
- 1 -CS - ES

Embedded Systems

- 2 -CS - ES

Thursday

 Midterm exam: December 16th, 2010, AudiMO,
16:00 - 19:00

 No lecture on December 16th

 Open book: bring any handwritten or printed notes, or
any books you like.

 Please bring your ID.

- 3 -CS - ES

Exam Policy

 Midterm/End-of-Term Exam/End-of-Semester Exam

Requirement for admission to end-of-term and end-of-semester
exams:

 > 50% of points in problem sets,
 > 50% of points in each project milestone, and
 > 50% of points in midterm exam

 Final grade:
 best grade in end-of-term or end-of-semester exam

- 4 -CS - ES

Example

Suppression of all
“spikes”

shorter than the
delay

shorter than the
indicated

suppression
threshold

REVIEW

- 5 -CS - ES

Modeling Behavior

 Architecture body
 describes an implementation of an entity
 may be several per entity

 Behavioral architecture
 describes the algorithm performed by the module
 contains

• process statements, each containing
• sequential statements, including
• signal assignment statements and
• wait statements

REVIEW

- 6 -CS - ES

Modeling Structure

 Structural architecture
 implements the module as a composition of subsystems
 contains

• signal declarations, for internal interconnections
– the entity ports are also treated as signals

• component instances
– instances of previously declared entity/architecture pairs

• port maps in component instances
– connect signals to component ports

• wait statements

REVIEW

- 7 -CS - ES

Structure Example

int_clk

d0

d1

d2

d3

en

clk

q0

q1

q2

q3

bit0
d_latch
d

clk

q

bit1
d_latch
d

clk

q

bit2
d_latch
d

clk

q

bit3
d_latch
d

clk

q

gate
and2

a

b

y

architecture struct of reg4 is
signal int_clk : bit;

begin
bit0 : entity work.d_latch(basic)

port map (d0, int_clk, q0);
bit1 : entity work.d_latch(basic)

port map (d1, int_clk, q1);
bit2 : entity work.d_latch(basic)

port map (d2, int_clk, q2);
bit3 : entity work.d_latch(basic)

port map (d3, int_clk, q3);
gate : entity work.and2(basic)

port map (en, clk, int_clk);
end architecture struct;

REVIEW

- 8 -CS - ES

Testbench

Testbench Structure

Unit
Under
Test

clk
reset

input_1
input_2
input_n

. . .

output_1
output_2

output_n

. . .

Manipulated by
Testbench

Checked by
Testbench

REVIEW

- 9 -CS - ES

File Input

 Using assert to check behaviour implies
writing correct behaviour twice

 Instead, write expected behaviour in file:
Testbench

Unit
Under Test

Assert
Expected Output

Output

REVIEW

- 10 -CS - ES

Introduction to VHDL-AMS

- 11 -CS - ES

Introduction

 VHDL 1076 is suitable for modeling and simulating discrete
systems

 Many of today’s designs include at least some continuous
characteristics:
 System design

• Mixed-signal electrical designs
• Mixed electrical/non-electrical designs

 Analog design
• Analog behavioral modeling and simulation

 Digital design
• Detailed modeling (e.g. submicron effects)

 Designers want a uniform description language

- 12 -CS - ES

The world isn‘t digital
Micro-Electro-Mechanical Systems

(MEMS)

- 13 -CS - ES

VHDL-AMS Language Architecture

- 14 -CS - ES

VHDL-AMS Highlights (1)

 Superset of VHDL 1076
• Full VHDL 1076 syntax and semantics is supported

 Adds new simulation model supporting continuous behavior
• Continuous models based on differential algebraic equations

(DAEs)

• DAEs solved by dedicated simulation kernel: the analog
solver

• Handling of initial conditions, piecewise-defined behavior,
and discontinuities

- 15 -CS - ES

VHDL-AMS Highlights (2)

 Extended structural semantics
 Conservative semantics to model physical systems

• e.g. Kirchhoff’s laws for electrical circuits
 Non-conservative semantics for abstract models

• Signal-flow descriptions
 Mixed-signal interfaces

• Models can have digital and analog ports
 Mixed-signal semantics

 Unified model of time for a consistent synchronization of
• mixed event-driven/continuous behavior

 ·Mixed-signal initialization and simulation cycle
 ·Mixed-signal descriptions of behavior

 Frequency domain support
 Small-signal frequency and noise modeling and simulation

