
- 1 -CS - ES

Embedded Systems 2

- 2 -CS - ES

Embedded Systems

 Lectures:
 Tuesday 10:15 -11:45
 Thursday 14:15 -15:45

Midterm exam, Thursday December 16, 2010, 16-19
End-of-term exam, Monday February 14, 2011, 14-17
End-of-semester exam: tba

- 3 -CS - ES

Embedded Systems

Registration through HISPOS (if HISPOS is not applicable – Non-CS, Erasmus,
etc – send email to peter@cs.uni-saarland.de)

 Webpage
http://react.cs.uni-sb.de/teaching/embedded-systems-10-11

The course mailing list is available now. Subscribe to get notifications and the
latest information: https://alan.cs.uni-saarland.de/cgi-bin/mailman/listinfo/es

 Tutorials
Wednesday, 16:00-18:00, SR 107, E 1 3
Friday, 12:00-14:00, SR 015, E 1 3 (START: Wed. November 3rd)
Friday, 14:00-16:00, SR 016, E 1 3

Please indicate tutorial, matr nr, name, e-mail on homework submissions.

- 4 -CS - ES

Specification – Models of Computation (MOC)
REVIEW

- 5 -CS - ES

Specifications REVIEW

- 6 -CS - ES

Specification of embedded systems:
Requirements for specification techniques (1)
 Hierarchy

Humans not capable to understand systems containing
more than a few objects.
Most actual systems require far more objects.
two kinds of hierarchy are used:
 Behavioral hierarchy

Examples: states, processes, procedures.
 Structural hierarchy

Examples: multipliers, FPUs, processors, printed circuit boards

 Timing behavior
 State-oriented behavior

suitable for reactive systems

REVIEW

- 7 -CS - ES

Requirements for specification techniques (2)

 Event-handling (external or internal events)
 No obstacles for efficient implementation
 Support for the design of dependable systems

Unambiguous semantics, ...
 Exception-oriented behavior

Not acceptable to describe exceptions for every state.

REVIEW

- 8 -CS - ES

Requirements for specification techniques (3)

 Concurrency
Real-life systems are concurrent

 Synchronization and communication
Components have to communicate!

 Presence of programming elements
For example, arithmetic operations, loops, and function
calls should be available

 Executability
 Support for the design of large systems
 Domain-specific support

REVIEW

- 9 -CS - ES

Requirements for specification techniques (4)

 Readability
 Portability and flexibility
 Non-functional properties

fault-tolerance, availability, EMC-properties, weight, size,
user friendliness, extendibility, expected life time, power
consumption...

 Adequate model of computation

  we have to live with compromises

REVIEW

- 10 -CS - ES

What is a requirement ?

 Describes what the system should do but not how to implement it

 IEEE 1012 standard
(IEEE= Institute of Electrical and Electronics Engineers)

 A condition or capability of the system needed by a user to solve a problem
or achieve an objective

 A condition or capability that must be met or possessed by a system… to
satisfy a contract standard, specification, or other formally imposed document

 Ranges from a high-level abstract statement of a service (function, feature)
or of a system constraint to a detailed mathematical functional specification

Source: [SRE09]

- 11 -CS - ES

Introduction (1)

User Needs

Requirements

HW/SW Co-Design

HW/SW Partitioning

Implementation

HW/SW Verification

System Verification

System Validation

Acceptance Tests
validate

validate

verify

verify

derive

Design Flow (V-Model)

- 12 -CS - ES

Requirements-Driven Design

Introduction (2)

- 13 -CS - ES

Introduction (3)

 Design has to fulfil the given requirements

 Rising chip complexity results in x1000 requirements

 Requirements must be specified and managed carefully

 Requirements must be tightly integrated (linked) with
the design

 Late re-designs due to incorrect requirements are costly

F. Reuning, Design Engineer at Conti Temic (Siemens VDO) “We have large
problems to verify our requirements comprehensively in a standardized way”

C. Nippert, Design Automation, Infineon Munich: “Our long-term goal is to
integrate requirements and constraints smoothly into the design flow to verify

them, but we are far away from that!”

