
 - 1 -BF - ES

Embedded Systems 16

 - 2 -BF - ES

Periodic scheduling

 Given:
 A set of periodic tasks Γ = {τ1, …, τn} with

• phases Φi (arrival times of first instances of tasks),

• periods Ti (time difference between two consecutive activations)

• relative deadlines Di (deadline relative to arrival times of instances)

• computation times Ci

 ⇒ j th instance τi, j of task τi with

• arrival time ai, j = Φi + (j-1) Ti,

• deadline di, j = Φi + (j-1) Ti + Di,

• start time si, j and

• finishing time fi, j

 Find a feasible schedule

τi Φi

Ci

Ti

Di

Φi+(j-1)Ti

Instance τi, jInstance τi, 1

0

REVIEW

 - 3 -BF - ES

Assumptions

A.1. Instances of periodic task τi are regularly activated with constant
period Ti.

A.2. All instances have same worst case execution time Ci.
A.3. All instances have same relative deadline Di, here in most cases

equal to Ti (i.e., di, j = Φi + j ⋅ Ti)
A.4. All tasks in Γ are independent. No precedence relation, no resource

constraints.
A.5. Overhead for context switches is neglected, i.e. assumed to be 0 in

the theory.

 Basic results based on these assumptions form the core of
scheduling theory.

 For practical applications, assumptions A.3. and A.4. can be
relaxed, but results have to be extended.

 Both will be relaxed in the following two lectures.

REVIEW

 - 4 -BF - ES

Processor utilization

Definition:
Given a set Γ of n periodic tasks, the processor utilization U is given by

 Define Ubnd(A) = inf {U(Γ) | Γ is not schedulable by algorithm A}.

 If Ubnd(A) > 0 then a simple, sufficient criterion for schedulability by A can be
based on processor utilization:
 If U(Γ) < Ubnd(A) then Γ is schedulable by A.

 However, if Ubnd(A) < U(Γ) ≤ 1, then Γ may or may not be schedulable by A.

REVIEW

 - 5 -BF - ES

Earliest Deadline First (EDF)

 Theorem: A set of periodic tasks τ 1, ..., τ n with Di = Ti
is schedulable with EDF iff U · 1.

 EDF is applicable to both periodic and a-periodic tasks.

 If there are only periodic tasks, priority-based schemes
like “rate monotonic scheduling (RM)” (see later) are
often preferred, since
 They are simpler due to fixed priorities

⇒ use in “standard OS” possible
 sorting wrt. to deadlines at run time is not needed

REVIEW

 - 6 -BF - ES

Rate monotonic scheduling (RM)

 Rate monotonic scheduling (RM) (Liu, Layland ’73):
 Assign fixed priorities to tasks τi:

• priority(τi) = 1/Ti

• I.e., priority reflects release rate

 Always execute ready task with highest priority

 Preemptive: currently executing task is preempted by newly arrived task with
shorter period.

 Theorem (Liu, Layland, 1973):
RM is optimal among all fixed-priority scheduling algorithms.

REVIEW

 - 7 -BF - ES

Summary

 Problem of scheduling independent and preemptable
periodic tasks

 Rate monotonic scheduling:
 Optimal solution among all fixed-priority schedulers
 Schedulability of n tasks guaranteed, if processor utilization

 Earliest deadline first:
 Optimal solution among all dynamic-priority schedulers
 Schedulability guaranteed if processor utilization U · 1.

 - 8 -BF - ES

Rate Monotonic Scheduling
in Presence of Task Dependencies

 - 9 -BF - ES

Assumptions so far

A.1. Instances of periodic task τi are regularly activated with constant period
Ti.

A.2. All instances have the same worst case execution time C i.

A.3. All instances have the same relative deadline D i, here in most cases
equal to Ti (i.e., di, j = Φi + j ⋅ Ti)

A.4. All tasks in Γ are independent. No precedence relation, no resource
constraints.

A.5. Overhead for context switches is neglected, i.e. assumed to be 0.