- 16 -CS - ES

Multiple Architectures per Entity

Focus on “timing” Focus on “speed” Focus on “power”

- 17 -CS - ES

First approximation: one-dimensional spring
model

- 18 -CS - ES

Quantities

 New object in VHDL 1076.1
 Represents an unknown in the set of differential algebraic equations

implied by the text of a model
 Continuous-time waveform
 Scalar subelements must be of a floating-point type
 Default initial value for scalar subelements is 0.0

- 19 -CS - ES

Simultaneous Statements (1)

 New class of statements in VHDL 1076.1
 Simple simultaneous statements express relationships between quantities

 Left-hand side and right-hand side must be expressions with scalar
subelements of a floating point type

 Statement is symmetrical w.r.t. its left-hand and right-hand sides
 Expressions may involve quantities, constants, literals, signals, and

(possibly user-defined) functions
 At least one quantity must appear in a simultaneous statement

- 20 -CS - ES

Simultaneous Statements (2)

 Analog solver is responsible for computing the values of the
quantities such that the relationships hold (subject to tolerances)

 Simultaneous statements may appear anywhere a concurrent
statements may appear

 The order of simultaneous statements does not matter

 Other forms for simultaneous statements:
 Simultaneous if statement
 Simultaneous case statement
 Simultaneous procedural statement

- 21 -CS - ES

Tolerances (1)

 Numerical algorithms used by analog solver can only find an
approximation of the exact solution

 Tolerances are used to specify how good the solution must be

 Each quantity and each simultaneous statement belongs to a tolerance
group indicated by a string expression

 All members of a tolerance group have the same tolerance
characteristics

 The language does not define how a tool uses tolerance groups !!

- 22 -CS - ES

Tolerances (2)
 A quantity gets its tolerance group from its subtype

- 23 -CS - ES

Parameterized Diode
 Example of a conservative model of an electrical component

 Simple large-signal model

- 24 -CS - ES

VHDL-AMS Model of Diode

- 25 -CS - ES

Terminal

 New object in VHDL 1076.1
 Basic support for structural composition with conservative

semantics
 Belongs to a nature

 Nature electrical defined in package electrical_system

- 26 -CS - ES

Nature

 Represents a physical discipline or energy domain
 Electrical and non-electrical disciplines

 Has two aspects related to physical effects
 Across: effort like effects (voltage, velocity, temperature, etc.)
 Through: flow like effects (current, force, heat flow rate, etc.)

 A nature defines the types of the across and through quantities
incident to a terminal of the nature

 A scalar nature additionally defines the reference terminal for all
terminals whose scalar subelements belong to the scalar nature

 A nature can be composite: array or record
 All scalar subelements must have the same scalar nature

 No predefined natures in VHDL 1076.1

- 27 -CS - ES

Electrical Systems Environment

 Assume package is compiled into a library Disciplines

- 28 -CS - ES

NATURES

 Physical disciplines or energy domains
 VHDL-AMS not limited to electrical quantities

nature electrical is
voltage across -- across type is ‘voltage’
current through -- through type is ‘current’
electrical_ground reference; -- reference terminal name

Nature Effort Flow
electrical voltage current
thermal temperature heat flow rate
k inematic_v veloc ity force
rotational_omega angular veloc ity torque
fluidic pressure volume flow rate

- 29 -CS - ES

Quantities

 For analog modeling

 Continuous time or frequency waveforms

 Quantities:
 Free Quantities (for signal flow modeling)
 Branch Quantities (for modeling of conservative energy

systems)
 Source Quantities (for frequency and noise modeling)

Syntax: quantity quantity_name {,…}: subtype_indication [:= expression];

- 30 -CS - ES

Free Quantity

 To break down complex equations into manageable pieces or for
data flow description
 Auxiliary variable

 Quantity name(s), double subtype and optionally an initial value
expression

quantity Vint : real := 5.0 ;

- 31 -CS - ES

Branch Quantity
 Branch between two terminals
 Constraints between branches that share terminal (Kirchhoff’s laws

in electrical domain)
 Branch quantities are used by equations of models

terminal anode, cathode: electrical;
quantity battery_voltage across battery_current through anode to cathode;
quantity leakage_voltage across battery_current through anode;

- 32 -CS - ES

Branch Quantity
 Example of a branch quantity

 quantity Uc across Ic through a to b;

Uc is defined as the
difference between
terminals a and b

Ic is the flow
through the

terminals a and b.

library ieee;
use ieee.electrical_systems.all;

