
- 1 -CS - ES

Embedded Systems

- 2 -CS - ES

Thursday

 Midterm exam: December 16th, 2010, AudiMO,
16:00 - 19:00

 No lecture on December 16th

 Open book: bring any handwritten or printed notes, or
any books you like.

 Please bring your ID.

- 3 -CS - ES

Exam Policy

 Midterm/End-of-Term Exam/End-of-Semester Exam

Requirement for admission to end-of-term and end-of-semester
exams:

 > 50% of points in problem sets,
 > 50% of points in each project milestone, and
 > 50% of points in midterm exam

 Final grade:
 best grade in end-of-term or end-of-semester exam

- 4 -CS - ES

Example

Suppression of all
“spikes”

shorter than the
delay

shorter than the
indicated

suppression
threshold

REVIEW

- 5 -CS - ES

Modeling Behavior

 Architecture body
 describes an implementation of an entity
 may be several per entity

 Behavioral architecture
 describes the algorithm performed by the module
 contains

• process statements, each containing
• sequential statements, including
• signal assignment statements and
• wait statements

REVIEW

- 6 -CS - ES

Modeling Structure

 Structural architecture
 implements the module as a composition of subsystems
 contains

• signal declarations, for internal interconnections
– the entity ports are also treated as signals

• component instances
– instances of previously declared entity/architecture pairs

• port maps in component instances
– connect signals to component ports

• wait statements

REVIEW

- 7 -CS - ES

Structure Example

int_clk

d0

d1

d2

d3

en

clk

q0

q1

q2

q3

bit0
d_latch
d

clk

q

bit1
d_latch
d

clk

q

bit2
d_latch
d

clk

q

bit3
d_latch
d

clk

q

gate
and2

a

b

y

architecture struct of reg4 is
signal int_clk : bit;

begin
bit0 : entity work.d_latch(basic)

port map (d0, int_clk, q0);
bit1 : entity work.d_latch(basic)

port map (d1, int_clk, q1);
bit2 : entity work.d_latch(basic)

port map (d2, int_clk, q2);
bit3 : entity work.d_latch(basic)

port map (d3, int_clk, q3);
gate : entity work.and2(basic)

port map (en, clk, int_clk);
end architecture struct;

REVIEW

- 8 -CS - ES

Testbench

Testbench Structure

Unit
Under
Test

clk
reset

input_1
input_2
input_n

. . .

output_1
output_2

output_n

. . .

Manipulated by
Testbench

Checked by
Testbench

REVIEW

- 9 -CS - ES

File Input

 Using assert to check behaviour implies
writing correct behaviour twice

 Instead, write expected behaviour in file:
Testbench

Unit
Under Test

Assert
Expected Output

Output

REVIEW

- 10 -CS - ES

Introduction to VHDL-AMS

- 11 -CS - ES

Introduction

 VHDL 1076 is suitable for modeling and simulating discrete
systems

 Many of today’s designs include at least some continuous
characteristics:
 System design

• Mixed-signal electrical designs
• Mixed electrical/non-electrical designs

 Analog design
• Analog behavioral modeling and simulation

 Digital design
• Detailed modeling (e.g. submicron effects)

 Designers want a uniform description language

- 12 -CS - ES

The world isn‘t digital
Micro-Electro-Mechanical Systems

(MEMS)

- 13 -CS - ES

VHDL-AMS Language Architecture

- 14 -CS - ES

VHDL-AMS Highlights (1)

 Superset of VHDL 1076
• Full VHDL 1076 syntax and semantics is supported

 Adds new simulation model supporting continuous behavior
• Continuous models based on differential algebraic equations

(DAEs)

• DAEs solved by dedicated simulation kernel: the analog
solver

• Handling of initial conditions, piecewise-defined behavior,
and discontinuities

- 15 -CS - ES

VHDL-AMS Highlights (2)

 Extended structural semantics
 Conservative semantics to model physical systems

• e.g. Kirchhoff’s laws for electrical circuits
 Non-conservative semantics for abstract models

• Signal-flow descriptions
 Mixed-signal interfaces

• Models can have digital and analog ports
 Mixed-signal semantics

 Unified model of time for a consistent synchronization of
• mixed event-driven/continuous behavior

 ·Mixed-signal initialization and simulation cycle
 ·Mixed-signal descriptions of behavior

 Frequency domain support
 Small-signal frequency and noise modeling and simulation

