
- 1 -CS - ES

Embedded Systems

- 2 -CS - ES

Dr. Eric Armengaud from the Virtual Vehicle Competence
Center is going to give a talk on model-based

development and test of distributed automotive
embedded systems on Tuesday, Jan. 11th.

• Automotive embedded Systems
• SW Engineering
• networks (focus FlexRay)

- 3 -CS - ES

Embedded System Hardware

 Embedded system hardware is frequently used in a loop
(„hardware in a loop“):

actuators

REVIEW

- 4 -CS - ES

Embedded System Hardware

 Embedded system hardware is frequently used in a loop
(„hardware in a loop“):

actuators

REVIEW

- 5 -CS - ES

TI Embedded Processing Portfolio

32-bit ARM
Cortex™-M3

MCUs

16-bit ultra-
low power

MCUs
DSP

DSP+ARM
ARM

Cortex-A8
MPUs

TI Embedded Processors
Digital Signal Processors (DSPs)Microcontrollers (MCUs) ARM®-Based Processors

Software & Dev. Tools

32-bit
real-time

MCUs

Stellaris®

ARM® Cortex™-M3

Up to
100 MHz

Flash
8 KB to 256 KB

USB, ENET
MAC+PHY CAN,
ADC, PWM, SPI

Connectivity, Security,
Motion Control, HMI,
Industrial Automation

$1.00 to $8.00

C2000™

Delfino™

Piccolo™

40MHz to
300 MHz
Flash, RAM

16 KB to 512 KB

PWM, ADC,
CAN, SPI, I2C
Motor Control,
Digital Power,

Lighting, Ren. Enrgy
$1.50 to $20.00

Sitara™
ARM® Cortex™-A8

& ARM9

300MHz to
>1GHz

Cache,
RAM, ROM
USB, CAN,

PCIe, EMAC
Industrial computing,

POS & portable
data terminals

$5.00 to $20.00

MSP430™

Up to
25 MHz

Flash
1 KB to 256 KB
Analog I/O, ADC
LCD, USB, RF
Measurement,

Sensing, General
Purpose

$0.25 to $9.00

Ultra
Low power

DSP

C5000™

Up to 300 MHz
+Accelerator

Up to 320KB RAM
Up to 128KB ROM

USB, ADC
McBSP, SPI, I2C

Audio, Voice

Medical, Biometrics
$3.00 to $10.00

Multi-core
DSP

C6000™

24.000
MMACS

Cache
RAM, ROM

SRIO, EMAC
DMA, PCIe

Telecom T&M,
media gateways,

base stations
$40 to $200.00

C6000™

DaVinci™
video processors

OMAP™
300MHz to >1Ghz

+Accelerator
Cache

RAM, ROM
USB, ENET,

PCIe, SATA, SPI

Floating/Fixed Point
Video, Audio, Voice,
Security, Confer.
$5.00 to $200.00

- 6 -CS - ES

Piccolo™ controlSTICK

TMS320F28027
48-Pin Package

On-board USB
JTAG Emulation

USB JTAG
Interface & Power

LED LD1
(Power)

LED LD2
(GPIO34)