- 14 -CS - ES

Requirements engineering/management
Requirements Engineering (RE)

 Elicitation/fetch & Modelling: The process of specifying the services
(functions) that the customer requires from a system and the constraints
under which it operates and is developed (=requirements)

 Validation & Analysis: Ensures that requirements are complete, consistent,
and relevant

Source: [SRE09]

- 15 -CS - ES

Examples of functional requirements

 When the Memory receives a READ request it shall
transmit the data at the given address to the controller.

 When the Memory receives a WRITE request it shall
store the data to the given address.

 When the Memory receives a READ request it shall
transmit the data at the given address to the controller
within 55,70ns.

- 16 -CS - ES

Non-functional requirements

 Product requirements
 Requirements which specify that the delivered product must have certain

qualities e.g. execution speed, reliability, etc.
• 8.1 The memory shall have an equal cycle time of 55,70ns.
• 8.2 The operational voltage of the memory shall be between 4,5V and 5,5V.

 Organisational requirements
 Requirements which are a consequence of organisational policies and

procedures e.g. process standards used, implementation requirements, etc
• 9.3.2 The system development process and deliverable documents shall conform to

the process and deliverables defined in XYZCo-SP-STAN-95.

 External requirements
 Requirements which arise from factors which are external to the system and its

development process e.g. safety, interoperability requirements, legislative
requirements, etc

- 17 -CS - ES

 Verification:
"Are we building the product right"
The systems should conform to its specification

 Validation:
"Are we building the right product"
The system should do what the user really requires

Verification vs. validation

- 18 -CS - ES

Modeling
 Abstract view of a design

 Representation of reality in each design step
• Apply analysis, synthesis and verification techniques

 Core of automated design flow
 Varying levels of abstraction

• Level & organization of detail
 Well-defined and unambiguous semantics

• Objects, composition rules and transformations

 Models of behavior (Models of Computation)
 Concurrent computation
 Communication

 Models of structure
 Processing, storage and communication elements (PEs and CEs)
 Networks of busses

- 19 -CS - ES

Models of Computation (MoCs) - Basic
Concepts

 MoC is composed of a description mechanism (syntax)
and rules for computation of behavior given the syntax
(semantics)

 It is chosen for its suitability: compactness, ability to
synthesize, optimize the behavior of implementation

 Most MoCs permit distributed system of description (a
collection of communicating modules), and gives rules of
computation of each module (function), and how they
communicate.

- 20 -CS - ES

Models of computation

 Models of computation define [Lee, UCB, 1999]:
 How computations of several components proceed.

 What does it mean to be a component:
Subroutine? Process? Thread?

 The mechanisms by which components interact:
Message passing? Rendez-vous?

 What components know about each other
(global variables? Implicit behavior of other
components)

- 21 -CS - ES

Programming Models

 Imperative programming models
 Ordered sequence of statements that manipulate program state
 Sequential programming languages [C, C++, …]

 Declarative programming models
 Dataflow based on explicit dependencies (causality)
 Functional or logical programming languages [Prolog]

 Synchronous programming models
 Reactive vs. transformative: explicit concurrency
 Lock-step operation of concurrent statement blocks
 Synchronous languages [Esterel (imperative), Lustre (declarative)]

- 22 -CS - ES

Models of computation
- Examples (1) -

 Communicating finite state machines (CFSMs):

 Discrete event model

a
b
c

time
actiona:=5 b:=7 c:=8 a:=6 a:=9

queue

5 10 13 15 19

- 23 -CS - ES

Models of computation
- Examples (2) -

 Differential equations

 Needed for hybrid systems
with analog part

b
t
x





2

2

VHDL - AMS

Stateflow

- 24 -CS - ES

Models of communication

 Asynchronous message passing

 Synchronous message passing

sender will not continue until the receiver has received the message

deliver a message from sender to receiver, without waiting for the receiver to
be ready, sender and receiver can overlap their computation, buffer full ?
(block the sender, discard future messages)

- 25 -CS - ES

StateCharts

 StateCharts = the only unused combination of
„flow“ or „state“ with „diagram“ or „charts“

 Based on classical automata (FSM):
StateCharts = FSMs + Hierarchy + Orthogonality +

Broadcast communication
 Industry standard for modelling automotive applications
 Appear in UML (Unified Modeling Language), Stateflow,

Statemate, …
 Warning: Syntax and Semantics may vary.