- 16 -CS - ES

Multiple Architectures per Entity

Focus on “timing” Focus on “speed” Focus on “power”

- 17 -CS - ES

First approximation: one-dimensional spring
model

- 18 -CS - ES

Quantities

 New object in VHDL 1076.1
 Represents an unknown in the set of differential algebraic equations

implied by the text of a model
 Continuous-time waveform
 Scalar subelements must be of a floating-point type
 Default initial value for scalar subelements is 0.0

- 19 -CS - ES

Simultaneous Statements (1)

 New class of statements in VHDL 1076.1
 Simple simultaneous statements express relationships between quantities

 Left-hand side and right-hand side must be expressions with scalar
subelements of a floating point type

 Statement is symmetrical w.r.t. its left-hand and right-hand sides
 Expressions may involve quantities, constants, literals, signals, and

(possibly user-defined) functions
 At least one quantity must appear in a simultaneous statement

- 20 -CS - ES

Simultaneous Statements (2)

 Analog solver is responsible for computing the values of the
quantities such that the relationships hold (subject to tolerances)

 Simultaneous statements may appear anywhere a concurrent
statements may appear

 The order of simultaneous statements does not matter

 Other forms for simultaneous statements:
 Simultaneous if statement
 Simultaneous case statement
 Simultaneous procedural statement

- 21 -CS - ES

Tolerances (1)

 Numerical algorithms used by analog solver can only find an
approximation of the exact solution

 Tolerances are used to specify how good the solution must be

 Each quantity and each simultaneous statement belongs to a tolerance
group indicated by a string expression

 All members of a tolerance group have the same tolerance
characteristics

 The language does not define how a tool uses tolerance groups !!

- 22 -CS - ES

Tolerances (2)
 A quantity gets its tolerance group from its subtype

- 23 -CS - ES

Parameterized Diode
 Example of a conservative model of an electrical component

 Simple large-signal model

- 24 -CS - ES

VHDL-AMS Model of Diode

- 25 -CS - ES

Terminal

 New object in VHDL 1076.1
 Basic support for structural composition with conservative

semantics
 Belongs to a nature

 Nature electrical defined in package electrical_system

- 26 -CS - ES

Nature

 Represents a physical discipline or energy domain
 Electrical and non-electrical disciplines

 Has two aspects related to physical effects
 Across: effort like effects (voltage, velocity, temperature, etc.)
 Through: flow like effects (current, force, heat flow rate, etc.)

 A nature defines the types of the across and through quantities
incident to a terminal of the nature

 A scalar nature additionally defines the reference terminal for all
terminals whose scalar subelements belong to the scalar nature

 A nature can be composite: array or record
 All scalar subelements must have the same scalar nature

 No predefined natures in VHDL 1076.1

- 27 -CS - ES

Electrical Systems Environment

 Assume package is compiled into a library Disciplines

- 28 -CS - ES

NATURES

 Physical disciplines or energy domains
 VHDL-AMS not limited to electrical quantities

nature electrical is
voltage across -- across type is ‘voltage’
current through -- through type is ‘current’
electrical_ground reference; -- reference terminal name

Nature Effort Flow
electrical voltage current
thermal temperature heat flow rate
k inematic_v veloc ity force
rotational_omega angular veloc ity torque
fluidic pressure volume flow rate

- 29 -CS - ES

Quantities

 For analog modeling

 Continuous time or frequency waveforms

 Quantities:
 Free Quantities (for signal flow modeling)
 Branch Quantities (for modeling of conservative energy

systems)
 Source Quantities (for frequency and noise modeling)

Syntax: quantity quantity_name {,…}: subtype_indication [:= expression];

- 30 -CS - ES

Free Quantity

 To break down complex equations into manageable pieces or for
data flow description
 Auxiliary variable

 Quantity name(s), double subtype and optionally an initial value
expression

quantity Vint : real := 5.0 ;

- 31 -CS - ES

Branch Quantity
 Branch between two terminals
 Constraints between branches that share terminal (Kirchhoff’s laws

in electrical domain)
 Branch quantities are used by equations of models

terminal anode, cathode: electrical;
quantity battery_voltage across battery_current through anode to cathode;
quantity leakage_voltage across battery_current through anode;

- 32 -CS - ES

Branch Quantity
 Example of a branch quantity

 quantity Uc across Ic through a to b;

Uc is defined as the
difference between
terminals a and b

Ic is the flow
through the

terminals a and b.

library ieee;
use ieee.electrical_systems.all;

