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Embedded Systems                                  
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The world isn‘t digital
Micro-Electro-Mechanical Systems 

(MEMS)

REVIEW
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VHDL-AMS Language Architecture
REVIEW
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REVIEW
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Productivity Gap
REVIEW
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Introduction
The followings are not supported by native C/C++

 Hardware style communication

• Signals, protocols, etc.
 Notion of time

• Cycle/clock, delay, time sequenced op., etc.
 Concurrency

• HW operates in parallel.
 Reactivity

• HW responds to stimuli.
 Hardware data types

• Bits, bit-vector types, multi-valued logic type, and so on.

SystemC is modeling platform consisting of a set of C++ class library, 
plus a simulation kernel that supports hardware modeling concepts at 
the system level, behavioral level and register transfer level.

REVIEW
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SystemC features

 Processes  for concurrency
 Clocks  for time
 Hardware data types  bit vectors, 4-valued logic, ….
 Waiting and watching for reactivity
 Modules, ports, and signals for hierarchy
 Channel, interface, and event  abstract communications

 Simulation support
 Support of multiple abstraction levels and iterative refinement

REVIEW
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SystemC V2.0 language structure
REVIEW
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Comparison:  SystemC - VHDL
REVIEW
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SystemC design flow
Untimed functional (UTF)

A network of HW/SW neutral modules executing in zero times 
and communicating with abstract channels.

Timed Functional (TF)
A network of modules executing in some defined times and 
communicating with abstract channels. Allows allocation of 
time to behavioral blocks (using wait(delay))

REVIEW
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SystemC – Transaction level modeling

REVIEW
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Concept of TLM
 Event-driven simulation style

 That’s the name “Transaction”
 Simulation triggered by data communication
 Bus events

 Goal
 High speed simulation
 Simplify modeling
 Early system analysis

 In a transaction-level model (TLM), the details of communication 
among computation components are separated from the details of 
computation components.

REVIEW
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TLM- refinement

REVIEW
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TLM- different abstraction layers

REVIEW
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Synthesizable SystemC
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Hardware description languages
REVIEW
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Importance of High-Level Design Methods
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Overview of embedded systems design
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1981 1984 1987 1990 1993 1996 1999 2002

Leading edge
chip in 1981

10,000
transistors

Leading edge
chip in 2002

150,000,000
transistors

Graphical illustration of Moore’s law

 Something that doubles frequently grows more quickly 
than most people realize!
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Embedded System Hardware

 Embedded system hardware is frequently used in a loop
(„hardware in a loop“):

actuators
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Many examples of such loops

 Heating

 Lights

 Engine control

 Power supply

 …

 Robots

Heating: www.masonsplumbing.co.uk/images/heating.jpg
Robot:: Courtesy and ©: H.Ulbrich, F. Pfeiffer, TU München
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Example Real-Time Applications

Many real-time systems are control systems.

Example 1: A simple one-sensor, one-actuator control system.

control-law
computation

A/D

A/D
D/A

sensor plant actuator

rk

yk

y(t) u(t)

uk
reference
input r(t)

The system
being controlled
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Simple Control System (cont’d)

Pseudo-code for this system:

set timer to interrupt periodically with period T;
at each timer interrupt do

do analog-to-digital conversion to get y;
compute control output u;
output u and do digital-to-analog conversion;

end do

T is called the sampling period.  T is a key design choice.  
Typical range for T: seconds to milliseconds.
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Embedded System Hardware

 Embedded system hardware is frequently used in a loop
(„hardware in a loop“):

actuators
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Sensors

 Processing of physical data starts with capturing this data.
 Sensors can be designed for virtually every physical and 

chemical quantity
 including weight, velocity, acceleration, electrical current, voltage, 

temperatures etc.
 chemical compounds.

 Many physical effects used for constructing sensors.
 Examples:

 law of induction (generation of voltages in an electric field),
 light-electric effects.

