);

Instantiation Statement

 The instantiation statement connects a declared
component to signals in the architecture

 The instantiation has 3 key parts
 Name -- to identify unique instance of component
 Component type -- to select one of the declared components
 Port map -- to connect to signals in architecture

• Along with optional Generic Map presented on next slide

Name Component 
Type

Port Map
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r0 : reg1 PORT MAP (d=>d0,clk=>clk,q=>q0);

Instantiation Statement

 The instantiation statement connects a declared
component to signals in the architecture

 The instantiation has 3 key parts
 Name -- to identify unique instance of component
 Component type -- to select one of the declared components
 Port map -- to connect to signals in architecture

• Along with optional Generic Map presented on next slide

Name Component 
Type

Port Map
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Generic Map

 Generics allow the component to be customized
upon instantiation
 Entity declaration of design object being incorporated 

provides default values

 The GENERIC MAP is similar to the PORT MAP in 
that it maps specific values to the generics of the
component

USE Work.my_stuff.ALL
ARCHITECTURE test OF test_entity

SIGNAL S1, S2, S3 : BIT;
BEGIN

Gate1 : my_stuff.and_gate -- component found in package
GENERIC MAP (tplh=>2 ns, tphl=>3 ns)
PORT MAP (S1, S2, S3);

END test;
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Rules for Actuals and Locals

 An actual is either signal declared within the architecture or a 
port in the entity declaration
 A port on a component is known as a local and must be matched

with a compatible actual

 VHDL has two main restrictions on the association of locals
with actuals
 Local and actual must be of same data type
 Local and actual must be of compatible modes

• Locally declared signals do not have an associated mode and
can connect to a local port of any mode

in1

in2 out2

Locally_Declared_Sig_a

Input_Port_a Output_Port_a

out1 Locally_Declared_Sig_b
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Generate Statement

 VHDL provides the GENERATE statement to create
well-patterned structures easily

 Some structures in digital hardware are repetitive in nature
(e.g. RAMs, adders)

 Any VHDL concurrent statement may be included in 
a GENERATE statement, including another
GENERATE statement

 Specifically, component instantiations may be made within
GENERATE bodies
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Generate Statement
FOR-scheme

 All objects created are similar

 The GENERATE parameter must be discrete and is undefined
outside the GENERATE statement

 Loop cannot be terminated early

name : FOR N IN 1 TO 8 GENERATE 
concurrent-statements

END GENERATE name;
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FOR-scheme Example

-- this uses the and_gate component from before
ARCHITECTURE test_generate OF test_entity IS

SIGNAL S1, S2, S3: BIT_VECTOR(7 DOWNTO 0);
BEGIN

G1 : FOR N IN 7 DOWNTO 0 GENERATE
and_array : and_gate
GENERIC MAP (2 ns, 3 ns)
PORT MAP (S1(N), S2(N), S3(N));

END GENERATE G1;
END test_generate;

S2(7:0)
S1(7:0)

S3(7:0)
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Generate Statement
IF-scheme

 Allows for conditional creation of components

 Can not use ELSE or ELSIF clauses with the
IF-scheme

name : IF (boolean expression) GENERATE 
concurrent-statements

END GENERATE name;
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IF-scheme Example

ARCHITECTURE test_generate OF test_entity
SIGNAL S1, S2, S3: BIT_VECTOR(7 DOWNTO 0);

BEGIN
G1 : FOR N IN 7 DOWNTO 0 GENERATE

G2 : IF (N = 7) GENERATE
or1 : or_gate
GENERIC MAP (3 ns, 3 ns)
PORT MAP (S1(N), S2(N), S3(N));

END GENERATE G2;

G3 : IF (N < 7) GENERATE
and_array : and_gate
GENERIC MAP (2 ns, 3 ns)
PORT MAP (S1(N), S2(N), S3(N));

END GENERATE G3;

END GENERATE G1;
END test_generate;
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Summary

 Structural VHDL describes the arrangement and
interconnection of components

 Components can be of any level of abstraction -- low
level gates or high level blocks of logic

 Generics are inherited by every architecture or
component of that entity

 Generate statements automatically create large, regular
blocks of logic



- 56 -CS - ES

Behavioral VHDL
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Process Syntax

[ process_label : ] PROCESS   
[( sensitivity_list )]

process_declarations

BEGIN

process_statements

END PROCESS [ process_label ] ;

