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Small but very fast memories that buffer part of the main memory
Bridge the gap between speed of CPU and main memory

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

“hit”
[ab]

Why caches work: principle of locality
I spatial: e.g. in sequential instructions, accessing arrays
I temporal: e.g. in loops
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Tag Block 
offset

Address:

B b
b

k s

log2(s) log2(8 ∗ b)

•
•
•

Tag Data Block

Tag Data Block
...

Tag Data Block

B b
b

k s

log2(s) log2(8 ∗ b) s

•
•
•

=?

No: 
Miss!

Yes: 
Hit! MUX

Data

= associativity
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...

B b
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log2(s) log2(8 ∗ b) s

•
•
•
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offset

Address:

B b
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•
•
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B b
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•
•
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...
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Cache Set:
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log2(s) log2(8 ∗ b) s

•
•
•
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Tag Data Block
...

Tag Data Block
Cache Set:

=?

No: 
Miss!

Yes: 
Hit! MUX

Data
Special cases:

direct-mapped cache: only one line per cache set
fully-associative cache: only one cache set
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Least-Recently-Used (LRU) used in
INTEL PENTIUM I and MIPS 24K/34K

First-In First-Out (FIFO or Round-Robin) used in
MOTOROLA POWERPC 56X, INTEL XSCALE, ARM9, ARM11

Pseudo-LRU (PLRU) used in
INTEL PENTIUM II-IV and POWERPC 75X

Most-Recently-Used (MRU) as described in literature

Each cache set is treated independently:
−→ Set-associative caches are compositions of fully-associative caches.
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Two types of cache analyses:

1 Local guarantees: classification of individual accesses
I May-Analysis −→ Overapproximates cache contents
I Must-Analysis −→ Underapproximates cache contents

2 Global guarantees: bounds on cache hits/misses

Cache analyses almost exclusively for LRU
In practice: FIFO, PLRU, . . .
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Abstract interpretation is always based on the semantics of the
analyzed language.
A semantics of a programming language that talks about time
needs to incorporate the execution platform!
Static timing analysis is thus based on such a semantics.
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Abstraction function α
Concretization function γ

⇒ ∀m′ ∈ M ′ : γ(m′) = γ(m)

α

γ

α

γ

l

α(l)

γ(m)

m

L M

M ′
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Determines:

1 invariants about the values of variables (in registers, on the stack)
I to compute loop bounds
I to eliminate infeasible paths
I to determine effective memory addresses

2 invariants on architectural execution state
I Cache contents⇒ predict hits and misses
I Pipeline states⇒ predict or exclude pipeline stalls
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read
z

read
y

read
x

write
z

Always a cache hit/always a miss?

1. Initial cache contents unknown.

2. Different paths lead to these points.

3. Cannot resolve address of z.
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using Abstract Interpretation

read
z

read
y

read
x

write
z

Collecting Semantics =
set of states at each program point that
any execution may encounter there

Two approximations:

Collecting Semantics uncomputable

⊆ Cache Semantics computable

⊆ γ(Abstract Cache Sem.) efficiently
computable
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“Cache Miss”:

z
y
x
t

s

s
z
y
x

LRU has
notion of age

“Cache Hit”:

z
y
s
t

s

s
z
y

t
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Used to predict cache hits.
Maintains upper bounds on ages of memory blocks.
Upper bound ≤ associativity −→ memory block definitely cached.

Example

Abstract state:

{x}

{}

{s,t}

{}

age 0

age 3

. . . and its interpretation:

Describes the set of all concrete cache
states in which x , s, and t occur,

x with an age of 0,
s and t with an age not older than 2.

γ([{x}, {}, {s, t}, {}]) =
{[x , s, t ,a], [x , t , s,a], [x , s, t ,b], . . .}

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 16 / 54



computer science

saarland
universitySound Update – Local Consistency

(must) (must ′)
Abstract Update

concrete cache states concrete cache states

γ γ
Lifted
Concrete
Update
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“Definite Cache Hit”:

{x}

{}

{s,t}

{}

s

{s}

{x}

{t}

{}

“Potential Cache Miss”:

{x}

{}

{s,t}

{}

z

{z}

{x}

{}

{s,t}

Why does t not age in the second case?
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Need to combine information where control-flow merges.