-- ENTITY DEFINITON OF IDEAL CAPACITOR
entity capacitor is

generic (cap:real:=10.0e-5); -- capacity parameter
definition

port (terminal a: electrical;
terminal b: electrical);

end entity capacitor;

-- ARCHITECTURE DEFINITON OF CAPACITOR
architecture bhv of capacitor is
quantity Uc across Ic through a to b;

begin
Ic == cap * Uc’DOT ;

end architecture bhv;

- 33 -CS - ES

Source Quantity

 Specification of energy sources in frequency domain
 E.g. voltage source

quantity ac_source: real spectrum 1.0, 45.0;

- 34 -CS - ES

Quantity Attributes

 quantity_name’DOT Differential algebraic equation (DAE)
 quantity_name’INTEG
 quantity_name’DELAYED[(T)]
 quantity_name’SLEW[(maxrise)[,(maxfall])] SLEW (RISE,FALL)
 quantity_name’LTF(num,den) Laplace Transfer Function
 quantity_name’ZOH(TSampl[,(init_delay])
 quantity_name’ZTF(num,den,t[,init_del]) Z-Domain transfer function
 quantity_name’ABOVE(level)

- 35 -CS - ES

Q‘INTEG

 Integral function
 Needs to be initialized at zero time

 dtU
L

i LL
1

IL == (1/L) * UL’INTEG;

- 36 -CS - ES

Q‘DELAYED

 Delay of quantity for specific time unit

QD == Q’DELAYED(5.0e06);

Q’DELAYED([T]);

- 37 -CS - ES

Q’LTF

 Laplace Transfer Function
 num, den – static expressions of type real_vector

Q’LTF(num, den) ;

constant num : real_vector := (1.0, 2.0, 1.0);
constant den : real_vector := (1.0, 0.0, -1.0);

- 38 -CS - ES

Q‘ZOH
 Sample-and-Hold function

 NOTE: Controlled assignment of discrete value of
quantity to signal type variable –> S <= Q’ZOH(t_sampl);

Q’ZOH(Tsampl [init_delay]);

A/D D/A Converters

- 39 -CS - ES

Q‘ABOVE

 Quantity – boolean signal

 Q’Above(E) = TRUE when Q > E

 Q’Above(E) = FALSE when Q < E

 No change if Q = E

 Analog to digital conversion
(quantity to signal)

 Used to trigger processes

- 40 -CS - ES

Q’Above – An example

 1 bit ADC

library IEEE;
use IEEE.electrical_systems.all;

entity adc is
generic (Vref: real := 5.0) -- ref voltage
port (terminal inp : electrical; -- input

signal outp: out bit); -- output
end entity adc;

architecture one of adc is
quantity Vin across inp to ref; -- input voltage
begin

p1: process (Vin’above(Vref))
begin

if (Vin’above(Vref)) then
outp <= ‘1’;

else
outp <= ‘0’;

end if;
end process p1;

end architecture one ;

- 41 -CS - ES

Time Domain Simulation Cycle

- 42 -CS - ES

Example: Ideal OP amplifier

 IDEAL OP amplifier

OP

+

-

op_inp: electrical

op_inn: electrical

op_outp: electrical

V_inp

V_inn V_outp

 innVinpVGainoutV ___

- 43 -CS - ES

Example: Ideal OP amplifier

 Declaration of OP entity
library ieee;
use ieee.electrical_systems.all;

-- ENTITY DEFINITON OF IDEAL OP AMPLIFIER
entity op is

generic (gain:real:=10.0e5); -- gain parameter definition
port (terminal op_inp: electrical;

terminal op_inn: electrical;
terminal op_outp: electrical);

end entity op;

- 44 -CS - ES

Example: Ideal OP amplifier

 Declaration of OP architecture (operational)

-- ARCHITECTURE DEFINITON OF IDEAL OP
architecture ideal of op is

quantity v_inp across op_inp to electrical_ref;
quantity v_inn across op_inn to electrical_ref;
quantity v_outp across i_outp through op_outp to electrical_ref;

begin
v_outp == gain * (v_inp – v_inn); -- simultaneous statement

end architecture ideal;

