
- 1 -CS - ES

Embedded Systems

- 2 -CS - ES

Embedded Systems

End-of-term exam, Monday February 14, 2011, 14-17

End-of-semester exam : Tuesday March 22, 2011, 14-17

Final grade:

best grade in end-of-term or end-of-semester exam.

- 3 -CS - ES

Microprogram control
unit

ontrol path

Microinstruction register
(MIR)

Clock generator (4-phases)

(MPC)

Microsequencer
(„next-Adrress-Logic)

Microprogram memory
(256 words x 32 Bits):

Stores the micro program

REVIEW

- 4 -CS - ES

Hazards

 It would be happy if we split the datapath into stages
and the CPU works just fine
 But, things are not that simple as you may expect
 There are hazards!

 Situations that prevent starting the next instruction in
the next cycle
 Structure hazards

• Conflict over the use of a resource at the same time
 Data hazard

• Data is not ready for the subsequent dependent instruction
 Control hazard

• Fetching the next instruction depends on the previous branch
outcome

REVIEW

- 5 -CS - ES

REVIEW

• Requirements
• Model-based design
• Safety
• FlexRay

- 6 -CS - ES

From Architecture to Application

 Timing behavior has to be predictable
Features that cause problems:

• Unpredictable access to shared
resources: caches, pipeline
(bubbles), communication times
(e.g.; multiprocessors)

• Branch prediction, Interrupts,
Instructions that with data-
dependent execution times

 Trying to avoid as many of these
as possible.

Timing analysis lecture next week

- 7 -CS - ES

Key requirements for processors
• Code size efficiency

- Compression techniques (instruction, e.g.; ARM
Thumb instruction set)

- Cache-based decompression

CISC machines: RISC machines designed for run-time-,
not for code-size-efficiency

• Energy efficiency of processors (motivation lecture 1)
– Mobiles devices
– general purpose processors (temperature hot-spots)

Power Aware Computing (lectures February)

• Run-time efficiency
– Domain-oriented architectures (e.g.; DSPs)

- 8 -CS - ES

Application: y[j] =
i=0

x[j-i]*a[i]
i: 0i n-1: yi[j] = yi-1[j] + x[j-i]*a[i]

Key requirement : Run-time efficiency
Domain-oriented architectures

Architecture: Example: Data path ADSP210x

n-1

Application maps nicely
onto architecture

MR

MF
MX MY

*

+,-
AR

AF
AX AY

+,-,..

D
P

yi-1[j]

x[j-i]

x[j-i]*a[i]

a[i]

Address
generation unit
(AGU)

Address-
registers
A0, A1, A2 ..
i+1, j-i+1

a
x

MR:=0;
MX:=x[n-1]; MY:=a[0]; A1:=1; A2:=n-2;
for (j:=1 to n) {MR:=MR+MX*MY;
MY:=a[A1]; MX:=x[A2]; A1++; A2--}

- 9 -CS - ES

DSP-Processors: multiply/accumulate (MAC)
and zero-overhead loop (ZOL) instructions

MR:=0; A1:=1; A2:=n-2; MX:=x[n-1]; MY:=a[0];
for (j:=1 to n)
{MR:=MR+MX*MY; MY:=a[A1]; MX:=x[A2]; A1++; A2--}

Multiply/accumulate (MAC) instruction Zero-overhead loop (ZOL)
instruction preceding MAC
instruction.
Loop testing done in parallel to
MAC operations.

Loop counter incr., test against
end condition, and branching are
done by hardware

- 10 -CS - ES

Separate address generation units (AGUs)

 Data memory can only be
fetched with address contained
in A,

 but this can be done in parallel
with operation in main data path
(takes effectively 0 time).

 A := A 1 also takes 0 time,
 same for A := A ± M;
 A := <immediate in instruction>

requires extra instruction

Example (ADSP 210x):

- 11 -CS - ES

Returns largest/smallest number in case of over/underflows

Example:
a 0111
b + 1001
standard wrap around arithmetic (1)0000
saturating arithmetic 1111
(a+b)/2: correct 1000

wrap around arithmetic 0000
saturating arithmetic + shifted 0111

Appropriate for DSP/multimedia applications:
• No timeliness of results if interrupts are generated for overflows
• Precise values less important
• Wrap around arithmetic would be worse.

Saturating arithmetic

„almost correct“

- 12 -CS - ES

Key idea of very long instruction word
(VLIW) computers

 Instructions included in long instruction packets.
Instruction packets are assumed to be executed in parallel.