 Huge amount of sensors designed in recent years.
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Example: Acceleration Sensor

Courtesy & ©: S. Bütgenbach, TU Braunschweig
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Charge-coupled devices (CCD) image sensors

Based on charge transfer to next pixel cell

Corresponding to “bucket brigade device” 
(German: “Eimerkettenschaltung”)
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Comparison CCD/CMOS sensors

See also B. Diericks: CMOS image sensor concepts. Photonics West 2000 Short course (Web)

Property CCD CMOS

Technology 
optimized for

Optics VLSI technology

Technology Special Standard

Smart sensors No, no logic on chip Logic elements on chip

Access Serial Random

Size Limited Can be large

Power consumption Low Larger

Applications Compact cameras Low cost devices
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Example: Biometrical Sensors

Example: Fingerprint sensor (© Siemens, VDE):

Matrix of 256 x 
256 elem.
Voltage ~ 
distance. 
Resistance also 
computed. No 
fooling by 
photos and wax 
copies.
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Example: Biometrical System

e.g.; Integrated into ID mouse. 
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Other sensors

 Rain sensors for wiper control
(„Sensors multiply like rabbits“ [ITT automotive])

 Pressure sensors

 Proximity sensors

 Engine control sensors

 Hall effect sensors
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Standard layout of sensor systems for contin. entities

 Sensor: detects/measures entity and converts it to 
electrical domain
 May entail ES-controllable actuation: e.g. charge transfer in 

CCD
 Amplifier: adjusts signal to the dynamic range of the A/D 

conversion
 Often dynamically adjustable gain: e.g. ISO settings at digital 

cameras, input gain for microphones (sound or ultrasound), 
extremely wide dynamic ranges in seismic data logging

 Sample + hold: samples signal at discrete time instants
 A/D conversion: converts samples to digital domain

Sensor Amplifier
Sample

and hold

A/D

conversion
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Discretization of time

Vx is a sequence of values or a mapping 

Discrete time: sample and hold-devices.
Ideally: width of clock pulse -> 0

Ve is a mapping ℝ ℝ
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Discretization of values: A/D-converters
1. Flash A/D converter (1)

 Basic element: analog comparator

 Output = ´1´ if voltage at input + exceeds that at input -.
 Output = ´0´ if voltage at input - exceeds that at input +.

 Idea:
 Generate n different voltages by voltage divider (resistors), 

e.g. Vref, ¾ Vref, ½ Vref, ¼ Vref.
 Use n comparators for parallel comparison of input voltage Vx to these 

voltages.
 Encoder to compute digital output.
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Flash A/D converter

 Encodes input 
number of most 
significant ‘1’ as 
an unsigned 
number, e.g.
“1111” -> “100”,
“0111” -> “011”,
“0011” -> “010”,
“0001” -> “001”,
“0000” -> “000”
(Priority 
encoder).

* Frequently, the case h(t) > Vref would not be decoded

*
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Assuming 0  h(t)  Vref

VrefVref /2
“00“
“01“
“10“
“11“

Vref /4 3Vref /4

Encoding of voltage intervals

h(t)
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Resolution and speed of Flash A/D-converter
 Resolution (in bits): number of bits produced

 Resolution Q (in volts): difference between two input voltages 
causing the output to be incremented by 1

n
VQ FSR with

Q: resolution in volts per step
VFSR: difference between largest

and smallest voltage
n: number of voltage intervals

Example:
Q = Vref /4 for the
previous slide, 
assuming * to be
absent

 Parallel comparison with reference voltage
Speed: O(1)
Hardware complexity: O(n)
Applications: e.g. in video processing
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Higher resolution:
Successive approximation 

Key idea: binary search:
Set MSB='1'
if too large: reset MSB
Set MSB-1='1'
if too large: reset MSB-1

Speed:  O(ld(n))
Hardware complexity: O(ld(n))

with n= # of distinguished
voltage levels;

slow, but high precision possible.

h(t)

w(t)
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Successive approximation (2)

1100

1000

1010
1011

t

V

Vx

V-
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Embedded System Hardware

 Embedded system hardware is frequently used in a loop
(„hardware in a loop“):

actuators
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Digital-to-Analog (D/A) 
Converters 
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I ~ nat (x), where nat(x): natural 
number represented by x;
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Actuators and output

• Huge variety of actuators and outputs, impossible to 
represent

• Two base types:

• analogue drive (requires D/A conversion)
• speakers, electrical motors with collector

• electromagnetic (e.g., coils) or electrostatic drives

• piezo drives

• digital drive (requires amplification only)
• LEDs

• stepper motors

• relais, electromagnetic valve 
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Embedded System Hardware

 Embedded system hardware is frequently used in a loop
(„hardware in a loop“):

actuators
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Instruction Set Architecture
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Instruction Set Architecture
Is the interface between hardware and software. 

 allows easy programming (compilers, OS, ..);
• Provides convenient functionality to higher levels

 allows efficient implementations (hardware);
• Permits an efficient implementation at lower levels

 has a long lifetime (survives many HW generations) -
portability
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Instruction Set Architecture (ISA)
 How is data represented?