Join should be conservative:
γ(A) ⊆ γ(A t B)

γ(B) ⊆ γ(A t B)

“Intersection + Maximal Age”

How many memory blocks
can be in the must-cache?

t
{a}

{}

{c,f}

{d}

{c}

{e}

{a}

{d}

{}

{}

{a,c}

{d}
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entry [{}, {}, {}, {}]

A
⊥

B
⊥

C
⊥

D ⊥

exit ⊥
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entry [{}, {}, {}, {}]

A
⊥ t [{}, {}, {}, {}] = [{}, {}, {}, {}]

B
[{A}, {}, {}, {}]

C
[{A}, {}, {}, {}]

D
[{B}, {A}, {}, {}] t [{C}, {A}, {}, {}] =
[{}, {A}, {}, {}]

exit ⊥
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entry [{}, {}, {}, {}]

A

[{D}, {}, {A}, {}] t [{}, {}, {}, {}] =
[{}, {}, {}, {}]

B
[{A}, {}, {}, {}]

C
[{A}, {}, {}, {}]

D
[{B}, {A}, {}, {}] t [{C}, {A}, {}, {}] =
[{}, {A}, {}, {}]

exit [{D}, {}, {A}, {}]
No cache hits can be predicted :-(
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Problem:
I The first iteration of a loop will always result in cache misses.
I Similarly for the first execution of a function.

Solution:
I Virtually Unroll Loops: Distinguish the first iteration from others
I Distinguish function calls by calling context.

Virtually unrolling the loop once:
Accesses to A and D are provably
hits after the first iteration
Accesses to B and C can still not be
classified. Within each execution of
the loop, they may only miss once.

−→ Persistence Analysis

entry

A
[{}, {}, {}, {}]

B

[{A}, {}, {}, {}]
C

[{A}, {}, {}, {}]

D
[{}, {A}, {}, {}]

exit

A
[{D}, {}, {A}, {}]

B

[{A}, {D}, {}, {}]
C

[{A}, {D}, {}, {}]

D
[{}, {A}, {D}, {}]
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Used to predict cache misses.
Maintains lower bounds on ages of memory blocks.
Lower bound ≥ associativity

−→ memory block definitely not cached.

Example

Abstract state:

{x,y}

{}

{s,t}

{u}

age 0

age 3

. . . and its interpretation:

Describes the set of all concrete cache states in
which no memory blocks except x , y , s, t , and
u occur,

x and y with an age of at least 0,
s and t with an age of at least 2,
u with an age of at least 3.

γ([{x , y}, {}, {s, t}, {u}]) =
{[x , y , s, t ], [y , x , s, t ], [x , y , s,u], . . .}
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“Definite Cache Miss”:

{x}

{}

{s,t}

{y}

z

{z}

{x}

{}

{s,t}

“Potential Cache Hit”:

{x}

{}

{s,t}

{y}

s

{s}

{x}

{}

{y,t}

Why does t age in the second case?
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Need to combine information where control-flow merges.

Join should be conservative:
γ(A) ⊆ γ(A t B)

γ(B) ⊆ γ(A t B)

“Union + Minimal Age”

t
{a}

{}

{c,f}

{d}

{c}

{e}

{a}

{d}

{a,c}

{e}

{f}

{d}
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Amount of uncertainty determines precision of WCET analysis
Uncertainty in cache analysis depends on replacement policy

execution
time

BCET ACET WCET upper
bound

uncertainty
×

penalty
variation due to inputs

and initial hardware state

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 27 / 54



computer science

saarland
universityUncertainty in Cache Analysis

read
z

read
y

read
x

write
z

1. Initial cache contents unknown.

2. Need to combine information.

3. Cannot resolve address of z.

=⇒ Amount of uncertainty determined
by ability to recover information
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Evict
Fill

[dex]
[fde]

[gfd ]

[hgf ][fec]

[gfe]

[fed ]

Sequence: 〈a, . . . , e, f, g, h〉
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Evict
I Number of accesses to obtain any may-information.
I I.e. when can an analysis predict any cache misses?

Fill
I Number of accesses to complete may- and must-information.
I I.e. when can an analysis predict each access?