 Fixed association of packet bits with functional units.

- 13 -CS - ES

Very long instruction word (VLIW) architectures

 Very long instruction word (“instruction packet”) contains several
instructions, all of which are assumed to be executed in parallel.

 Compiler is assumed to generate these “parallel” packets
 Complexity of finding parallelism is moved from the hardware

(RISC/CISC processors) to the compiler; Ideally, this avoids the
overhead (silicon, energy, ..) of identifying parallelism at run-time.

A lot of expectations into VLIW machines

 Explicitly parallel instruction set computers (EPICs) are an
extension of VLIW architectures: parallelism detected by compiler,
but no need to encode parallelism in 1 word.

- 14 -CS - ES

Partitioned register files

 Many memory ports are required to supply enough
operands per cycle.

 Memories with many ports are expensive.
 Registers are partitioned into (typically 2) sets,

e.g. for TI C60x:

- 15 -CS - ES

TMS320C6x

C6201 CPU Megamodule

Data Path 1

D1M1S1L1

A Register File

Data Path 2

L2S2M2D2

B Register File

Instruction Decode

Instruction Dispatch

Program Fetch

Interrupts

Control
Registers

Control
Logic

Emulation

Test

External
Memory
Interface

4
Channel

DMA

Program Cache/Program Memory
32-bit address

256-Bit data
512K Bits RAM

Host Port
Interface

2 Timers

2 Multi-
channel
buffered

serial ports
(T1/E1)

Data Memory
32-Bit address

8-, 16-, 32-Bit data
512K Bits RAM

Power
Down

- 16 -CS - ES

TMS320C6x Datapath

Cross Paths
40-bit Write Paths (8 MSBs)
40-bit Read Paths/Store Paths

M2

Registers B0 - B15

L2S2

DDATA_I2
(load data)

S2
D

D
L

SLSL D DLS
2

S
1

S
1

S
2D2

DS
1

S
2

D

M1

Registers A0 - A15

L1 S1
S1 S2

D
D
L

SL SLDDL S
2

S
1

S
1

S
2 D1

D S
1

S
2

D

DDATA_O2
(store data)DADR2

(address)
DADR1

(address)

DDATA_I1
(load data)

DDATA_O1
(store data)

2X1X

 2 Data Paths
 8 Functional Units

 Orthogonal/Independent
 6 Arithmetic Units
 2 Multipliers

 Control
 Independent
 Up to 8 32-bit Instructions in parallel

 Registers
 2 Files
 32, 32-bit Registers Total

 Cross paths (1X, 2X)

 L-Unit (L1, L2)
 40-bit Integer ALU
 Comparisons
 Bit Counting
 Normalization

 S-Unit (S1, S2)
 32-bit ALU
 40-bit Shifter
 Bitfield Operations
 Branching

 M-Unit (M1, M2)
 16 x 16 -> 32

 D-Unit (D1, D2)
 32-bit Add/Subtract
 Address Calculations

S1

- 17 -CS - ES

TMS320C6x Pipeline

 Single-Cycle Throughput
 Operate in Lock Step
 Fetch

 PG Program Address Generate
 PS Program Address Send
 PW Program Access Ready Wait
 PR Program Fetch Packet Receive

 Decode
 DP Instruction Dispatch
 DC Instruction Decode

 Execute
 E1 - E5 Execute 1 through Execute 5

Fetch Decode Execute

PG PS PW PR DP DC E1 E2 E3 E4 E5
PG PS PW PR DP DC E1 E2 E3 E4 E5

PG PS PW PR DP DC E1 E2 E3 E4 E5
PG PS PW PR DP DC E1 E2 E3 E4 E5

PG PS PW PR DP DC E1 E2 E3 E4 E5
PG PS PW PR DP DC E1 E2 E3 E4 E5

PG PS PW PR DP DC E1 E2 E3 E4 E5

PG PS PW PR DP DC E1 E2 E3 E4 E5

Execute Packet 1
Execute Packet 2

Execute Packet 3
Execute Packet 4

Execute Packet 5
Execute Packet 6

Execute Packet 7

- 18 -CS - ES

PG PS PW PR DP DC
PG PS PW PR DP

PG PS PW PR
PG PS PW

PG PS

Branch in the Pipeline...

Branch is a 1-cycle instruction?

PG PS PW PR DP DC E1

Branch

PG PS PW PR DP DC E1
PG PS PW PR DP DC E1Branch Target ?