- 45 -CS - ES

Example: Ideal OP amplifier

 Models for resistor and voltage source

library IEEE;
use IEEE.electrical_systems.all;

entity resistor is
generic (res : real := 1.0e03); – 1kOhm
port (terminal p, n : electrical);
end entity resistor;

architecture ideal of resistor is
quantity v across i through p to n;

begin
v == i * res;

end architecture ideal;

library IEEE;
use IEEE.MATH_REAL.all;
use IEEE.electrical_systems.all;

entity v_sine is
generic (
frequency : real:=10.0e2; -- frequency [Hertz]
amplitude : real:=5.0; -- amplitude [Volts]
phase : real := 0.0; -- initial phase [Degrees]
offset : real := 5.0); -- DC value [Volts]
port (terminal pos, neg : electrical);

end entity v_sine;

architecture ideal of v_sine is
quantity v across i through pos to neg;
quantity phase_rad : real;
quantity ac_spec : real spectrum 1.0,0.0;
begin
phase_rad == math_2_pi *(freq * NOW + phase / 360.0);
if domain = quiescent_domain or domain = time_domain use
v == offset + amplitude * sin(phase_rad) * EXP(-NOW);

else
v == ac_spec; -- used for Frequency (AC) analysis

end use;
end architecture ideal;

- 46 -CS - ES

Example: Ideal OP amplifier

use work;
-- ENTITY DEFINITON OF TEST-BENCH
entity testbench is
end entity testbench;
-- ARCHITECTURE DEFINITON OF IDEAL TEST-BENCH
architecture bhv of testbench is

terminal sin,r12,r23:electrical;
begin
-- sinus source
sinus1: entity sinus(ideal)

generic map (amplitude=>5.0, frequency=>10.0e3, phase=>0.0);
port map (pos=>sin, neg=>electrical_ref);

-- resistor R1
res1: entity res(ideal)

generic map (res=>100.0e3);
port map (p=>sin, n=>r12);

-- OP 1
op1: entity op(ideal)

generic map (gain=>10.0e4);
port map (inn=>r12,
inp=>electrical_ref,
outp=>r23);

-- resistor R2
res2: entity res(ideal)

generic map (res=>50.0e3);
port map (p=>r12,
n=>r23);

-- resistor R3
res3: entity res(ideal)

generic map (res=>10.0e3);
port map (p=>r23,
n=>electrical_ref);

end architecture bhv;

- 47 -CS - ES

VHDL-AMS EDA Tools

 MentorGraphics
 ADVanceMS
 SystemVision

 Cadence
 SimVision

 Support different subsets
of the language

- 48 -CS - ES

- 49 -CS - ES

Productivity Gap

- 50 -CS - ES

Introduction
The followings are not supported by native C/C++

 Hardware style communication

• Signals, protocols, etc.
 Notion of time

• Cycle/clock, delay, time sequenced op., etc.
 Concurrency

• HW operates in parallel.
 Reactivity

• HW responds to stimuli.
 Hardware data types

• Bits, bit-vector types, multi-valued logic type, and so on.

SystemC is modeling platform consisting of a set of C++ class library,
plus a simulation kernel that supports hardware modeling concepts at
the system level, behavioral level and register transfer level.

- 51 -CS - ES

SystemC features

 Processes for concurrency
 Clocks for time
 Hardware data types bit vectors, 4-valued logic, ….
 Waiting and watching for reactivity
 Modules, ports, and signals for hierarchy
 Channel, interface, and event abstract communications

 Simulation support
 Support of multiple abstraction levels and iterative refinement

- 52 -CS - ES

SystemC V2.0 language structure

- 53 -CS - ES

Comparison: SystemC - VHDL

- 54 -CS - ES

SystemC system

 A system consists of a set of concurrent processes that describe
functionality.

 Processes communicate with each other through channels.
 Processes can be combined into modules to create hierarchy.

- 55 -CS - ES

SystemC design flow
Untimed functional (UTF)

A network of HW/SW neutral modules executing in zero times
and communicating with abstract channels.

Timed Functional (TF)
A network of modules executing in some defined times and
communicating with abstract channels. Allows allocation of
time to behavioral blocks (using wait(delay))

- 56 -CS - ES

Modules

 Modules are basic building blocks of a SystemC design
 A module contains processes (functionality)
 and/or sub-modules (hierarchical structure)

SC_MODULE(module_name) {
// Declaration of module ports
// Declaration of module signals
// Declaration of processes
// Declaration of sub-modules
SC_CTOR(module_name) { // Module constructor
// Specification of process type and sensitivity
// Sub-module instantiation and port mapping
}
// Initialization of module signals

};

- 57 -CS - ES

Ports (1)
 Ports of a module are the external interfaces that pass information

to and from a module

 In SystemC one port can be IN, OUT or INOUT

 Signals are used to connect module ports allowing modules to
communicate

 Very similar to ports and signals in VHDL

//module.h
sc_in<int> s1;
sc_out<int> s2;
int i;

Portdeklaration

Interfaces

sc_fifo<int>:

sc_out<int> port; sc_in<int> port;

- 58 -CS - ES

Ports and Signals

 How to read and write a port ?