-- ENTITY DEFINITON OF IDEAL CAPACITOR
entity capacitor is

generic (cap:real:=10.0e-5); -- capacity parameter
definition

port (terminal a: electrical;
terminal b: electrical);

end entity capacitor;

-- ARCHITECTURE DEFINITON OF CAPACITOR
architecture bhv of capacitor is
quantity Uc across Ic through a to b;

begin
Ic == cap * Uc’DOT ;

end architecture bhv;

- 33 -CS - ES

Source Quantity

 Specification of energy sources in frequency domain
 E.g. voltage source

quantity ac_source: real spectrum 1.0, 45.0;

- 34 -CS - ES

Quantity Attributes

 quantity_name’DOT Differential algebraic equation (DAE)
 quantity_name’INTEG
 quantity_name’DELAYED[(T)]
 quantity_name’SLEW[(maxrise)[,(maxfall])] SLEW (RISE,FALL)
 quantity_name’LTF(num,den) Laplace Transfer Function
 quantity_name’ZOH(TSampl[,(init_delay])
 quantity_name’ZTF(num,den,t[,init_del]) Z-Domain transfer function
 quantity_name’ABOVE(level)

- 35 -CS - ES

Q‘INTEG

 Integral function
 Needs to be initialized at zero time

 dtU
L

i LL
1

IL == (1/L) * UL’INTEG;

- 36 -CS - ES

Q‘DELAYED

 Delay of quantity for specific time unit

QD == Q’DELAYED(5.0e06);

Q’DELAYED([T]);

- 37 -CS - ES

Q’LTF

 Laplace Transfer Function
 num, den – static expressions of type real_vector

Q’LTF(num, den) ;

constant num : real_vector := (1.0, 2.0, 1.0);
constant den : real_vector := (1.0, 0.0, -1.0);

- 38 -CS - ES

Q‘ZOH
 Sample-and-Hold function

 NOTE: Controlled assignment of discrete value of
quantity to signal type variable –> S <= Q’ZOH(t_sampl);

Q’ZOH(Tsampl [init_delay]);

A/D D/A Converters

- 39 -CS - ES

Q‘ABOVE

 Quantity – boolean signal

 Q’Above(E) = TRUE when Q > E

 Q’Above(E) = FALSE when Q < E

 No change if Q = E

 Analog to digital conversion
(quantity to signal)

 Used to trigger processes

- 40 -CS - ES

Q’Above – An example

 1 bit ADC

library IEEE;
use IEEE.electrical_systems.all;

entity adc is
generic (Vref: real := 5.0) -- ref voltage
port (terminal inp : electrical; -- input

signal outp: out bit); -- output
end entity adc;

architecture one of adc is
quantity Vin across inp to ref; -- input voltage
begin

p1: process (Vin’above(Vref))
begin

if (Vin’above(Vref)) then
outp <= ‘1’;

else
outp <= ‘0’;

end if;
end process p1;

end architecture one ;

- 41 -CS - ES

Time Domain Simulation Cycle

- 42 -CS - ES

Example: Ideal OP amplifier

 IDEAL OP amplifier

OP

+

-

op_inp: electrical

op_inn: electrical

op_outp: electrical

V_inp

V_inn V_outp

 innVinpVGainoutV ___ 

- 43 -CS - ES

Example: Ideal OP amplifier

 Declaration of OP entity
library ieee;
use ieee.electrical_systems.all;

-- ENTITY DEFINITON OF IDEAL OP AMPLIFIER
entity op is

generic (gain:real:=10.0e5); -- gain parameter definition
port (terminal op_inp: electrical;

terminal op_inn: electrical;
terminal op_outp: electrical);

end entity op;

- 44 -CS - ES

Example: Ideal OP amplifier

 Declaration of OP architecture (operational)

-- ARCHITECTURE DEFINITON OF IDEAL OP
architecture ideal of op is

quantity v_inp across op_inp to electrical_ref;
quantity v_inn across op_inn to electrical_ref;
quantity v_outp across i_outp through op_outp to electrical_ref;

begin
v_outp == gain * (v_inp – v_inn); -- simultaneous statement

end architecture ideal;