Peripheral
Header Pins

- 7 -CS - ES

Broad C2000 Application Base

Renewable
Energy

Generation

Telecom
Digital Power

AC Drives, Industrial
& Consumer Motor

Control

Automotive
Radar, Electric
Power Steering
& Digital Power

Power Line
Communications

LED Lighting
Consumer,
Medical &

Non-traditional

- 8 -CS - ES

TMS320F2802x/3x Block Diagram

32x32 bit
Multiplier

Sectored
Flash

Program Bus

Data Bus

RAM
Boot
ROM

32-bit
Auxiliary
Registers

3
32-bit
Timers

Real-Time
JTAG

Emulation
CPU

Register Bus

R-M-W
Atomic

ALU

PIE
Interrupt
Manager

eQEP

12-bit ADC

Watchdog

CAN 2.0B

I2C

SCI

SPI

GPIO

ePWM

eCAP

LIN

CLA Bus

CLA

Available only on TMS320F2803x devices: CLA, QEP, CAN, LIN

- 9 -CS - ES

ADC Module Block Diagram

12-bit A/D
Converter

SOC

EOCx

ADCINA0
ADCINA1

ADCINA7

ADCINB0
ADCINB1

ADCINB7

S/H
A

S/H
B

M
U

X

MUX
A RESULT0

RESULT1
RESULT2

RESULT15

Result
MUX

MUX
B

ADC
Generation

Logic
ADC full-scale
input range is

0 to 3.3V

CHSEL ADC
Interrupt

Logic

SOC0 TRIGSEL CHSEL ACQPS
SOC1 TRIGSEL CHSEL ACQPS
SOC2 TRIGSEL CHSEL ACQPS
SOC3 TRIGSEL CHSEL ACQPS

SOC15 TRIGSEL CHSEL ACQPS SO
C

x
Tr

ig
ge

rs

ADCINT1-9

Software

External Pin
(GPIO/XINT2_ADCSOC)

EPWMxSOCA (x = 1 to 7)
EPWMxSOCB (x = 1 to 7)

CPU Timer (0,1,2)

SOCx Signal ADCINT1
ADCINT2

SOCx Configuration Registers

- 10 -CS - ES

Embedded System Hardware

 Embedded system hardware is frequently used in a loop
(„hardware in a loop“):

actuators

REVIEW

- 11 -CS - ES

CISC vs. RISC
REVIEW

- 12 -CS - ES

At the time of their initial development, CISC machines used available
technologies to optimize computer performance.

 Microprogramming is as easy as assembly language to implement,
and much less expensive than hardwiring a control unit.

 The ease of microcoding new instructions allowed designers to
make CISC machines upwardly compatible: a new computer could
run the same programs as earlier computers because the new
computer would contain a superset of the instructions of the earlier
computers.

 Because microprogram instruction sets can be written to match the
constructs of high-level languages, the compiler does not have to be
as complicated.

REVIEW

- 13 -CS - ES

Microprogramming

Main
Memory

execution
unit

control
memory

CPU

ADD
SUB
AND

DATA

.

.

.

User program
plus Data

this can change!

one of these is
mapped into one

of these

Supported complex instructions a sequence of simple micro-inst

- 14 -CS - ES

What is RISC?

 RISC, or Reduced Instruction Set Computer. is a type of microprocessor
architecture that utilizes a small, highly-optimized set of instructions, rather
than a more specialized set of instructions often found in other types of
architectures.

 About 80% of the computations of a typical program required only about
20% of the instructions in a processor's instruction set. The most frequently
used instructions were simple instructions such as load, store and add.

 Certain design features have been characteristic of most RISC processors:
 one cycle execution time: RISC processors have a CPI (clock per instruction)

of one cycle. This is due to the optimization of each instruction on the CPU and
a technique called PIPELINING

 pipelining: a techique that allows for simultaneous execution of parts, or
stages, of instructions to more efficiently process instructions;

 large number of registers: the RISC design philosophy generally incorporates
a larger number of registers to prevent in large amounts of interactions with
memory

REVIEW

- 15 -CS - ES

RISC’s disadvantages

 Code Quality
The performance of a RISC processor depends greatly on the code that it is
executing.

If the programmer (or compiler) does a poor job of instruction scheduling,
the processor can spend quite a bit stalling: waiting for the result of one
instruction before it can proceed with a subsequent instruction.

Since the scheduling rules can be complicated, most programmers use a
high level language (such as C or C++) and leave the instruction scheduling
to the compiler.

This makes the performance of a RISC application depend critically on the
quality of the code generated by the compiler. Therefore, developers (and
development tool suppliers such as Apple) have to choose their compiler
carefully based on the quality of the generated code.