• Set of machine-recognized data types
– bytes, words, integers, floating point, strings, . . .

 Where can data be stored?
• Programmable storage

– regs, PC, memory

 How can data be accessed?
• Methods of identifying and obtaining data referenced by instructions (addressing modes)

– reg., absolute, relative, reg + offset, …

 What operations can be done on data?
• Operations performed on those data types

– Add, sub, mul, div, xor, move, ….

 How are instructions encoded?
Format (encoding) of the instructions

– Op code, operand fields, …
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How is data represented?
- Data formats

 The ISA supports several data formats by providing representations for 
integers, characters, floating-point, multimedia, etc. 

 Integer data formats can be signed or unsigned 
(e.g., in DEC Alpha there is byte, 16-bit word, 32-bit longword, and 64-bit 
quadword). 

 There are two ways of ordering byte addresses within a word
 big-endian: most significant byte first, and 
 little-endian: least significant byte first. 

 There are also packed and unpacked BCD numbers, and ASCII characters.
 Floating-point data formats (ANSI/IEEE 754-1985):

standard, basic or extended, each having two widths: single or double.
 Multimedia data formats are 32-, 64-, and 128-bit words (soon perhaps 

also 256-bit) concluding several 8- or 16-bit pixel representations or 32-bit 
(single precision) floating-point numbers used for 3D graphics.
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Where can data be stored?
- Address space

 Several address spaces are distinguished by the (assembly 
language) programmer, such as register space, stack space, heap 
space, text space, I/O space, and control space. 

 Except for the registers, all other address spaces are mapped onto 
a single contiguous memory address space. 

 A RISC ISA additionally contains a register file, which consists of a 
relatively large number of general-purpose CPU registers
- early RISC processors: MIPS:  32 32-bit general purpose 
registers,
RISC I: register windowing

 Contemporary RISC processors: additionally 32  64-bit floating-
point and multimedia registers.
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How can data be accessed?
- Addressing modes

 Register mode: the operand is stored in one of the registers.
 Immediate (or literal) mode: the operand is a part of the instruction.
 Direct (or absolute) mode: the address of the operand in memory is stored 

in the instruction.
 Register indirect (or register deferred) mode: the address of the operand 

in memory is stored in one of the registers.
 Autoincrement (or register indirect with postincrement) mode: like the 

register indirect, except that the content of the register is incremented after 
the use of the address. 
 This mode offers automatic address increment useful in loops and in 

accessing byte, half-word, or word arrays of operands.
 Autodecrement (register indirect with predecrement) mode: the content of 

the register is decremented and is then used as a register indirect address. 
 This mode can be used to scan an array in the direction of decreasing 

indices.
 ….
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Addressing mode   Example instruction / Meaning 

Register    load Reg1,Reg2              
            Reg1  (Reg2)   

Immediate   load Reg1,#const           
            Reg1  const    

Direct      load Reg1,(const)           
            Reg1  Mem[const]

Register    load Reg1,(Reg2)            
indirect    Reg1  Mem[(Reg2)]

Autoincrement  load Reg1,(Reg2)+
               Reg1  Mem[(Reg2)], Reg2  (Reg2) + step

Autodecrement  load Reg1,-(Reg2)        
               Reg2  (Reg2) - step, Reg1  Mem[(Reg2)]

Displacement   load Reg1,displ(Reg2)    
               Reg1  Mem[displ + (Reg2)]  

Indexed and      load Reg1,(Reg2*scale)    
scaled indexed   Reg1  Mem[(Reg2)*scale] 

Indirect         load Reg1,(Reg2,Reg3*scale) 
scaled indexed   Reg1  Mem[(Reg2) + (Reg3)*scale] 

Indirect scaled indexed  load Reg1,displ(Reg2,Reg3*scale) 
with displacement        Reg1  Mem[displ + (Reg2) + (Reg3)*scale]