The execution of 5 instructions has been started before it is
realized that a branch was required.

- 19 -CS - ES

PG PS PW PR DP DC
PG PS PW PR DP

PG PS PW PR
PG PS PW

PG PS

PG PS PW PR DP DC E1

Branch in the Pipeline...

Branch

PG PS PW PR DP DC
PG PS PW ...

Branch Target E1

Branch is a 1-cycle instruction?

- 20 -CS - ES

PG PS PW PR DP DC E1
PG PS PW PR DP DC E1

PG PS PW PR DP DC E1
PG PS PW PR DP DC E1
PG PS PW PR DP DC E1

PG PS PW PR DP DC E1

Branch in the Pipeline...

Branch

PG PS PW PR DP DC
PG PS PW ...

Branch Target E1

Branch is a 1-cycle instruction?

Technical Training
Organization

TTO

- 21 -CS - ES

TMS320C6x Pipeline (2)

Delay Slots: number of extra cycles until result is:
• written to register file
• available for use by a subsequent instructions
• Multi-cycle NOP instruction can fill delay slots while minimizing

codesize impact

E1

E1 E2

E1

Most Instructions

Integer Multiply

Loads

Branch Target

No Delay

1 Delay Slot

4 Delay Slots

5 Delay Slots

E2 E3 E4 E5

E1

PG PS PW PR DP DC

Branches

E1

- 22 -CS - ES

TMS320C6x instruction set

B-Side L-unit using an
operand from A-side*

Signifies a
parallel operation A-side M-unit using an

operand from B-side*
B-side M-unit*

• 8 instructions in parallel (one cylce)

• scheduling at compile time

- 23 -CS - ES

Embedded System Hardware
- Reconfigurable Hardware -

- 24 -CS - ES

Reconfigurable Logic

 Full custom chips may be too expensive - high NRE costs
(Non-Recurring Engineering), software too slow.

 Combine the speed of HW with the flexibility of SW
HW with programmable functions and interconnect.
Use of configurable hardware;

common form: field programmable gate arrays (FPGAs)

Applications: bit-oriented algorithms like
 encryption,
 fast “object recognition“ (medical and military)
 Adapting mobile phones to different standards – Software defined

radios (SDR)

 devices from XILINX Actel, Altera, …

- 25 -CS - ES

Energy Efficiency of FPGAs

© Hugo De Man,
IMEC, Philips, 2007

- 26 -CS - ES

Overview XILINX FPGA

• All Xilinx FPGAs contain the same basic resources
– Slices grouped into Configurable Logic Blocks (CLBs)

• Contain combinatorial logic and register resources

– IOBs
• Interface between the FPGA and the outside world

– Programmable interconnect

– Other resources
• Memory
• Multipliers
• Global clock buffers
• Boundary scan logic

- 27 -CS - ES

XILINX FPGA Virtex-II Architecture

First family with Embedded Multipliers to enable high-performance DSP

- 28 -CS - ES

CLBs and Slices

Combinatorial and sequential logic implemented here

• Each Virtex-II CLB
contains four slices
– Local routing provides

feedback between slices
in the same CLB, and it
provides routing to
neighboring CLBs

– A switch matrix provides
access
to general routing
resources

CIN

Switch
Matrix

BUFT
BUF T

COUTCOUT

Slice S0

Slice S1

Local Routing

Slice S2

Slice S3

CIN

SHIFT

- 29 -CS - ES

• Each slice contains two:
— Four inputs lookup tables
—16-bit distributed SelectRAM
—16-bit shift register

• Each register:
— D flip-flop
— Latch

• Dedicated logic:
— Muxes
— Arithmetic logic

— MULT_AND
— Carry Chain

LUT

Register

Register

LUT CY

CY

SRL16

RAM16

G

F

MUXF5

Arithmetic Logic

MUXFx

Slice Resources

- 30 -CS - ES

Look-Up Tables

• Combinatorial logic is stored in Look-Up Tables
(LUTs)
– Also called Function Generators (FGs)
– Capacity is limited by the number of inputs,

not by the complexity

• Delay through the LUT is constant

Combinatorial Logic

A
B

C
D

Z

A B C D Z
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1

. . .
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

- 31 -CS - ES

Routing Resources

PSM PSM

CLB

PSM PSM

CLB CLB

CLBCLB CLB

CLBCLB CLB

Programmable
Switch
Matrix

- 32 -CS - ES

Embedded Processors in FPGAs

 Hard Core
 EP is a dedicated physical component of the chip

separate from the programmable logic
 E.g. Xilinx Virtex families (PowerPC 405)