 Start with brief review on Finite State Machines.

- 26 -CS - ES

Mealy automaton

 Definition:
M=(I, O, S, s0, , ) is a Mealy automaton iff
 I is a finite, non-empty set (input symbols),
 O is a finite, non-empty set (output symbols),
 S is a finite, non-empty set (states),
 s0 … initial state,
  : S  I  S (transition function),
  : S  I  O (output function).

 Example for representation:
Z0 Z1

Z2Z3

c/0

c/3

c/2

c/1

w/0 w/1

w/2w/3

• the output depends on the current
state and the current input symbol,

• the next state depends on the
current state and the current input
symbol

- 27 -CS - ES

Moore automaton

 Definition:
M=(I, O, S, s0, , ) is a Moore automaton iff
 I is a finite, non-empty set (input symbols),
 O is a finite, non-empty set (output symbols),
 S is a finite, non-empty set (states),
 s0 …initial state,
  : S  I  S (transition function),
  : S  O (output function).

 Example for representation:
Z0 Z1

Z2Z3

c

c

c

c

w w

ww
3 2

10
• the output function does not

depend on the current input
symbol

- 28 -CS - ES

Mealy-Moore FSMs

 The set of states define the state space

 State space are flat
 All states are at the same level of abstraction
 All state names are unique

 State models are single threaded
 Only a single state can be valid at any time

- 29 -CS - ES

Mealy-Moore FSMs

 Moore state models: all actions are upon state
entry
 Non-reactive (response delayed by a cycle)
 Good for implementation

 Mealy state models: all actions are in transitions
 Reactive (0 response time)

- 30 -CS - ES

- 31 -CS - ES

- 32 -CS - ES

Moore and Mealy automata can be transformed
into each other

- 33 -CS - ES

StateCharts

 Statecharts introduced in
Harel: “StateCharts: A visual formalism for complex
systems”. Science of Computer Programming, 1987.

 More detailed in
Drusinsky and Harel: “Using statecharts for hardware
desription and synthesis”, IEEE Trans. On Computer
Design, 1989.

 Formal semantics in
Harel, Naamad: “The statemate semantics of
statecharts”, ACM Trans. Soft. Eng. Methods, 1996.

- 34 -CS - ES

StateCharts –
Additional features compared to classical
deterministic automata

 Non-determinism
 Hierarchy
 Variables with complex data types
 Concurrency
 Transitions with conditions
 Different I/O: transitions can

 Be active depending on the presence of events,
 “produce events”,
 change variables

 Timers used to produce “timeout events”.

- 35 -CS - ES

Non-deterministic transitions

Edge label (simple version):

 Transition from A to B iff event f is present.
 Effect of transition from A to B: Event g is produced.
 Events may be

• Present or
• Not present

 Events may be
• External events (provided by the environment)
• Internal events (produced by internal transitions)

 Produced events exist only for one step.

A B
f/g

- 36 -CS - ES

Non-deterministic transitions

 Non-determinism:

 Events f and h may be present at the same time.
Non-deterministic transitions,
different behaviours are possible

A
Bf/g

Ch/i

- 37 -CS - ES

Introducing hierarchy

superstate

substates

FSM will be in exactly
one of the substates of S
if S is active
(either in A or in B or ..)

- 38 -CS - ES

Definitions

 Current states of FSMs are also called active states.
 States which are not composed of other states are called

basic states.
 States containing other states are called super-states.
 For each basic state s, the super-states containing s are

called ancestor states.
 Super-states S are called OR-super-states, if exactly one

of the sub-states of S is active whenever S is active.

ancestor state of E

- 39 -CS - ES

Hierarchy

 Hierachy information may be represented by a hierarchy
tree with basic states as leaves.

Statechart SC

SC

S Z

A B C D E

• Transitions between all
levels of hierarchy possible!

• When a basic state is
active, then all its ancestor
states are active, too.

- 40 -CS - ES

Hierarchy - transitions to super-states

 What is the meaning of transitions to superstates,
i.e., what basic state is entered when a superstate is entered?

• default state mechanism
• history mechanism

- 41 -CS - ES

Default state mechanism

 Filled circle indicates
sub-state entered
whenever super-
state is entered.