 Methods read(); and write();

 Examples:

 in_tmp = in.read(); //reads the port in to in_tmp

 out.write(out_temp); //writes out_temp in the out port

- 59 -CS - ES

Signals

 sc_signal<T>
 Signal are also used for connecting two modules ports in parent

module.

 sc_fifo<T>
 sc_fifo is a predefined primitive channel intended to model the behavior

of a fifo, that is, a first-in first-out buffer.

 sc_buffer<T>
 like sc_fifo (buffer size 1)

FIFOOUT Port IN Port

SignalOUT Port

IN Port

IN Port

IN Port

only one IN-Port

- 60 -CS - ES

Events

 data type: sc_event

 functionality:
 declaration: sc_event my_event;
 my_event.notify(); // immediately
 my_event.notify(SC_ZERO_TIME);// next delta-Zyklus
 my_event.notify(10, SC_NS); // after 10 Ns

 waiting on event: wait(my_event);
 process suspended until new event

- 61 -CS - ES

Processes
 Process Semantics

 Encapsulates functionality
 Basic unit of concurrent execution
 Not hierarchical

 Process Activation
 Processes have sensitivity lists
 Processes are triggered by events on sensitive signals

 Process Types
 Method (SC_METHOD)

 asynchronous block, like a sequential function
 Thread (SC_THREAD)

 asynchronous process
 Clocked Thread (SC_CTHREAD)

 synchronous process

- 62 -CS - ES

Processes

- 63 -CS - ES

SC_METHOD

- 64 -CS - ES

SC_THREAD

- 65 -CS - ES

SC_CTHREAD

- 66 -CS - ES

Static Sensitivity

 Explicit sensitivity list in constructor
 Process declared as SC_METHOD()
 Connectivity is known only after construction,

EventFinder find the relevant event and
connect to it

sensitive << clk.pos();

- 67 -CS - ES 67

Sensitivity with Clock

SC_MODULE (Ctrl) {
AMBA::AHBInitiator_outmaster_port<32,32> P1;
sc_in_clk clk;

SC_CTOR(Ctrl)
: P1("P1")
{
SC_METHOD(compute);
sensitive << clk.pos();
dont_initialize();

}

void compute(void);
};

Ctrl.h

void Ctrl::compute() {
if (P1.getTransaction()) {

P1.Transaction->setAddress(myAddr);
P1.Transaction->setAccessSize(32);
P1.Transaction->setType(tlmWriteAtAddress);
P1.Transaction->setWriteData(myData);
P1.sendTransaction();

}
}

Process is triggered
every cycle, need to test

bus availability

- 68 -CS - ES

Dynamic Sensitivity

 Process declared as SC_THREAD()
 Use wait() statement in the process

wait(P1.getSendAddrTrfEvent());

- 69 -CS - ES

Example: Dynamic Sensitivity

Infinite loop
with “waits”

void Ctrl::compute() {
while(1) {

wait(P1.getReceiveAddrTrfEvent());
P1.getAddrTrf();
ADDR = P1.AddrTrf->getAddress();
. . .

}
}

SC_MODULE (Ctrl) {
AMBA::AHBInitiator_outmaster_port<32,32> P1;

SC_CTOR(Ctrl)
: P1("P1")
{
SC_THREAD(compute);

}

void compute(void);
};

Ctrl.cpp

Ctrl.h

- 70 -CS - ES

Comparison

wait(event)

wait(event)

wait(event)

SC_THREADSC_METHOD

Event:
- clock

- transfer

while(1)

SC_CTOR(myModule) {
SC_METHOD(myProcess);
sensitive << P1.____TrfEventFinder();
dont_initialize();

}

Sensitivity established in the constructor: Sensitivity embedded in the process code:

void myProcess(void) {
while(1) {

do_something();
wait(P1.____TrfEvent());
. . . .

Event sequence must be
correct or code will stall!