- 16 -CS - ES

Comparision
Feature RISC CISC
Power One or two mill watts Many watts

Compute Speed Up to a mega-flop Up to several mega-flop

I/O Custom, any sort of
hardware

PC based options via a
BIOS

Cost Dollars Tens to hundreds of
Dollars

Environmental High Temp, Low EM
Emissions

Needs Fans

Operating System Port Difficult - Roughly
equivalent to making a
Mac OS run on a SPARC
Station

Load and Go- simplified
by an industry standard
BIOS

- 17 -CS - ES

“Iron Law” of Processor Performance

Time = Instructions Cycles Time
Program Program * Instruction * Cycle

– Instructions per program depends on source code, compiler technology, and
ISA

– Cycles per instructions (CPI) depends upon the ISA and the
microarchitecture

– Time per cycle depends upon the microarchitecture and the base technology

– RISC systems shorten execution time by reducing the clock cycles per
instruction.

– CISC systems improve performance by reducing the number of instructions
per program.

- 18 -CS - ES

What is an Operating System?

 An intermediate program between a user of a computer
and the computer hardware (to hide messy details)

 Goals:
 Execute user programs and make solving user problems easier
 Make the computer system convenient and efficient to use

Physical devices
Microarchitecture

Instruction Set Architecture
Operating System

Compiler Editors Shell
PwrPoint SPIM IE 6.1

System
Program

- 19 -CS - ES

Operating System Concepts

 Process Management
 Main Memory Management
 File Management
 I/O System Management
 Secondary Management
 Networking
 Protection System
 Command-Interpreter System

- 20 -CS - ES

Process Management

 A process is a program in execution
 A process contains

 Address space (e.g. read-only code, global data, heap, stack, etc)
 PC, $sp
 Opened file handles

 A process needs certain resources, including CPU time,
memory, files, and I/O devices

 The OS is responsible for the following activities for process
management
 Process creation and deletion
 Process suspension and resumption
 Provision of mechanisms for:

• process synchronization
• process communication

- 21 -CS - ES

Process State
 As a process executes, it changes state
 new: The process is being created
 ready: The process is waiting to be assigned to a

process
 running: Instructions are being executed
 waiting: The process is waiting for some event

(e.g. I/O) to occur
 terminated: The process has finished execution

- 22 -CS - ES

Process Control Block (PCB)

Information associated with each process
 Process state
 Program counter
 CPU registers (for context switch)
 CPU scheduling information (e.g. priority)
 Memory-management information (e.g. page table,

segment table)
 Accounting information (PID, user time, constraint)
 I/O status information (list of I/O devices allocated, list

of open files etc.)

- 23 -CS - ES

Process Control Block (PCB)

- 24 -CS - ES
24

CPU Switch From Process to Process

- 25 -CS - ES
25

9.2 RISC Machines

 Because of their load-store ISAs, RISC architectures require a large numbe
of CPU registers.

 These register provide fast access to data during sequential program
execution.

 They can also be employed to reduce the overhead typically caused by
passing parameters to subprograms.

 Instead of pulling parameters off of a stack, the subprogram is directed to
use a subset of registers.

 Fast Context Switching - support with two additional local register banks
(e.g; Infineon XC167CI)

 E.g.; Berkeley RISC: > 100 Regs

only 32 visible for the program.

RISC Machines

- 26 -CS - ES
26

9.2 RISC Machines

 This is how
registers can
be overlapped
in a RISC
system.

 The current
window
pointer (CWP)
points to the
active register
window.