NO
SIGNAL

DECLARATIONS!
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VHDL Sequential Statements

 Assignments executed sequentially in processes
 Sequential statements

 {Signal, variable} assignments
 Flow control

• IF <condition> THEN <statements> [ELSIF] <statements> 
ELSE <statements> END IF;

• FOR <range> LOOP <statements> END LOOP;
• WHILE <condition> LOOP <statements> END LOOP;
• CASE <condition> IS WHEN <value> => <statements>

WHEN <value> => <statements>
WHEN others => <statements>

END CASE;
 WAIT ON <signal> UNTIL <expression> FOR <time> ;
 ASSERT <condition> REPORT <string> SEVERITY <level> ;
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The Wait Statement

 The wait statement causes the suspension of a process
statement or a procedure

 wait [sensitivity_clause] [condition_clause] [timeout_clause ] ;
 sensitivity_clause ::=  ON signal_name { , signal_name }

WAIT ON clock;

 condition_clause ::=  UNTIL boolean_expression
WAIT UNTIL clock = ‘1’;

 timeout_clause ::=  FOR time_expression
WAIT FOR 150 ns;
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Equivalent Processes

 “Sensitivity List” vs “wait on”

Summation:  
PROCESS( A, B, Cin)
BEGIN
Sum <= A XOR B XOR Cin;

END PROCESS Summation;

Summation:  PROCESS
BEGIN
Sum <= A XOR B XOR Cin;

WAIT ON A, B, Cin;
END PROCESS Summation;

=

if you put a sensitivity list in a process, 
you can’t have a wait statement!

if you put a wait statement in a process, 
you can’t have a sensitivity list!
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“wait until” and “wait for”

 What do these do?

Summation:  PROCESS
BEGIN
Sum <= A XOR B XOR Cin;
WAIT UNTIL A = ‘1’;

END PROCESS Summation;

Summation:  PROCESS
BEGIN
Sum <= A XOR B XOR Cin;

WAIT FOR 100 ns;
END PROCESS Summation;
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Subprograms

 Similar to subprograms found in other languages

 Allow repeatedly used code to be referenced many times 
without duplication

 Break down large chunks of code in small, more manageable 
parts

 VHDL provides functions and procedures for use
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Functions

 Produce a single return value
 Called by expressions
 Cannot modify the parameters passed to it
 Requires a RETURN statement

FUNCTION add_bits2 (a, b : IN BIT) RETURN BIT IS
VARIABLE result : BIT;  -- variable is local to function

BEGIN
result := (a XOR b);
RETURN result;  -- the two functions are equivalent

END add_bits2;

FUNCTION add_bits (a, b : IN BIT) RETURN BIT IS
BEGIN  -- functions cannot return multiple values

RETURN (a XOR b);
END add_bits;
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Functions

 Functions must be called by other statements
 Parameters use positional association

ARCHITECTURE behavior OF adder IS
BEGIN

PROCESS (enable, x, y)
BEGIN
IF (enable = '1') THEN
result <= add_bits(x, y);
carry  <= x AND y;

ELSE
carry, result <= '0';

END PROCESS;
END behavior;

FUNCTION add_bits

(a, b : IN BIT)
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Procedures

 Produce many output values
 Are invoked by statements
 May modify the parameters

PROCEDURE add_bits3 (SIGNAL a, b, en : IN BIT;
SIGNAL temp_result, temp_carry : OUT BIT) IS

BEGIN -- procedures can return multiple values
temp_result <= (a XOR b) AND en;
temp_carry <= a AND b AND en;

END add_bits3;

 Do not require a RETURN statement



- 66 -CS - ES

Procedures (Cont.)

 With parameter 
passing, it is possible 
to further simplify the 
architecture

ARCHITECTURE behavior OF adder IS
BEGIN

PROCESS (enable, x, y)
BEGIN

add_bits3(x, y, enable, 
result, carry);

END PROCESS;
END behavior;

PROCEDURE add_bits3

(SIGNAL a, b, en : IN BIT;
SIGNAL temp_result,     

temp_carry : OUT BIT)

 The parameters must 
be compatible in terms 
of data flow and data 

type
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Signal Resolution and Buses

Bus Resolution Function

OR

AND

Execution phase Signal update phase

Resolved
signal

Transaction queue
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Busses and Wires

 What is the difference between a bus and a 
wire?