New
event

Initialization
(or event: clock, transfer)

Static Dynamic

- 71 -CS - ES

Dynamic Sensitivity

 wait()
 only for SC_THREADS and SC_CTHREADS !!
 wait(e1);

 // waiting for e1 or e2
 wait(e1 | e2);

 // waiting foe e1 and e2
 wait(e1 & e2);

 // wait 200 ns
 wait(200, SC_NS);

- 72 -CS - ES

Behavioral VS RTL-level Modeling

 Behavioral-level
 Don’t care about

states, registers etc.
 Use I/O-cycles
 Think your design as

program flow

 RTL-level
 Map different states,

registers etc.
 Use clock-cycles
 Think your design as

finite- state-machine

- 73 -CS - ES

Select B;
Load R2;

Select A;
Load R1;

Add;
Load R4;

Register
R1

Register
R2

Register
R3

Register
R4

+

*
Register

R3
Register

R4

E(7:0)

A(7:0) B(7:0) D(7:0)C(7:0)

G(15:0)F(15:0)

Data Path Behavior Control Flow
(not all shown)

R1 R2

A(7:0) B(7:0) D(7:0)C(7:0)

ALU

RTL Structure
(not all shown)

Select B;
Load R2;

Select A;
Load R1;

Add;
Load R4;

RTL Control Flow
(not all shown)

RTL Level Synthesis

- 74 -CS - ES

R1 R2

A(7:0) B(7:0) D(7:0)C(7:0)

ALU

RTL Structure
(not all shown)

Select B;
Load R2;

Select A;
Load R1;

Add;
Load R4;

RTL Control Flow
(not all shown)

Logic Synthesis

- 75 -CS - ES

Untimed Functional Modeling

 Model of computation is KPN
 Communication is handled through limited size FIFO-channels

with blocking read() and write() operations

 Algorithmic delays are represented by initial values stored in FIFOs
 Use modules that contain SC_THREAD processes

 No time will be present, everything advances in delta cycles
 Synchronization is implicit

 Write access block until space is available
 Read access block until data is available

 Caution
 Provide initial values of FIFOs prior simulation
 Make sure that data is produced before it is consumed

- 76 -CS - ES

Timed functional models

 Notion of time is needed when functional models are
used on lower level of abstraction

 Processing delays are done with wait(sc_time)

 Timed and untimed models can peacefully coexist and
interact

 It is even possible to mix FIFO-and signal-based
communication

- 77 -CS - ES

Hardware description languages

- 78 -CS - ES

SystemC – Transaction level modeling

- 79 -CS - ES

Concept of TLM
 Event-driven simulation style

 That’s the name “Transaction”
 Simulation triggered by data communication
 Bus events

 Goal
 High speed simulation
 Simplify modeling
 Early system analysis

 In a transaction-level model (TLM), the details of communication
among computation components are separated from the details of
computation components.

- 80 -CS - ES

Transaction Level Modeling

 Transaction-level modeling allows faster simulations than pin-based
interfaces
 e.g. large burst-mode transfer may take many actual clock

cycles, here we can use burst_read and burst_write methods

 Use transaction-level modeling when it is beneficial
 functional modeling (untimed and timed)
 platform modeling
 test benches

- 81 -CS - ES

TLM- refinement

- 82 -CS - ES

TLM- different abstraction layers

- 83 -CS - ES

Abstraction Levels

Computation

C
om

m
un

ic
at

io
n

A B

C

D F

Un-
timed

Approximate-
timed

Cycle-
timed

Un-
timed

Approximate-
timed

A. System specification model
B. Timed functional model
C. Transaction-level model (TLM)
D. Bus cycle-accurate model (BCAM)
E. Computation cycle-accurate model

(CCAM)
F. Cycle-accurate model (CAM)

E

Cycle-
timed

 Abstraction based on level of detail & granularity
 Computation and communication

 System design flow
 Path from model A to model F

• Design methodology and modeling flow
• Set of models and transformations between models

- 84 -CS - ES

Referenzen

 SystemC Quickreference
• http://comelec.enst.fr/hdl/sc_docs/systemc_quickreference.pdf

 ASIC World SystemC Tutorial:
• http://www.asic-world.com/systemc/tutorial.html
• Codebeispiele

 SystemC Einführung
• SystemC Introduction, W.Yang, Dynalith Systems, 2006

 SystemC, TLM (Transaktionsebene) Tutorials,
SystemC Verifcation Library

• http://www.doulos.com/knowhow/systemc/

- 85 -CS - ES

Overview of embedded systems design