 Not a state by itself!
 Allows internal

structure to be
hidden for outside
world

- 42 -CS - ES

History mechanism

 For event m, S enters the state it was in before S was
left (can be A, B, C, D, or E). If S is entered for the very
first time, the default mechanism applies.

- 43 -CS - ES

Combining history and default state mechanism

same meaning

- 44 -CS - ES

History and default state mechanism

 History and default mechanisms may be used at different levels of
hierarchy.

- 45 -CS - ES

Variables with complex data types
Problem of classical automata:

 Both control and data have to be represented as graphical states
Here:

 Include typed variables (e.g. integers, reals, strings, records) to represent data
 Both „graphical states“ and variables contribute to the state of the statechart.
 Notation:

• „graphical states“ = states
• „graphical states“ + variables = status

- 46 -CS - ES

Events and variables

Events:
 Exist only until the next evaluation of the model
 Can be either internally or externally generated

Variables:
 Values of variables keep their value until they are

reassigned.

- 47 -CS - ES

General form of edge labels

Meaning:
 Transition may be taken, if event occurred in last step and

condition is true
 If transition is taken, then reaction is carried out.

Conditions:
 Refer to values of variables

Actions:
 Can either be assignments for variables or creation of events

Example:
 a & [x = 1023] / overflow; x:=0

event [condition] / action

- 48 -CS - ES

Events, conditions, actions

 Possible events (incomplete list):
 Atomic events

• Basic events: A, B, BUTTON_PRESSED
• Entering, exiting a state: en(S), ex(S)
• Values of conditions: tr(cond), fs(cond)
• Change of conditions: [cond], e.g. [X>5]
• Change of values: ch(X)
• Access to variables: rd(X), wr(X)
• Timeout event tm(e,d):

– Timeout event tm(e, d) is emitted d time units after event
e has occured

 Compound events: logical connectives and, or, not

- 49 -CS - ES

Events, conditions, actions

 Possible conditions (incomplete list):
 Atomic conditions

• Constants: true, false
• Condition variables (i.e. variables of type boolean)
• Relations between values: X > 1023, X · Y
• Residing in a state: in(S)

 Compound events: logical connectives and, or, not

- 50 -CS - ES

Events, conditions, actions

 Possible actions (incomplete list):
 Atomic actions

• Emitting events: E (E is event variable)
• Assignments: X := expression
• Scheduled actions: sc!(A, N) (means perform action after N

time units)
 Compound actions

• List of actions: A1; A2; A3
• Conditional action: if cond then A1 else A2

- 51 -CS - ES

Concurrency
 Convenient ways of describing concurrency are

required.
 AND-super-states: FSM is in all (immediate) sub-

states of a AND-super-state; Example:

- 52 -CS - ES

Entering and leaving AND-super-states

 Line-monitoring and key-monitoring are entered and left,
when key-on and key-off events occur.

incl.

- 53 -CS - ES

Benefits of AND-decomposition

V,W

V,Z

X,Z

X,W

V,Y

X,Y

Q R

k h

g
e e f

p
ep

e
g

k

p

n m,
p

m,
p

h

e V

X

Z

Y

W

U

S T

Q R

e

k

h
e m

p

g

n e

- 54 -CS - ES

Types of states

In StateCharts, states are either

 basic states, or

 AND-super-states, or

 OR-super-states.

- 55 -CS - ES

Timers

 Since time needs to be modeled in embedded
systems, timers need to be modeled.

 In StateCharts, special edges can be used for
timeouts.

If event a does not happen while the system is in the left
state for 20 ms, a timeout will take place.

- 56 -CS - ES

Using timers in answering machine

- 57 -CS - ES

Condition connector

- 58 -CS - ES

Join and Fork Connectors

- 59 -CS - ES

Compound transitions

t1 and t2 must
be executed

together

- 60 -CS - ES

Semantics of StateCharts

 Execution of a StateChart model consists of a sequence
of steps

 A step leads from one status to another

 One step:
 Given:

• Current system status si

• Current time t
• External changes 

 Find:
• New status si+1

- 61 -CS - ES

The StateCharts simulation phases
(StateMate Semantics)

 How are edge labels evaluated?