RISC Machines

- 27 -CS - ES

Instruction Set Architecture
Is the interface between hardware and software.

 allows easy programming (compilers, OS, ..);
• Provides convenient functionality to higher levels

 allows efficient implementations (hardware);
• Permits an efficient implementation at lower levels

 has a long lifetime (survives many HW generations) -
portability

REVIEW

- 28 -CS - ES

Instruction Set Architecture (ISA) versus
Implementation

 ISA is the hardware/software interface
 Defines set of programmer visible state
 Defines instruction format (bit encoding) and instruction

semantics
 Examples: MIPS, x86, IBM 360, JVM

 Many possible implementations of one ISA
 360 implementations: model 30 (c. 1964), z990 (c. 2004)
 x86 implementations: 8086 (c. 1978), 80186, 286, 386, 486,

Pentium, Pentium Pro, Pentium-4 (c. 2000), AMD Athlon,
Transmeta Crusoe, SoftPC

 MIPS implementations: R2000, R4000, R10000, ...
 JVM: HotSpot, PicoJava, ARM Jazelle, ...

- 29 -CS - ES

Styles of ISA
 Accumulator
 Stack
 GPR

 CISC
 RISC
 VLIW
 Vector

 Boundaries are fuzzy, and hybrids
are common
 E.g., 8086/87 is hybrid accumulator-

GPR-stack ISA
 Many ISAs have added vector

extensions

- 30 -CS - ES

Styles of Implementation

 Microcoded
 Unpipelined single cycle
 Hardwired in-order pipeline
 Software interpreter
 Just-in-Time compiler

- 31 -CS - ES

Logical components

Microprogramming layer

Assembler language layer

Application - programs in
assembler language

Interpretation of the
assembler instructions
with the microprogram

Controling of the logical
components with the

microprogram

Micro programming

Tasks of the MP layer

- 32 -CS - ES

Registerblock

Program Counter
Accumulator

Stack Pointer

Instruction Register

Temporary I.R.

universal register
A-F

constants

main memory

program
data

Controller

Microarchitecture
Registerbank
16 16-Bit register
special register: PC, AC, SP usw.
universalRegister: A-F

ALU
16-Bit
4 funktions (F0 , F1)

A + B
A and B
Ā
A

2 statusbits (ALU-result)
N (neg.)
Z (zero)

shifter
1 Bit t

- 33 -CS - ES

control signals

Micro instruction

…………

Signals for data path and memory:
16 control signals load A-Bus
16 control signals load B-Bus
16 -"- load C-Bus
2 -"- A, B- Latch
2 -"- ALU-functions
2 -"- shifter
1 -"- MAR (M0)
3 -"- MBR (M1), memory read/write (M2, M3)
1 -"- AMUX (A0)
1 -"- Enable C-Bus (ENC)

60 Bit per micro instruction

Format micro instruction

- 34 -CS - ES

Reduction of the number of control bits

Use coding

A-Bus 4 Bit (instead of 16)
B-Bus 4 Bit
C-Bus 4 Bit

Format micro instruction

controll unit

- 35 -CS - ES

Microprogram control
unit

ontrol path

Microinstruction register
(MIR)

Clock generator (4-phases)

(MPC)

Microsequencer
(„next-Adrress-Logic)

Microprogram memory
(256 words x 32 Bits):

Stores the micro program

- 36 -CS - ES

Interpretation – macroinstruction

Fetch op-code of the next macroinstruction from the main memory and jump to the
first line of the microprogram

- 37 -CS - ES

Microprogramm ("Interpreter") for the macroarchitecture

Decode (2)

„000x“

Fetch
Decode
Opcode
(Start)

Execute
LODD

Execute
STOD

Execute
ADDD

Execute
SUBD

…

- 38 -CS - ES

Register-Transfer-Notation

microinstruction

- 39 -CS - ES

Horizontal vs Vertical Code

 Horizontal code has wider instructions
 Multiple parallel operations per instruction
 Fewer steps per macroinstruction
 Sparser encoding  more bits

 Vertical code has narrower instructions
 Typically a single datapath operation per instruction

– separate instruction for branches
 More steps to per macroinstruction
 More compact  less bits

 Nanocoding
 Tries to combine best of horizontal and vertical code

Instructions

Bits per Instruction

- 40 -CS - ES

Dictionary approach, two level control store
(indirect addressing of instructions)

“Dictionary-based coding schemes cover a wide range of
various coders and compressors.
Their common feature is that the methods use some kind of a
dictionary that contains parts of the input sequence which
frequently appear.
The encoded sequence in turn contains references to the
dictionary elements rather than containing these over and
over.”