- 45 -CS - ES

Example: Ideal OP amplifier

 Models for resistor and voltage source

library IEEE;
use IEEE.electrical_systems.all;

entity resistor is
generic (res : real := 1.0e03); – 1kOhm
port (terminal p, n : electrical);
end entity resistor;

architecture ideal of resistor is
quantity v across i through p to n;

begin
v == i * res;

end architecture ideal;

library IEEE;
use IEEE.MATH_REAL.all;
use IEEE.electrical_systems.all;

entity v_sine is
generic (
frequency : real:=10.0e2; -- frequency [Hertz]
amplitude : real:=5.0; -- amplitude [Volts]
phase : real := 0.0; -- initial phase [Degrees]
offset : real := 5.0); -- DC value [Volts]
port (terminal pos, neg : electrical);

end entity v_sine;

architecture ideal of v_sine is
quantity v across i through pos to neg;
quantity phase_rad : real;
quantity ac_spec : real spectrum 1.0,0.0;
begin
phase_rad == math_2_pi *(freq * NOW + phase / 360.0);
if domain = quiescent_domain or domain = time_domain use
v == offset + amplitude * sin(phase_rad) * EXP(-NOW);

else
v == ac_spec; -- used for Frequency (AC) analysis

end use;
end architecture ideal;

- 46 -CS - ES

Example: Ideal OP amplifier

use work;
-- ENTITY DEFINITON OF TEST-BENCH
entity testbench is
end entity testbench;
-- ARCHITECTURE DEFINITON OF IDEAL TEST-BENCH
architecture bhv of testbench is

terminal sin,r12,r23:electrical;
begin
-- sinus source
sinus1: entity sinus(ideal)

generic map (amplitude=>5.0, frequency=>10.0e3, phase=>0.0);
port map (pos=>sin, neg=>electrical_ref);

-- resistor R1
res1: entity res(ideal)

generic map (res=>100.0e3);
port map (p=>sin, n=>r12);

-- OP 1
op1: entity op(ideal)

generic map (gain=>10.0e4);
port map (inn=>r12,
inp=>electrical_ref,
outp=>r23);

-- resistor R2
res2: entity res(ideal)

generic map (res=>50.0e3);
port map (p=>r12,
n=>r23);

-- resistor R3
res3: entity res(ideal)

generic map (res=>10.0e3);
port map (p=>r23,
n=>electrical_ref);

end architecture bhv;

- 47 -CS - ES

VHDL-AMS EDA Tools

 MentorGraphics
 ADVanceMS
 SystemVision

 Cadence
 SimVision

 Support different subsets
of the language

- 48 -CS - ES

- 49 -CS - ES

Productivity Gap

- 50 -CS - ES

Introduction
The followings are not supported by native C/C++

 Hardware style communication

• Signals, protocols, etc.
 Notion of time

• Cycle/clock, delay, time sequenced op., etc.
 Concurrency

• HW operates in parallel.
 Reactivity

• HW responds to stimuli.
 Hardware data types

• Bits, bit-vector types, multi-valued logic type, and so on.

SystemC is modeling platform consisting of a set of C++ class library,
plus a simulation kernel that supports hardware modeling concepts at
the system level, behavioral level and register transfer level.

- 51 -CS - ES

SystemC features

 Processes  for concurrency
 Clocks  for time
 Hardware data types  bit vectors, 4-valued logic, ….
 Waiting and watching for reactivity
 Modules, ports, and signals for hierarchy
 Channel, interface, and event  abstract communications

 Simulation support
 Support of multiple abstraction levels and iterative refinement

- 52 -CS - ES

SystemC V2.0 language structure

- 53 -CS - ES

Comparison: SystemC - VHDL

- 54 -CS - ES

SystemC system

 A system consists of a set of concurrent processes that describe
functionality.

 Processes communicate with each other through channels.
 Processes can be combined into modules to create hierarchy.

- 55 -CS - ES

SystemC design flow
Untimed functional (UTF)

A network of HW/SW neutral modules executing in zero times
and communicating with abstract channels.

Timed Functional (TF)
A network of modules executing in some defined times and
communicating with abstract channels. Allows allocation of
time to behavioral blocks (using wait(delay))

- 56 -CS - ES

Modules

 Modules are basic building blocks of a SystemC design
 A module contains processes ( functionality)
 and/or sub-modules (hierarchical structure)

SC_MODULE(module_name) {
// Declaration of module ports
// Declaration of module signals
// Declaration of processes
// Declaration of sub-modules
SC_CTOR(module_name) { // Module constructor
// Specification of process type and sensitivity
// Sub-module instantiation and port mapping
}
// Initialization of module signals

};

- 57 -CS - ES

Ports (1)
 Ports of a module are the external interfaces that pass information

to and from a module

 In SystemC one port can be IN, OUT or INOUT

 Signals are used to connect module ports allowing modules to
communicate

 Very similar to ports and signals in VHDL

//module.h
sc_in<int> s1;
sc_out<int> s2;
int i;

Portdeklaration

Interfaces

sc_fifo<int>:

sc_out<int> port; sc_in<int> port;

- 58 -CS - ES

Ports and Signals

 How to read and write a port ?