 Basic results based on these assumptions form the core of scheduling
theory.

 For practical applications, assumptions A.3. A.4, and A.5. can be
relaxed, but results have to be extended.

 - 10 -BF - ES

Wait state caused by resource constraints

ready run

wait

activation termination

signal wait

• Each mutually exclusive resource Ri

is protected by a semaphore Si.

• Each critical section operating on Ri
must begin with a wait(Si) primitive
and end with a signal(Si) primitive.

• wait primitive on locked semaphore
→ wait state until another task executes signal primitive

dispatching

preemption

 - 11 -BF - ES

The priority inversion problem

 Priority inversion can occur due to resource conflicts
(exclusive use of shared resources) in fixed priority
schedulers like RM:

 normal execution critical region
priority(J1) > priority(J2)

 Here: maximum blocking time of J1 equal to length of
critical section of J2.

J1

J2

J1 blocked

 - 12 -BF - ES

The priority inversion problem

 normal execution critical region
priority(J1) > priority(J2) > priority(J3)

 Blocking time of J1 equal to length of critical section of J3 +

computation time of J2.

 Unbounded time of priority inversion, if J3 is interrupted by tasks
with priority between J1 and J3 during its critical region.

J1

J2

J1 blocked

J3

 - 13 -BF - ES

Priority inversion in real life:
The MARS Pathfinder problem (1)

“But a few days into the mission, not long
after Pathfinder started gathering
meteorological data, the spacecraft
began experiencing total system resets,
each resulting in losses of data. The
press reported these failures in terms
such as "software glitches" and "the
computer was trying to do too many
things at once".” …

 - 14 -BF - ES

Priority inversion in real life:
The MARS Pathfinder problem (2)

 System overview:
 Information Bus (IB):

• Buffer for exchanging data between different tasks
• Shared resource of two tasks M and B

 Three tasks:
• Meteorological data gathering task (M):

– collects meteorological data
– reserves IB, writes data to IB, releases IB
– infrequent task, low priority

• Bus management (B):
– data transport from IB to destination
– reserves IB, data transport, releases IB
– frequent task, high priority

 - 15 -BF - ES

Priority inversion in real life:
The MARS Pathfinder problem (3)

 Three tasks:
• ...
• “Communication task” (C):

– medium priority, does not use IB

 Scheduling with fixed priorities.

 Watch dog timer (W):
• Execution of B as indicator of system hang-up
• If B is not activated for certain amount of time: Reset the

system

 - 16 -BF - ES

Priority inversion in real life:
The MARS Pathfinder problem (5)

 normal execution critical region

 priority(J1) > priority(J2) > priority(J3)

J1

J2

J1 blocked

J3

B

C

M

Reset by watchdog timer

 - 17 -BF - ES

Coping with priority inversion:
The priority inheritance protocol

What are the options?

Idea of priority inheritance protocol:
 If a task Jh blocks, since another task Jl with lower priority owns

the requested resource, then Jl inherits the priority of Jh.

 When Jl releases the resource, the priority inheritance from Jh is
undone.

 Rule: Tasks always inherit the highest priority of tasks blocked
by them.

 - 18 -BF - ES

Direct vs. push-through blocking

 Direct blocking: High-priority job tries to acquire resource already
held by lower-priority job

 Push-through blocking: Medium-priority job is blocked by lower-
priority job that has inherited a higher priority.

J1

J2

J3

 - 19 -BF - ES

Transitive priority inheritance

J1

J2

J3

Priority of J3

 - 20 -BF - ES

Priority inheritance for the Pathfinder example

 normal execution critical region

 priority(J1) > priority(J2) > priority(J3)

J1

J2

J1 blocked

J3

B

C

M

NO reset by watchdog timer

J3 inherits priority of J1

 - 21 -BF - ES

Priority inversion on Mars

 Priority inheritance also solved the Mars Pathfinder
problem:
 the VxWorks operating system used in the pathfinder

implements a flag for the calls to mutual exclusion primitives.
 This flag allows priority inheritance to be set to “on”.
 When the software was shipped, it was set to “off”.