 Soft Core
 Embedded processor is also a synthesized to the FPGA to th

programmable logic on the chip
 E.g. Altera (NIOS), Xilinx (MicroBlaze)

- 33 -CS - ES

Embedded Design Flow

A. Develop the embedded hardware
 Quickly create a system targeting a board using Base System Builder Wizard
 Extend the hardware system, if necessary, by adding peripherals from the IP

Catalog
 Generate HDL netlists using PlatGen

B. Develop the embedded software
 Generate libraries and drivers with LibGen
 Create and debug the software application using Software Development Kit

(SDK)
 Optionally, debug the application using Xilinx Microprocessor Debug (XMD)

and the GNU debugger (gdb)

C. Operate in hardware
 Generate the bitstream and configure the FPGA using iMPACT

D. Deploy
 Initialize external flash memory using the Flash Writer utility or boot

from an external compact flash configuration file generated using the System
ACE File generator (GenACE) script

- 34 -CS - ES

Simulation
Generator

Hardware
Platform Generation

Library Generation

Embedded Software
Development

ISE
Tools

IP Library or User Repository

MSS

LibGen

.a

Compiler (GCC)

.o, .a

Linker (GCC)

ELF

MHS

PlatGenDrivers,
MDD MPD, PAO

Pcore
HDL System and

Wrapper VHD system.bmm

Synthesis (XST)

NGC

NGDBuildUCF

NGD

MAP, PAR

NCD

BitGensystem_bd.bmm

BITINIT

download.bit

iMPACT

system.bit

SimGen

Behavioral
VHD Model

SimGen

Structural
VHD Model

SimGen

Timing
VHD Model

Simulation

IP Models ISE Models

CompXLib

Application
Source
.c, .h, .s

EDK Tool Flow

download.cmd

EDK SW
Libraries

Libraries,
OS, MLD

XMD, GDB

FPGA
JTAG Cable

Linker Script

Do it in SDK

- 35 -CS - ES

Configuration
Port or ICAP

Configuration
Port

Partial Reconfiguration

Full
Bit File

Partial
Bit Files

 Partial Reconfiguration is the ability to dynamically modify
blocks of logic by downloading partial bit files while the
remaining logic continues to operate without interruption.

Function A

1

Function B

1

Function C

1

Function C

2

Function B

2

Function A

2

Function A

3

- 36 -CS - ES

Partial Reconfiguration
Technology and Benefits

 Partial Reconfiguration enables:
 System Flexibility

• Perform more functions while
maintaining communication links

 Size and Cost Reduction
• Time-multiplex the hardware

to require a smaller FPGA

 Power Reduction
• Shut down power-hungry tasks

when not needed

- 37 -CS - ES

Use Case - Simulation Platform for
UHF RFID

Rapid Prototyping with FPGAs

- 38 -CS - ES

Ultra High Frequency – Radio Frequency IDentification
systems

 Tag design
 ASIC design

 Communication
 Energy
 UHF field distortions

Setup

 Reader designs
 Antenna designs

- 39 -CS - ES

Motivation
 Evaluate and optimize application setups

 Reduced installation time
 Reduced on site evaluation time
 Proof of user requirements
 Worst case scenarios evaluation

 Next generation protocol and product development

Verification of designs by
real-time simulation of
models in target setups

Offline simulations of large
tag populations

Evaluation of options by simulating models

- 40 -CS - ES

A New Framework for Real-time Verification and
Optimization of UHF RFID Systems

- 41 -CS - ES

Platforms for Verification and Optimization
of UHF RFID Systems

- 42 -CS - ES

Hardware-In-the-Loop Simulation

 Model-based design
of UHF RFID tag

 Implementation on
DSP/FPGA

 Interaction with real
UHF RFID reader

 Max. response time:
14μs

- 43 -CS - ES

FPGA-based HIL Simulation

 Time critical parts
implemented in hardware
(synthesized on FPGA)

 Non time critical parts
implemented in software
(NIOS II)

FPGA - SOPC
– HW and SW on the

FPGA
– Software on the NIOS II

soft-core processor
– Communication over

common bus

- 44 -CS - ES

Multiple Tag Design
– Time critical parts implemented in hardware for every

simulated UHF RFID tag = Parallel execution
– Non time critical parts implemented in software just once =