−→ Evict and Fill bound the precision of any static cache analysis.
Can thus serve as a benchmark for analyses.
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LRU “forgets” about past quickly:
I cares about most-recent access to each block only
I order of previous accesses irrelevant

?
?
?
?

a
a
?
?
?

b

b
a
?
?

c

c
b
a
?

d

d
c
b
a

In the example: Evict = Fill = 4
In general: Evict(k) = Fill(k) = k , where k is the associativity of
the cache
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Like LRU in the miss-case
But: “Ignores” hits

?
a
b
c

a

?
a
b
c

b

?
a
b
c

c

?
a
b
c

d

d
?
a
b

In the worst-case k − 1 hits and k misses: (k = associativity)
−→ Evict(k) = 2k − 1
Another k accesses to obtain complete knowledge:
−→ Fill(k) = 3k − 1
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Tree-bits point to block to be replaced

1

1 1

a b c d

c 0

1 1

a b c d

e 1

0 1

a e c d

Accesses “rejuvenate” neighborhood
I Active blocks keep their (inactive) neighborhood in the cache

Analysis yields:
I Evict(k) = k

2 log2 k + 1
I Fill(k) = k

2 log2 k + k − 1
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Policy Evict(k) Fill(k) Evict(8) Fill(8)
LRU k k 8 8
FIFO 2k − 1 3k − 1 15 23
MRU 2k − 2 ∞/3k − 4 14 ∞/20
PLRU k

2 log2 k + 1 k
2 log2 k + k − 1 13 19

LRU is optimal w.r.t. metrics.
Other policies are much less predictable.

−→ Use LRU if predictability is a concern.

How to obtain may- and must-information within the given limits for
other policies?
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1 Caches

2 Cache Analysis for Least-Recently-Used

3 Beyond Least-Recently-Used
Predictability Metrics
Relative Competitiveness
Sensitivity – Caches and Measurement-Based Timing Analysis

4 Summary
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Competitiveness (Sleator and Tarjan, 1985):
worst-case performance of an online policy relative to the optimal
offline policy

I used to evaluate online policies

Relative competitiveness (Reineke and Grund, 2008):
worst-case performance of an online policy relative to another
online policy

I used to derive local and global cache analyses
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Notation

mP(p, s) = number of misses that policy P incurs on
access sequence s ∈ M∗ starting in state p ∈ CP

Definition (Relative miss competitiveness)

Policy P is (k , c)-miss-competitive relative to policy Q if

mP(p, s) ≤ k ·mQ(q, s) + c

for all access sequences s ∈ M∗ and cache-set states p ∈ CP,q ∈ CQ

that are compatible p ∼ q.

Definition (Competitive miss ratio of P relative to Q)

The smallest k , s.t. P is (k , c)-miss-competitive rel. to Q for some c.
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P is (3,4)-miss-competitive relative to Q.
If Q incurs x misses, then P incurs at most 3 · x + 4 misses.

Best: P is (1,0)-miss-competitive relative to Q.

Worst: P is not-miss-competitive (or∞-miss-competitive) relative to Q.
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P is (2
3 ,3)-hit-competitive relative to Q.

If Q has x hits, then P has at least 2
3 · x − 3 hits.

Best: P is (1,0)-hit-competitive relative to Q.
Equivalent to (1,0)-miss-competitiveness.

Worst: P is (0,0)-hit-competitive relative to Q.
Analogue to∞-miss-competitiveness.
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universityLocal Guarantees: (1, 0)-Competitiveness

Let P be (1,0)-competitive relative to Q:

mP(p, s) ≤ 1 ·mQ(q, s) + 0

⇔ mP(p, s) ≤ mQ(q, s)

1 If Q “hits”, so does P, and
2 if P “misses”, so does Q.

As a consequence,
1 a must-analysis for Q is also a must-analysis for P, and
2 a may-analysis for P is also a may-analysis for Q.
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Given: Global guarantees for policy Q.
Wanted: Global guarantees for policy P.

1 Determine competitiveness of policy P relative to policy Q.

mP ≤ k ·mQ + c mQ(T) = mP(T)

2 Compute global guarantee for task T under policy Q.

mP ≤ k ·mQ + c mQ(T) = mP(T)

3 Calculate global guarantee on the number of misses for P using
the global guarantee for Q and the competitiveness results of P
relative to Q.

mP ≤ k ·mQ + c mQ(T) = mP(T)
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Automatic Computation
P and Q (here: FIFO and LRU) induce transition system:

[eabc]FIFO, [eabc]LRU

e(h,h)

[abcd ]FIFO, [abcd ]LRU
e

(m,m) a

(h,h)

[eabc]FIFO, [ceab]LRU

c (h,h)

[abcd ]FIFO, [dabc]LRU

d (h,h)

[eabc]FIFO, [ceda]LRU [eabc]FIFO, [edab]LRU

e (m,m)

c

(h,m)
[deab]FIFO, [deab]LRU

d

(m,h)