 Methods read(); and write();

 Examples:

 in_tmp = in.read(); //reads the port in to in_tmp

 out.write(out_temp); //writes out_temp in the out port

- 59 -CS - ES

Signals

 sc_signal<T>
 Signal are also used for connecting two modules ports in parent

module.

 sc_fifo<T>
 sc_fifo is a predefined primitive channel intended to model the behavior

of a fifo, that is, a first-in first-out buffer.

 sc_buffer<T>
 like sc_fifo (buffer size 1)

FIFOOUT Port IN Port

SignalOUT Port

IN Port

IN Port

IN Port

only one IN-Port

- 60 -CS - ES

Events

 data type: sc_event

 functionality:
 declaration: sc_event my_event;
 my_event.notify(); // immediately
 my_event.notify(SC_ZERO_TIME);// next delta-Zyklus
 my_event.notify(10, SC_NS); // after 10 Ns

 waiting on event: wait(my_event);
 process suspended until new event

- 61 -CS - ES

Processes
 Process Semantics

 Encapsulates functionality
 Basic unit of concurrent execution
 Not hierarchical

 Process Activation
 Processes have sensitivity lists
 Processes are triggered by events on sensitive signals

 Process Types
 Method (SC_METHOD)

 asynchronous block, like a sequential function
 Thread (SC_THREAD)

 asynchronous process
 Clocked Thread (SC_CTHREAD)

 synchronous process

- 62 -CS - ES

Processes

- 63 -CS - ES

SC_METHOD

- 64 -CS - ES

SC_THREAD

- 65 -CS - ES

SC_CTHREAD

- 66 -CS - ES

Static Sensitivity

 Explicit sensitivity list in constructor
 Process declared as SC_METHOD()
 Connectivity is known only after construction,

EventFinder find the relevant event and
connect to it

sensitive << clk.pos();

- 67 -CS - ES 67

Sensitivity with Clock

SC_MODULE (Ctrl) {
AMBA::AHBInitiator_outmaster_port<32,32> P1;
sc_in_clk clk;

SC_CTOR(Ctrl)
: P1("P1")
{
SC_METHOD(compute);
sensitive << clk.pos();
dont_initialize();

}

void compute(void);
};

Ctrl.h

void Ctrl::compute() {
if (P1.getTransaction()) {

P1.Transaction->setAddress(myAddr);
P1.Transaction->setAccessSize(32);
P1.Transaction->setType(tlmWriteAtAddress);
P1.Transaction->setWriteData(myData);
P1.sendTransaction();

}
}

Process is triggered
every cycle, need to test

bus availability

- 68 -CS - ES

Dynamic Sensitivity

 Process declared as SC_THREAD()
 Use wait() statement in the process

wait(P1.getSendAddrTrfEvent());

- 69 -CS - ES

Example: Dynamic Sensitivity

Infinite loop
with “waits”

void Ctrl::compute() {
while(1) {

wait(P1.getReceiveAddrTrfEvent());
P1.getAddrTrf();
ADDR = P1.AddrTrf->getAddress();
. . .

}
}

SC_MODULE (Ctrl) {
AMBA::AHBInitiator_outmaster_port<32,32> P1;

SC_CTOR(Ctrl)
: P1("P1")
{
SC_THREAD(compute);

}

void compute(void);
};

Ctrl.cpp

Ctrl.h

- 70 -CS - ES

Comparison

wait(event)

wait(event)

wait(event)

SC_THREADSC_METHOD

Event:
- clock

- transfer

while(1)

SC_CTOR(myModule) {
SC_METHOD(myProcess);
sensitive << P1.____TrfEventFinder();
dont_initialize();

}

Sensitivity established in the constructor: Sensitivity embedded in the process code:

void myProcess(void) {
while(1) {

do_something();
wait(P1.____TrfEvent());
. . . .

Event sequence must be
correct or code will stall!