Sequential execution

- 45 -CS - ES

Implemented Prototype

- 46 -CS - ES

Conclusion
Two implementations:

• DSP TMS320C6416 simulates a model of one tag in
real-time
 No parallel execution achieved without manual code

optimization

• FPGA architecture with soft-core processor achieves to
simulate 4 tags on one HW
 20% FPGA Chip area utilized
 HW max delay of ~10ns
 SW is not optimized for performance (C++) →

improvements possible

- 47 -CS - ES

Embedded System Hardware

 Embedded system hardware is frequently used in a loop
(“hardware in a loop“):

 cyber-physical systems

- 48 -CS - ES

Communication:
Hierarchy

 Inverse relation between volume and urgency quite
common:

Sensor/actuator busses

- 49 -CS - ES

Communication
- Requirements -

 Real-time behavior
 Efficient, economical

(e.g. centralized power supply)
 Appropriate bandwidth and communication delay
 Robustness
 Fault tolerance
 Maintainability
 Diagnosability
 Security
 Safety

- 50 -CS - ES

Basic techniques:
Electrical robustness

 Single-ended vs. differential
signals

Voltage at input of Op-Amp positive '1'; otherwise '0'

Combined with twisted pairs; Most noise added to both wires.

ground

Local groundLocal ground

- 51 -CS - ES

Evaluation

 Advantages:
 Subtraction removes most of the noise
 Changes of voltage levels have no effect
 Reduced importance of ground wiring
 Higher speed

 Disadvantages:
 Requires negative voltages
 Increased number of wires and connectors

 Applications:
 USB, FireWire, ISDN
 Ethernet (STP/UTP CAT 5/6 cables)
 differential SCSI
 High-quality analog audio signals

- 52 -CS - ES

Real-time behavior

 Carrier-sense multiple-access/collision-detection
(CSMA/CD, Standard Ethernet) no guaranteed response
time.

 Alternatives:
 token rings, token busses
 Carrier-sense multiple-access/collision-avoidance (CSMA/CA)

• WLAN techniques with request preceding transmission
• Each partner gets an ID (priority). After each bus transfer, all partners

try setting their ID on the bus; partners detecting higher ID disconnect
themselves from the bus. Highest priority partner gets guaranteed
response time; others only if they are given a chance.

- 53 -CS - ES

Sensor/actuator busses

1. Sensor/actuator busses: Real-time behavior very
important; different techniques:

Many wires less wires expensive & flexible

- 54 -CS - ES

Field busses: Profibus

 More powerful/expensive than sensor interfaces; mostly
serial. Emphasis on transmission of small number of bytes.

 Examples:
1. Process Field Bus (Profibus)

Designed for factory and process automation.
Focus on safety; comprehensive protocol mechanisms.
Claiming 20% market share for field busses.
Token passing.
≦93.75 kbit/s (1200 m);1500 kbits/s (200m);
12 Mbit/s (100m)
Integration with Ethernet via Profinet.

[http://www.profibus.com/]

- 55 -CS - ES

Controller area network (CAN)

 2. Controller area network (CAN)
 Designed by Bosch and Intel in 1981;
 used in cars and other equipment;
 differential signaling with twisted pairs,
 arbitration using CSMA/CA,
 throughput between 10kbit/s and 1 Mbit/s,
 low and high-priority signals,
 maximum latency of 134 µs for high priority signals,
 coding of signals similar to that of serial (RS-232) lines of PCs, with

modifications for differential signaling.
 See //www.can.bosch.com

- 56 -CS - ES

Time-Triggered-Protocol (TTP)

3. The Time-Triggered-Protocol (TTP) [Kopetz et al.]
for fault-tolerant safety systems like airbags in cars.

- 57 -CS - ES

FlexRay

4. FlexRay: developed by the FlexRay consortium
(BMW, Ford, Bosch, DaimlerChrysler, …)
Combination of a variant of the TTP and the Byteflight [Byteflight
Consortium, 2003] protocol.
Specified in SDL.

• Improved error tolerance and time-determinism
• Meets requirements with transfer rates >> CAN std.

High data rate can be achieved:
– initially targeted for ~ 10Mbit/sec;
– design allows much higher data rates

• TDMA (Time Division Multiple Access) protocol:
Fixed time slot with exclusive access to the bus

• Cycle subdivided into a static and a dynamic segment.