The problem on Mars was corrected
by using the debugging facilities of
VxWorks to change the flag to “on”,
while the Pathfinder was already on
the Mars [Jones, 1997].

 - 22 -BF - ES

Schedulability check

Let Bi be the maximum blocking time due to lower-priority
jobs that a job Ji may experience.

∀ i: Ri
(0) = Ci

repeat
 ∀ i: Ri

(j+1) = Ci + Bi + ∑k=1
i-1  Ri

(j) / Tk  ⋅ Ck

until (∃ i with Ri
(j+1) > Di) or (∀ i Ri

(j+1) = Ri
(j));

if (∀ i Ri
(j+1) = Ri

(j)) then

report(“RM schedulable”);

 - 23 -BF - ES

Blocking Time Computation

 Precise algorithm based on exhaustive search: exponential cost

 Here: approximative solution
 Assumption: no nested critical sections

Lemma: Transitive priority inheritance can only occur in the presence of
nested critical sections.

priority ceiling C(S)=priority of the highest-priority job that can lock S

Theorem: In the absence of nested critical sections,
a critical section of job J guarded by semaphore S
can only block job J‘
if priority(J) < priority(J‘) ≤ C(S).

 - 24 -BF - ES

Blocking Time

 Dj,k: duration of longest critical section of task τj,
guarded by semaphore Sk

 Blocking Time

 Bi ≤ ∑n
j=i+1 maxk[Dj,k : C(Sk)≥Pi]

 Bi ≤ ∑m
k=1 maxj>i[Dj,k : C(Sk)≥Pi]

where the task set consists of n periodic tasks that
use m distinct semaphores.

 - 25 -BF - ES

Remaining problem: Chained Blocking

J1

J2

J3

 - 26 -BF - ES

Remaining problem: Deadlock

J1

J2

J1:

wait(Sa)

signal(Sa)

wait(Sb)

signal(Sb)

J2:

wait(Sb)

signal(Sb)

wait(Sa)

signal(Sa)

 - 27 -BF - ES

Priority Ceiling Protocol

 Each semaphore S is assigned a priority ceiling:
C(S)=priority of the highest-priority job that can lock S

 The processor is assigned to a ready job J with highest priority.

 To enter a critical section, J needs priority > C(S*),
where S* is the currently locked semaphore with max C.
→ otherwise J „blocks on semaphore“ and
 priority of J is inherited by job J‘ holding S*.

 When J‘ exits critical section, its priority is updated to the highest
priority of some job that is blocked by J‘ (or to the nominal priority if

no such job exists).

 - 28 -BF - ES

Example

J1

J2

J3

Priority of J3

S1

S2

S3

 - 29 -BF - ES

Priority Ceiling Protocol

Theorem (Sha/Rajkumar/Lehoczky): Under the Priority
Ceiling Protocol, a job can be blocked for at most the
duration of one critical section.

The Priority Ceiling Protocol prevents deadlocks.

	Embedded Systems 16
	Periodic scheduling
	Assumptions
	Processor utilization
	Earliest Deadline First (EDF)
	Rate monotonic scheduling (RM)
	Summary
	Rate Monotonic Scheduling in Presence of Task Dependencies
	Assumptions so far
	Wait state caused by resource constraints
	The priority inversion problem
	Slide 12
	Priority inversion in real life: The MARS Pathfinder problem (1)
	Priority inversion in real life: The MARS Pathfinder problem (2)
	Priority inversion in real life: The MARS Pathfinder problem (3)
	Priority inversion in real life: The MARS Pathfinder problem (5)
	Coping with priority inversion: The priority inheritance protocol
	Direct vs. push-through blocking
	Transitive priority inheritance
	Priority inheritance for the Pathfinder example
	Priority inversion on Mars
	Schedulability check
	Blocking Time Computation
	Blocking Time
	Remaining problem: Chained Blocking
	Remaining problem: Deadlock
	Priority Ceiling Protocol
	Example
	Slide 29