 Wires – have only one driving source
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Busses and Wires

 Busses on the other hand 
can be driven by one or 
more sources

 In both cases there can 
be more than one 
destination for the signal

 With busses, only the 
device acting as source 
will actually drive a value.  
All others will have their 
output set at high 
impedance (Z).

ENB

ENB

ENB



- 70 -CS - ES

Information on a Bus

 Possible state for a BUS
 Driven high (driven to a 1)
 Driven low (driven to a 0)
 No driving value (Z or high impedance)
 Capacitive  high (H)
 Capacitive low (L)
 Conflict (one driver driving it to a 1, another a 0) (X)
 Conflict of capacitive values (W)

 And other useful values
 U – Uninitialized
 – - a Don’t Care

Definition of standard value set according to standard      
IEEE 1164:     {'0', '1', 'Z', 'X', 'H', 'L', 'W', 'U', '-'} 
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Bus Resolution

 VHDL does not allow multiple concurrent signal
assignments to the same signal
 Multiple sequential signal assignments are allowed

LIBRARY attlib; USE attlib.att_mvl.ALL;
-- this code will generate an error
ENTITY bus IS

PORT (a, b, c : IN MVL; z : OUT MVL);
END bus;

ARCHITECTURE smoke_generator OF bus IS
SIGNAL circuit_node : MVL;

BEGIN
circuit_node <= a;
circuit_node <= b;
circuit_node <= c;
z <= circuit_node;

END smoke_generator;



- 72 -CS - ES

Bus Resolution Functions

 VHDL uses bus resolution functions to resolve the
final value of multiple signal assignments

FUNCTION wired_and (drivers : MVL_VECTOR) RETURN MVL IS
VARIABLE accumulate : MVL := '1';

BEGIN
FOR i IN drivers'RANGE LOOP
accumulate := accumulate AND drivers(i);

END LOOP;
RETURN accumulate;

END wired_and;

 Bus resolution functions may be user defined or
called from a package
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Bus Resolution

 If a signal has a bus resolution function associated with it, then
the signal may have multiple drivers

LIBRARY attlib; USE attlib.att_mvl.ALL;
USE WORK.bus_resolution.ALL;

ENTITY bus IS
PORT (a, b, c : IN MVL; z : OUT MVL);

END bus;

ARCHITECTURE fixed OF bus IS
SIGNAL circuit_node : wired_and MVL;

BEGIN
circuit_node <= a;
circuit_node <= b;
circuit_node <= c;
z <= circuit_node;

END fixed;
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Assert Statement

 ASSERT statements are used to print messages at 
the simulation console when specified runtime 
conditions are met

 ASSERT statements defined one of four severity 
levels :
 Note -- relays information about conditions to the user
 Warning -- alerts the user to conditions that are not 

expected, but not fatal
 Error -- relays conditions that will cause the model to work 

incorrectly
 Failure -- alerts the user to conditions that are catastrophic 
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Assert Statements

 Syntax of the ASSERT statement
ASSERT condition
REPORT “violation statement”
SEVERITY level;

 When the specified condition is false, the ASSERT 
statement triggers and the report is issued

 The violation statement is enclosed in quotes
ASSERT NOT((s=‘1’) AND (r=‘1’))
REPORT “Set and Reset are both 1”
SEVERITY ERROR;
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Testbenches
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Why Use Testbenches?

 specify inputs and observe outputs

 advantages
• test design without downloading to board
• can program a test of all inputs as well 

automatically check expected behaviour

 disadvantages
• cannot test all functionality (e.g. keyboard)
• cannot determine/resolve timing issues
• can only test a few combinations of input
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Testbench

Testbench Structure

Unit
Under
Test

clk
reset

input_1
input_2
input_n

. . .

output_1
output_2

output_n

. . .