 Three phases:

1. Effect of external changes on events and conditions is
evaluated,

2. The set of transitions to be made in the current step and
right hand sides of assignments are computed,

3. Transitions become effective, variables obtain new
values.

 Separation into phases 2 and 3 guarantees and
reproducible behavior.

- 62 -CS - ES

Example

 In phase 2, variables a and b are assigned to temporary
variables. In phase 3, these are assigned to a and b. As a
result, variables a and b are swapped.

 In a single phase environment, executing the left state
first would assign the old value of b (=0) to a and b.
Executing the right state first would assign the old value
of a (=1) to a and b. The result would depend on the
execution order.

- 63 -CS - ES

Reflects model of clocked hardware

 In an actual clocked (synchronous) hardware system,
both registers would be swapped as well.

Same separation into phases found in other languages
as well, especially those that are intended to model

hardware.

- 64 -CS - ES

Steps

 Execution of a StateMate model consists of a sequence of
(status, step) pairs

Status= values of all variables + set of events + current time
Step = execution of the three phases (StateMate semantics)

Status phase 2
Other implementations of
StateCharts do not have

these 3 phases (and hence
are non-determinate)!

- 65 -CS - ES

Other semantics

 Several other specification languages for
hierarchical state machines (UML, dave,
…) do not include the three simulation
phases.

 These correspond more to a SW point of
view with no synchronous clocks.

 LabView seems to allow turning the multi-
phased simulation on and off.

- 66 -CS - ES

Broadcast mechanism

 Values of variables are visible to all parts of the
StateChart model

 New values become effective in phase 3 of the
current step and are obtained by all parts of the
model in the following step.

 StateCharts implicitly assumes a broadcast mechanism
for variables

( implicit shared memory communication
–other implementations would be very inefficient -).

 StateCharts is appropriate for local control systems (),
but not for distributed applications for which updating

variables might take some time ().

!

- 67 -CS - ES

Lifetime of events

 Events live until the step following the one in which
they are generated (“one shot-events“).

- 68 -CS - ES

Time models

 External events and external changes of variables are
associated with physical times.

 But how does time proceed internally?

 How many steps are performed before external changes
are evaluated?

- 69 -CS - ES

The synchronous time model

 A single step every time unit.

 If the current step is executed at time t, then the next
step is executed at time t+1.

 Events and variable changes are communicated between
different states during one time unit.

 External changes are only accumulated during one time unit.

- 70 -CS - ES

The super-step time model (1)

 A step of the statechart does not need time.
 Super-steps are performed:

 A super-step is a sequence of steps.
 A super-step terminates when the status of the system is stable.
 During a super-step the time does not proceed and thus external

changes are not considered.

 After a super-step, physical time restarts running, i.e.
activity of the environment will be possible again.

 The computation of the statechart is resumed when
 external changes enable transitions in the statechart
 Timeout events enable transitions of the statechart

- 71 -CS - ES

The super-step time model (2)
 Two-dimensional time:

 Assumption: Computation time is neglegible compared to dynamics of
the environment.

- 72 -CS - ES

The super-step time model (3)

 During one super-step the number of communications
between different states is not restricted. All
communications are assumed to be performed in zero
time.

 Simplified model for reality.
 Can only be realistic, if

 Discrete computations are fast compared to dynamics of the
environment.

 Discrete computations will be stable after a restricted number of
steps.

 Timeout events can reactivate a statechart
 Possible to specify statecharts which permit progress of

physical time after a limited number of steps and reactivate
themselves via timeout events

- 73 -CS - ES

Evaluation of StateCharts (1)

 Pros:
 Hierarchy allows arbitrary nesting of AND- and OR-super states.
 (StateMate-) Semantics defined in a follow-up paper to original

paper.
 Large number of commercial simulation tools available

(StateMate, StateFlow, BetterState, ...)
 Available “back-ends“ translate StateCharts into C or VHDL, thus

enabling software or hardware implementations.

- 74 -CS - ES

Evaluation of StateCharts (2)

 Cons:
 Not useful for distributed applications,
 No program constructs,
 No description of non-functional behavior,
 No object-orientation,
 No description of structural hierarchy.
 Generated C programs may be inefficient
 Generated VHDL programs mostly behavioral

- 75 -CS - ES

Charakteristica

Complex

Client spezific

Reactive

Use case – logistic system