New
event

Initialization
(or event: clock, transfer)

Static Dynamic

- 71 -CS - ES

Dynamic Sensitivity

 wait()
 only for SC_THREADS and SC_CTHREADS !!
 wait(e1);

 // waiting for e1 or e2
 wait(e1 | e2);

 // waiting foe e1 and e2
 wait(e1 & e2);

 // wait 200 ns
 wait(200, SC_NS);

- 72 -CS - ES

Behavioral VS RTL-level Modeling

 Behavioral-level
 Don’t care about

states, registers etc.
 Use I/O-cycles
 Think your design as

program flow

 RTL-level
 Map different states,

registers etc.
 Use clock-cycles
 Think your design as

finite- state-machine

- 73 -CS - ES

Select B;
Load R2;

Select A;
Load R1;

Add;
Load R4;

Register
R1

Register
R2

Register
R3

Register
R4

+

*
Register

R3
Register

R4

E(7:0)

A(7:0) B(7:0) D(7:0)C(7:0)

G(15:0)F(15:0)

Data Path Behavior Control Flow
(not all shown)

R1 R2

A(7:0) B(7:0) D(7:0)C(7:0)

ALU

RTL Structure
(not all shown)

Select B;
Load R2;

Select A;
Load R1;

Add;
Load R4;

RTL Control Flow
(not all shown)

RTL Level Synthesis

- 74 -CS - ES

R1 R2

A(7:0) B(7:0) D(7:0)C(7:0)

ALU

RTL Structure
(not all shown)

Select B;
Load R2;

Select A;
Load R1;

Add;
Load R4;

RTL Control Flow
(not all shown)

Logic Synthesis

- 75 -CS - ES

Untimed Functional Modeling

 Model of computation is KPN
 Communication is handled through limited size FIFO-channels

with blocking read() and write() operations

 Algorithmic delays are represented by initial values stored in FIFOs
 Use modules that contain SC_THREAD processes

 No time will be present, everything advances in delta cycles
 Synchronization is implicit

 Write access block until space is available
 Read access block until data is available

 Caution
 Provide initial values of FIFOs prior simulation
 Make sure that data is produced before it is consumed

- 76 -CS - ES

Timed functional models

 Notion of time is needed when functional models are
used on lower level of abstraction

 Processing delays are done with wait(sc_time)

 Timed and untimed models can peacefully coexist and
interact

 It is even possible to mix FIFO-and signal-based
communication

- 77 -CS - ES

Hardware description languages

- 78 -CS - ES

SystemC – Transaction level modeling

- 79 -CS - ES

Concept of TLM
 Event-driven simulation style

 That’s the name “Transaction”
 Simulation triggered by data communication
 Bus events

 Goal
 High speed simulation
 Simplify modeling
 Early system analysis

 In a transaction-level model (TLM), the details of communication
among computation components are separated from the details of
computation components.

- 80 -CS - ES

Transaction Level Modeling

 Transaction-level modeling allows faster simulations than pin-based
interfaces
 e.g. large burst-mode transfer may take many actual clock

cycles, here we can use burst_read and burst_write methods

 Use transaction-level modeling when it is beneficial
 functional modeling (untimed and timed)
 platform modeling
 test benches

- 81 -CS - ES

TLM- refinement

- 82 -CS - ES

TLM- different abstraction layers

- 83 -CS - ES

Abstraction Levels

Computation

C
om

m
un

ic
at

io
n

A B

C

D F

Un-
timed

Approximate-
timed

Cycle-
timed

Un-
timed

Approximate-
timed

A. System specification model
B. Timed functional model
C. Transaction-level model (TLM)
D. Bus cycle-accurate model (BCAM)
E. Computation cycle-accurate model

(CCAM)
F. Cycle-accurate model (CAM)

E

Cycle-
timed

 Abstraction based on level of detail & granularity
 Computation and communication

 System design flow
 Path from model A to model F

• Design methodology and modeling flow
• Set of models and transformations between models

- 84 -CS - ES

Referenzen

 SystemC Quickreference
• http://comelec.enst.fr/hdl/sc_docs/systemc_quickreference.pdf

 ASIC World SystemC Tutorial:
• http://www.asic-world.com/systemc/tutorial.html
• Codebeispiele

 SystemC Einführung
• SystemC Introduction, W.Yang, Dynalith Systems, 2006

 SystemC, TLM (Transaktionsebene) Tutorials,
SystemC Verifcation Library

• http://www.doulos.com/knowhow/systemc/

- 85 -CS - ES

Overview of embedded systems design