Manipulated by
Testbench

Checked by
Testbench
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Manipulating Input

 Input set as normal signal assignment

ALU

operand1

operand2

alu_result

opcode

input: process()
begin

operand1 <= “000”;
operand2 <= “101”;
opcode <= “100”;

end process;
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assert condition
report debug-string
severity note | warning | error | failure;

Syntax:

Checking Output

 Output read as a normal signal read
 Checking done with assert-report-severity
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Checking Output

 Output read as a normal signal read
 Checking done with assert-report-severity

verify: process(output)
begin

if clk'event and clk = '0' then
if (opcode = AND_OP)

assert (alu_result = operand1 and operand2)
report “Output is incorrect”
severity error;

end if;
end if;

end process;

Falling edge allows 
signal to be checked
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File Input

 Using assert to check behaviour implies 
writing correct behaviour twice

 Instead, write expected behaviour in file:
Testbench

Unit
Under Test

Assert
Expected Output

Output
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File Input

 Require file and line variables:

InputProcess: process (clk)
file input : text is “input.txt”;
variable line_in: line;
variable op1_in, op2_in :   

std_logic_vector(3 downto 0);
begin

if clk'event and clk='1' then
if not endfile(input) then

readline(input, line_in);
read(line_in, op1_in);
read(line_in, op2_in);
operand1 <= op1_in;
operand2 <= op2_in;

end if;
end if;

end process;

std.textio.all;
ieee.std_logic_textio.all;



- 84 -CS - ES

File Input

 Require file and line variables:

CheckProcess: process (clkt)
file output1 : text is “output.txt”;
variable line_in: line;
variable o_exp : std_logic;

begin
if clk'event and clk='0' then

if not endfile(output1) then
readline(output1, line_in);
read(line_in, o_exp);
assert (o_exp = alu_result)
report “Output incorrect”
severity error;

end if;
end if;

end process;

ALU

operand1

operand2

alu_result

opcode
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Debug Output

 Lines can also be used to write to std_out:

CheckProcess: process(clk)
variable line_out: line;

begin
if clk'event and clk = '1' then

write(line_out, string'(“At time ”));
write(line_out, now);
write(line_out, string'(“, output is ”));
write(line_out, alu_result;
writeline(output, line_out);

end if;
end process;

ALU

operand1

operand2

alu_result

opcode
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Summary

 Behavioral VHDL is used to focus on the behavior, 
and not the structure, of the device

 Several familiar programming constructs, such as
CASE and IF-THEN-ELSE statements, are available

 Subprograms allow large parts of code to be broken
down into smaller, more manageable parts

 Bus resolution functions decide the final value of
multiple signal assignments to one signal
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VHDL for Performance Modeling

Goals:
 Estimate the performance of a given system by analyzing a 

high level model of the system
 Model needs to include as little detail as necessary

• Shorter model development time
• Shorter model simulation time
• Easier interpretation of the results

 Model needs to produce as accurate results as possible
• Increasing accuracy usually means increasing detail - a conflict 

with the goal above
• Performance models often may not produce accurate absolute 

results, but will produce accurate comparative results with a 
similar model of another system alternative

• Selecting the best candidate architecture can be performed with 
an abstract performance model, but model must be refined to 
ensure performance goals are met
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VHDL for Performance Modeling

 Performance models are used for:
 Evaluating and comparing two or more design alternatives 

(architecture selection)
• Hardware configuration
• Software configuration
• Hardware/software partitioning

 Determining the number and size of components (system sizing)
 Finding the system’s performance bottleneck (bottleneck 

identification)
 Determining the optimum value of a parameter (system tuning)
 Characterizing the load on the system (workload characterization)
 Predicting the system’s performance at future loads (forecasting)
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Rapid Prototyping Design Process

Performance Modeling

SYSTEM
DEF.

FUNCTION
DESIGN

HW & 
SW

PART.

HW
DESIGN

SW
DESIGN

HW
FAB

SW
CODE

INTEG.
& TEST

VIRTUAL PROTOTYPE

REUSE DESIGN LIBRARIES AND DATABASE

Primarily
software

Primarily
hardware

HW & SW 
CODESIGN
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Performance Modeling Benefits

Performance modeling:

 aids in the evaluation of 
design alternatives,

 determines bottlenecks, 
overdesign, etc.,

 captures design decisions 
and assumptions,

 examines system behavior 
at boundary conditions,

 provides a focal point for 
early interaction of system, 
hardware, and software 
designers

Cost of Design Errors

Requirements Design Implementation Test Manufacture

Design Error Manifestation & Elimination

Requirements Design Implementation Test Manufacture

Modeling No Modeling

Cumulative Costs

Requirements Design Implementation Test Manufacture

Modeling

No Modeling

[Hein96]