[Á. Beszédes et al.: Survey of Code size Reduction Methods, Survey of Code-Size
Reduction Methods, ACM Computing Surveys, Vol. 35, Sept. 2003, pp 223-267]

- 41 -CS - ES
1/29/2009 CS152-Spring’09 41

Nanocoding

 MC68000 had 17-bit code containing either 10-bit jump or
9-bit nanoinstruction pointer
 Nanoinstructions were 68 bits wide, decoded to give 196

control signals

code ROM

nanoaddress

code
next-state

address

PC (state)

nanoinstruction ROM
data

Exploits recurring
control signal patterns
in code, e.g.,

ALU0 A  Reg[rs]
...
ALUi0 A  Reg[rs]
...

- 42 -CS - ES

Microprogramming in Modern Usage
• Microprogramming is far from extinct

• Played a crucial role in micros of the Eighties
DEC uVAX, Motorola 68K series, Intel 386 and 486

• Microcode pays an assisting role in most modern
micros (AMD Athlon, Intel Core 2 Duo, IBM
PowerPC)
• Most instructions are executed directly, i.e., with hard-wired

control
• Infrequently-used and/or complicated instructions invoke the

microcode engine

• Patchable microcode common for post-fabrication
bug fixes, e.g. Intel Pentiums load µcode patches
at bootup

- 43 -CS - ES

Pipelining

- 44 -CS - ES

Review: Single-cycle Processor

 Five steps to design a processor:
1. Analyze instruction set 

datapath requirements
2. Select set of datapath

components & establish
clock methodology

3. Assemble datapath meeting
the requirements

4. Analyze implementation of each instruction to determine setting
of control points that effects the register transfer.

5. Assemble the control logic
• Formulate Logic Equations
• Design Circuits

Control

Datapath

Memory

Processor
Input

Output

- 45 -CS - ES

Single Cycle Performance

 Assume time for actions are
 100ps for register read or write; 200ps for other events

 Clock rate is?

Instr Instr fetch Register
read

ALU op Memory
access

Register
write

Total time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

 What can we do to improve clock rate?
 Will this improve performance as well?

- 46 -CS - ES

Pipelining: It’s Natural!

 Laundry Example
 Ann, Brian, Cathy, Dave

each have one load of clothes
to wash, dry, and fold

 Washer takes 30 minutes
 Dryer takes 40 minutes
 “Folder” takes 20 minutes

A B C D

- 47 -CS - ES

Sequential Laundry

 Sequential laundry takes 6 hours for 4 loads
 If they learned pipelining, how long would laundry take?

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

Time
Task Order

- 48 -CS - ES

Pipelined Laundry: Why Wait?

 Pipelined laundry takes 3.5 hours for 4 loads

A

B

C

D

6 PM 7 8 9 10 11 Midnight

Time

30 40 40 40 40 20
• Pipelining does not help

latency of a single task, it
helps throughput of entire
workload

• Multiple tasks are
operating simultaneously

• Pipeline efficiency is limited by
slowest pipeline stage

• Potential speedup = Number
of pipeline stages

• Unbalanced lengths of pipe
stages reduces speedup

Task Order

- 49 -CS - ES

op rs rt immediate

016212631

 Data Memory {R[rs] + SignExt[imm16]} = R[rt]