PC-relative      branch displ
                 PC  PC + displ (if branch taken)

const,displ  ... decimal, hexadecimal, octal or binary numbers
       step  ... e.g., 4 in systems with 4-byte uniform  instruction size
      scale  ... scaling factor, e.g., 1, 2, 4, 8, 16 

Addressing 
Modes
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What operations can be done on data?
- Instruction set

 Data movement instructions: transfer data from one location to another.
 When there is a separate I/O address space, these instructions also 

include special I/O instructions. 
 Stack manipulation instructions (e.g. push, pop) also fall into this 

category.
 Integer arithmetic and logical instructions: can be one-operand (e.g. 

complement), two-operand or three-operand instructions.
 In some processors, different instructions are used for different data 

formats of their operands. 
There may be separate signed and unsigned multiply/divide 
instructions.

 Shift and rotate instructions: left or right shifts and rotations. 
 There are two types of shifts: logical and arithmetic.

 Bit manipulation instructions: operate on specified fields of bits. The field 
is specified by its width and offset from the beginning of the word. 
Instructions usually include test (affecting certain flags), set, clear, and 
possibly others.
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Instruction Set (continued)

 Multimedia instructions: 
 process multiple sets of small operands and obtain multiple 

results by a single instruction
 Utilization of subword parallelism (data parallel instructions, 

SIMD)
 Saturation arithmetic
 Additional arithmetic, masking and selection, reordering and

conversion instructions
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Instruction Set (continued)

 Floating-point instructions: floating-point data movement, arithmetic, 
comparison, square root, absolute value, transcendental functions, and 
others. 

 Control transfer instructions: consist primarily of jumps, branches, 
procedure calls, and procedure returns. We assume that jumps are 
unconditional and branches are conditional. Some systems may also have 
return from exception instructions.

 System control instructions: allow the user to influence directly the 
operation of the processor and other parts of the computer system.

 Special function unit instructions: perform particular operations on 
special function units (e.g. graphic units).
Another type of special instructions are atomic instructions for controlling 
the access to critical sections in multiprocessors.

 Depending on the way of specifying its operands an instruction can be one 
of the following types: 
 register-register, memory-register, register-memory, or memory-

memory.
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How are instructions encoded? 
- Instruction and addressing formats

 3-address instruction format: opcode | Dest | Src1 | Scr2; 
typically used by register-register (also called load/store) machines.

 2-address instruction format: opcode | Dest/Src1 | Src2 ; 
often supported register-memory machines.

 1-address instruction format: opcode | Src;
supported by the accumulator machine.

 0-address instruction format: only opcode;
supported by the stack machine.

 Most RISC ISAs use a 3-address instruction format where all instructions 
have a fixed length of 32 bits. 

 CISC ISAs often use register-memory with variable instruction lengths. 
 Accumulator machines are today mostly found in microcontrollers.
 Also stack machines use variable instruction lengths, today exemplified in 

JAVA processors.
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C = A + B
D = C - B 

Example - accumulator machine

load A  
add B   
store C 
load C  
sub B   
store D 
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C = A + B
D = C - B 

Example – stack machine

push B 
push A
add    
pop C  
push B 
push C 
sub    
pop D  
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C = A + B
D = C - B 

Example – register machine

load Reg1,A        

load Reg2,B        

add Reg3,Reg1,Reg2 

store C,Reg3       

load Reg1,C        

load Reg2,B        

sub Reg3,Reg1,Reg2 

store D,Reg3       
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Metrics of Performance

Compiler

Programming 
Language

Application

Datapath
Control

Transistors Wires Pins

ISA

Function Units

(millions) of Instructions per second: MIPS
(millions) of (FP) operations per second: MFLOP/s

Cycles per second (clock rate)

Megabytes per second

Answers per day/month
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CISC vs. RISC
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What is CISC?

 CISC is an acronym for Complex Instruction Set Computer and are chips 
that are easy to program and which make efficient use of memory 
 earliest machines were programmed in assembly language and memory was slow and 

expensive, 

 Most common microprocessor designs such as the Intel 80x86 and 
Motorola 68K series followed the CISC philosophy.