 See guest lecture from Jan. 11th. 2011

- 58 -CS - ES

Other field busses

 LIN: low cost bus for interfacing sensors/actuators in the
automotive domain

 MOST: Multimedia bus for the automotive domain (not really a field
bus)

 MAP:MAP is a bus designed for car factories.
 EIB:The European Installation Bus (EIB) is a bus designed for

smart homes. European Installation Bus (EIB)
Designed for smart buildings; CSMA/CA; low data rate.

 IEEE 488: Designed for laboratory equipment.

 Attempts to use standard Ethernet.
However, timing predictability remains a serious issue.

- 59 -CS - ES

Wireless communication: Examples

 IEEE 802.11 a/b/g/n
 UMTS; HSPA
 DECT
 Bluetooth
 ZigBee
 NFC

Timing predictability of wireless communication?

- 60 -CS - ES

Memory

 For the memory, efficiency is again a concern:
 speed (latency and throughput); predictable timing
 energy efficiency
 size
 cost
 other attributes (volatile vs. persistent, etc)

- 61 -CS - ES

Memory hierarchy
Register, internal
Caches in CPU

External Caches
(SRAM)

Main Memory
(DRAM)

Disk Storage
(Magnetics)

Tape Units
(Magnetics)

E
ne

rg
y

C
on

su
m

pt
io

n

C
O

S
TS

Level 0

Level 1

Level 2

Level 3

Level 4

Capacity

“Small is beautiful”
(in terms of energy consumption, access times, size)

- 62 -CS - ES

The Principle of Locality

 The Principle of Locality:
 Program access a relatively small portion of the address space

at any instant of time.

 Two Different Types of Locality:
 Temporal Locality (Locality in Time): If an item is referenced, it

will tend to be referenced again soon (e.g., loops, reuse)

 Spatial Locality (Locality in Space): If an item is referenced,
items whose addresses are close by tend to be referenced soon
(e.g., straightline code, array access)

- 63 -CS - ES

How much of the energy consumption of a
system is memory-related?

Mobile PC
Thermal Design (TDP) System Power

Note: Based on Actual Measurements

600/500 MHz uP
37%

LCD 10"
19%

HDD
9%

Memory+Graphics
12%

Power Supply
10%

Other
13%

Mobile PC
Average System Power

600/500 MHz uP
13%

LCD 10"
30%

HDD
19%

Memory+Graphics
15%

Power Supply
10%

Other
13%

CPU Dominates Thermal
Design Power

Multiple Platform
Components Comprise

Average Power
[Courtesy: N. Dutt; Source: V. Tiwari]

- 64 -CS - ES

Access times and energy consumption
increases with the size of the memory

Example (CACTI Model): "Currently, the size of
some applications is
doubling every 10
months"
[STMicroelectronics,
Medea+ Workshop,
Stuttgart, Nov. 2003]

- 65 -CS - ES

Access-times will be a problem
Speed gap between processing and main DRAM increases

2

4

8

2 4 5

Performance

years31

 Use smaller and faster memories
that act as a buffer between the
memory

[P. Machanik: Approaches to Addressing the
Memory Wall, TR Nov. 2002, U. Brisbane]

 2x
every 2
years

1
0

- 66 -CS - ES

Hierarchical memories
using scratch pad memories (SPM)

ARM7TDMI
cores, well-
known for
low power
consumption

scratch pad memory

0

FFF..

main

SPM

processor

Hierarchy

Example

no tag memory

SPM

select
Selection is by an
appropriate address
decoder (simple!)

SPM is a small,
physically separate
memory mapped
into the address
space

 Address
space

- 67 -CS - ES

Comparison of currents using measurements

E.g.: ATMEL board with
ARM7TDMI and
ext. SRAM

Current
32 Bit-Load Instruction (Thumb)

48,2 50,9 44,4 53,1

116 77,2 82,2
1,16

0

50

100

150

200

Prog Main/ Data
Main

Prog Main/ Data
SPM

Prog SPM/ Data
Main

Prog SPM/ Data SPM
m

A

Core+SPM (mA) Main Memory Current (mA)

- 68 -CS - ES

Why not just use a cache ?

0

1

2

3

4

5

6

7

8

9

256 512 1024 2048 4096 8192 16384

memory size

En
er

gy
 p

er
 a

cc
es

s
[n

J]

.

Scratch pad
Cache, 2way, 4GB space
Cache, 2way, 16 MB space
Cache, 2way, 1 MB space

[R. Banakar, S. Steinke, B.-S. Lee, 2001]

- 69 -CS - ES

Overview of embedded systems design