32

ALUctr=

clk

busW

RegWr=

32

32busA

32

busB

5 5

Rw Ra Rb

RegFile

Rs

Rt

Rt

Rd

RegDst=

Extender
3216

imm16

ALUSrc=ExtOp=

MemtoReg=

clk

Data In

32

MemWr=

zero

01

0

1

=
A

LU 0

1

WrEn Adr

Data
Memory

5

Instruction<31:0>

<21:25>

<16:20>

<11:15>

<0:15>

Imm16RdRtRs

nPC_sel= instr
fetch
unit

clk

1/9/2011 49Fall 2010 -- Lecture #26

Single Cycle Datapath

- 50 -CS - ES

1) IFtch: Instruction Fetch, Increment PC

2) Dcd: Instruction Decode, Read Registers
3) Exec:

Mem-ref: Calculate Address
Arith-log: Perform Operation

4) Mem:
Load: Read Data from Memory
Store: Write Data to Memory

5) WB: Write Data Back to Register

Steps in Executing MIPS

- 51 -CS - ES

P
C

in
st

ru
ct

io
n

m
em

or
y

+4

rt
rs
rd

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

imm

1. Instruction
Fetch

2. Decode/
Register Read

3. Execute 4. Memory 5. Write
Back

Redrawn Single Cycle Datapath

- 52 -CS - ES

P
C

in
st

ru
ct

io
n

m
em

or
y

+4

rt
rs
rd

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

imm

1. Instruction
Fetch

2. Decode/
Register Read

3. Execute 4. Memory 5. Write
Back

Pipeline registers

 Need registers between stages
 To hold information produced in previous cycle

- 53 -CS - ES

More Detailed Pipeline

- 54 -CS - ES

IF for Load, Store, …

- 55 -CS - ES

ID for Load, Store, …

- 56 -CS - ES

EX for Load

- 57 -CS - ES

MEM for Load

- 58 -CS - ES

WB for Load

Wrong
register
number

- 59 -CS - ES

Corrected Datapath for Load

- 60 -CS - ES

 Every instruction must take same number of steps, also
called pipeline “stages”, so some will go idle sometimes

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

Time

Pipelined Execution Representation

- 61 -CS - ES

Pipeline Performance

 Assume time for stages is
 100ps for register read or write
 200ps for other stages

 What is pipelined clock rate?
 Compare pipelined datapath with single-cycle

datapath

Instr Instr fetch Register
read

ALU op Memory
access

Register
write

Total time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

- 62 -CS - ES

Pipeline Performance

Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)

- 63 -CS - ES

Graphically Representing Pipelines

 Shading indicates the unit is being used by the instruction
 Shading on the right half of the register file (ID or WB) or

memory means the element is being read in that stage
 Shading on the left half means the element is being written in

that stage

IF ID MEM WBEX

2 4 6 8 10Time

lw

IF ID MEM WBEXadd

- 64 -CS - ES

Hazards

 It would be happy if we split the datapath into stages
and the CPU works just fine
 But, things are not that simple as you may expect
 There are hazards!

 Situations that prevent starting the next instruction in
the next cycle
 Structure hazards

• Conflict over the use of a resource at the same time
 Data hazard

• Data is not ready for the subsequent dependent instruction
 Control hazard

• Fetching the next instruction depends on the previous branch
outcome

- 65 -CS - ES

Structure Hazards

 Conflict over the use of a resource at the same time

 Suppose the MIPS CPU with a single memory
 Load/store requires data access in MEM stage
 Instruction fetch requires instruction access from the same memory

• Instruction fetch would have to stall for that cycle
• Would cause a pipeline “bubble”

 Hence, pipelined datapaths require separate instruction
and data memories
 Or separate instruction and data caches

Unified
Memory

MIPS
CPU

Address Bus

Data Bus

Instruction
MemoryMIPS

CPU

Address Bus

Data Bus

Data
Memory

Address Bus

Data Bus

- 66 -CS - ES

Structure Hazards (Cont.)