 But recent changes in software and hardware technology have forced a re-
examination of CISC and many modern CISC processors are hybrids, 
implementing many RISC principles.
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CISC Attributes

 2-operand format, where instructions have a source and a destination. 
Register to register, register to memory, and memory to register 
commands. Multiple addressing modes for memory, including specialized 
modes for indexing through arrays 

 Variable length instructions where the length often varies according to the 
addressing mode 

 Instructions which require multiple clock cycles to execute.

E.g. Pentium is considered a modern CISC processor
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 Complex instruction-decoding logic, driven by the need for a single 
instruction to support multiple addressing modes. 

 A small number of general purpose registers. This is the direct result 
of having instructions which can operate directly on memory and the 
limited amount of chip space not dedicated to instruction decoding, 
execution, and microcode storage. 

 Several special purpose registers. Many CISC designs set aside 
special registers for the stack pointer, interrupt handling, and so on. 
This can simplify the hardware design somewhat, at the expense of 
making the instruction set more complex. 

 A 'Condition code" register which is set as a side-effect of most 
instructions. This register reflects whether the result of the last 
operation is less than, equal to, or greater than zero and records if 
certain error conditions occur.
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At the time of their initial development, CISC machines used available 
technologies to optimize computer performance.

 Microprograming is as easy as assembly language to implement, 
and much less expensive than hardwiring a control unit. 

 The ease of microcoding new instructions allowed designers to 
make CISC machines upwardly compatible: a new computer could 
run the same programs as earlier computers because the new 
computer would contain a superset of the instructions of the earlier 
computers. 

 Because microprogram instruction sets can be written to match the 
constructs of high-level languages, the compiler does not have to be 
as complicated.
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Microprogramming

Main
Memory

execution
unit

control
memory

CPU

ADD
SUB
AND

DATA

.

.

.

User program 
plus Data

this can change!

one of these is
mapped into one

of these

Supported complex instructions a sequence of simple micro-inst
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CISC Disadvantages

 Earlier generations of a processor family generally were contained as a 
subset in every new version - so instruction set & chip hardware become 
more complex with each generation of computers. 

 So that as many instructions as possible could be stored in memory with 
the least possible wasted space, individual instructions could be of almost 
any length - this means that different instructions will take different amounts 
of clock time to execute, slowing down the overall performance of the 
machine. 

 Many specialized instructions aren't used frequently enough to justify their 
existence -approximately 20% of the available instructions are used in a 
typical program. 

 CISC instructions typically set the condition codes as a side effect of the 
instruction. Not only does setting the condition codes take time, but 
programmers have to remember to examine the condition code bits before 
a subsequent instruction changes them.
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What is RISC?

 RISC, or Reduced Instruction Set Computer. is a type of microprocessor 
architecture that utilizes a small, highly-optimized set of instructions, rather 
than a more specialized set of instructions often found in other types of 
architectures.

 About 80% of the computations of a typical program required only about 
20% of the instructions in a processor's instruction set. The most frequently 
used instructions were simple instructions such as load, store and add.

 Certain design features have been characteristic of most RISC processors: 
 one cycle execution time: RISC processors have a CPI (clock per instruction) 

of one cycle. This is due to the optimization of each instruction on the CPU and 
a technique called PIPELINING 

 pipelining: a techique that allows for simultaneous execution of parts, or 
stages, of instructions to more efficiently process instructions; 

 large number of registers: the RISC design philosophy generally incorporates 
a larger number of registers to prevent in large amounts of interactions with 
memory 
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RISC Attributes

The main characteristics of CISC microprocessors are:
 Extensive instructions. 
 Complex and efficient machine instructions. 
 Microencoding of the machine instructions. 
 Extensive addressing capabilities for memory operations. 
 Relatively few registers.

In comparison, RISC processors are more or less the opposite of the above:
 Reduced instruction set. 
 Less complex, simple instructions. 
 Hardwired control unit and machine instructions. 
 Few addressing schemes for memory operands with only two basic 

instructions, LOAD and STORE 
 Many symmetric registers which are organized into a register file.
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CISC versus RISC

CISC RISC

Emphasis on hardware Emphasis on software

Includes multi-clock
complex instructions

Single-clock,
reduced instruction only

Memory-to-memory:
"LOAD" and "STORE"
incorporated in instructions

Register to register:
"LOAD" and "STORE"
are independent instructions

Small code sizes,
high cycles per second

Low cycles per second,
large code sizes

Transistors used for storing
complex instructions

Spends more transistors
on memory registers