2 4 6 8 10Time

IF ID MEM WBEX

IF ID MEM WBEX

IF ID MEM WBEX

IF ID MEM WBEXlw

add

sub

add

Need to separate instruction and data memory

- 67 -CS - ES

Structural Hazard – reg read/write

 Two different solutions have been used:
1) RegFile access is VERY fast: takes less than half the time of

ALU stage
• Write to Registers during first half of each clock cycle
• Read from Registers during second half of each clock cycle

2) Build RegFile with independent read and write ports

 Result: can perform Read and Write during same clock
cycle

- 68 -CS - ES

Data Hazards

 Data is not ready for the subsequent dependent instruction

IF ID MEM WBEX

IF ID MEM WBEX

add $s0,$t0,$t1

Bubblesub $t2,$s0,$t3 Bubble

• To solve the data hazard problem, the pipeline needs to be
stalled (typically referred to as “bubble”)
• Then, performance is penalized

• A better solution?
• Forwarding (or Bypassing)

- 69 -CS - ES

Reducing Data Hazard - Forwarding

IF ID MEM WBEX

IF Bubble Bubble ID MEM WBEX

add $s0,$t0,$t1

sub $t2,$s0,$t3

- 70 -CS - ES

Data Hazard – Load-Use Case

 Can’t always avoid stalls by forwarding
 Can’t forward backward in time!

IF ID MEM WBEX

IF ID MEM WBEX

lw $s0, 8($t1)

Bubblesub $t2,$s0,$t3

• This bubble can be hidden by proper instruction scheduling

- 71 -CS - ES

Code Scheduling to Avoid Stalls
 Reorder code to avoid use of load result in the next

instruction
 C code for A = B + E; C = B + F;

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

11 cycles13 cycles

- 72 -CS - ES

Control Hazard

 Branch determines the flow of instructions
 Fetching next instruction depends on branch outcome

 Pipeline can’t always fetch correct instruction
 Branch instruction is still working on ID stage when fetching the next instruction

IF ID MEM WBEXbeq $1,$2,L1

Taken target address
is known here

IF ID MEM WBEX

add $1,$2,$3

sw $1, 4($2)

L1: sub $1,$2, $3

IF ID MEM WBEX

IF ID MEM WBEX

Actual condition
is generated here

Fetch instruction based on the
comparison result

…

Bubblee

Bubble

- 73 -CS - ES

Delay Slot

 Branch instructions entail a “delay slot”
 Delayed branch always executes the next sequential instruction, with the

branch taking place after that one instruction delay
 Delay slot is the slot right after a delayed branch instruction

IF ID MEM WBEXbeq $1,$2,L1

Taken target address
is known here

IF ID MEM WBEX

add $1,$2,$3

L1: sub $1,$2, $3

IF ID MEM WBEX

Actual condition
is generated here

Fetch instruction based on the
comparison result

(delay slot)
…

- 74 -CS - ES

Delay Slot (Cont.)

 Compiler needs to schedule a useful instruction in the
delay slot, or fills it up with nop (no operation)

add $s1, $s2, $s3
bne $t0, $zero, L1
nop // delay slot
addi $t1, $t1, 1

L1: addi $t1, $t1, 2

bne $t0, $zero, L1
add $s1, $s2, $s3 // delay slot
addi $t1, $t1, 1

L1: addi $t1, $t1, 2

// $s1 = a, $s2 = b, $3 = c
// $t0 = d, $t1 = f
a = b + c;
if (d == 0) { f = f + 1; }
f = f + 2;

Can we do better?

Fill the delay slot with
a useful and valid

instruction

- 75 -CS - ES

Pipeline Summary

 Pipelining improves performance by increasing
instruction throughput
 Executes multiple instructions in parallel

 Pipelining is subject to hazards
 Structure, data, control hazards

 Instruction set design affects the complexity of the
pipeline implementation

75

- 76 -CS - ES

Embedded Processors : examples
CISC RISC

68000 series Sparc

X86 family AMD 29000

PDP-11 MIPS

VAX SuperH

IBM 370 PowerPC

Arm