Legend

[abcd ]FIFO Cache-set state

· ·d Memory access
(h,m), . . . Misses in pairs of

cache-set states

LRU
MRU

last-in
first-in

Competitive miss ratio = maximum ratio of misses in policy P to misses
in policy Q in transition system
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Problem: The induced transition system is∞ large.
Observation: Only the relative positions of elements matter:

[abc]LRU, [bde]FIFO [fgl ]LRU, [ghm]FIFO≈

[cab]LRU, [cbd ]FIFO

(h,m)c

[lfg]LRU, [lgh]FIFO

(h,m)l

≈

Solution: Construct finite quotient transition system.
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[eabc]FIFO, [eabc]LRU

e(h,h)

[abcd ]FIFO, [abcd ]LRU
e

(m,m) a

(h,h)

[eabc]FIFO, [ceab]LRU

c (h,h)

[abcd ]FIFO, [dabc]LRU

d (h,h)

[eabc]FIFO, [ceda]LRU [eabc]FIFO, [edab]LRU

e (m,m)

c

(h,m)
[deab]FIFO, [deab]LRU

d

(m,h)
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Merging ≈-equivalent states yields a finite quotient transition system:

[abcd ]FIFO, [abcd ]LRU

(h,h)

(m,m)

[abcd ]FIFO, [dabc]LRU

(h,h)

[eabc]FIFO, [edab]LRU

(m,m)

(m,h)

[eabc]FIFO, [ceda]LRU
(h,m)
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Competitive miss ratio =
maximum ratio of misses in policy P to misses in policy Q

(1,1)

(0,0)

(0,0)

(1,1)

(1,0)

(0,1)

Maximum cycle ratio = 0+1+1
0+1+0 = 2
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Implemented in Java, called Relacs
Interface for replacement policies

Fully automatic
Provides example sequences for competitive ratio and constant

Analysis usually practically feasible up to associativity 8
I limited by memory consumption
I depends on similarity of replacement policies

Online version:
http://rw4.cs.uni-sb.de/~reineke/relacs
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Identified patterns and proved generalizations by hand.
Aided by example sequences generated by tool.

Previously unknown facts:
PLRU(k) is (1,0) comp. rel. to LRU(1 + log2k),

−→ LRU-must-analysis can be used for PLRU

FIFO(k) is (1
2 ,

k−1
2 ) hit-comp. rel. to LRU(k),

whereas

LRU(k) is (0,0) hit-comp. rel. to FIFO(k), but

LRU(2k − 1) is (1,0) comp. rel. to FIFO(k),

and

LRU(2k − 2) is (1,0) comp. rel. to MRU(k).
−→ LRU-may-analysis can be used for FIFO and MRU
−→ optimal with respect to predictability metric Evict

FIFO-may-analysis used in the analysis of the branch target buffer of
the MOTOROLA POWERPC 56X.
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1 Caches

2 Cache Analysis for Least-Recently-Used

3 Beyond Least-Recently-Used
Predictability Metrics
Relative Competitiveness
Sensitivity – Caches and Measurement-Based Timing Analysis

4 Summary
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universityMeasurement-Based Timing Analysis

Run program on a number of inputs and
initial states.
Combine measurements for basic blocks
to obtain WCET estimation.
Sensitivity Analysis demonstrates this
approach may be dramatically wrong.
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execution
time

BCET WCET upper
bound

variation due to
initial cache state

Definition (Miss sensitivity)

Policy P is (k , c)-miss-sensitive if

mP(q, s) ≤ k ·mP(q′, s) + c

for all access sequences s ∈ M∗ and cache-set states q,q′ ∈ CP.
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Policy 2 3 4 5 6 7 8
LRU 1,2 1,3 1,4 1,5 1,6 1,7 1,8

FIFO 2,2 3,3 4,4 5,5 6,6 7,7 8,8
PLRU 1,2 − ∞ − − − ∞
MRU 1,2 3,4 5,6 7,8 MEM MEM MEM

LRU is optimal. Performance varies in the least possible way.
For FIFO, PLRU, and MRU the number of misses may vary
strongly.
Case study based on simple model of execution time by
Hennessy and Patterson (2003):
WCET may be 3 times higher than a measured execution time
for 4-way FIFO.
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Cache Analysis for Least-Recently-Used
. . . efficiently represents sets of cache states by bounding the age
of memory blocks from above and below.
. . . requires context-sensitivity for precision.

Predictability Metrics
. . . quantify the predictability of replacement policies.
−→ LRU is the most predictable policy.

Relative Competitiveness
. . . allows to derive guarantees on cache performance,
. . . yields first may-analyses for FIFO and MRU.

Sensitivity Analysis
. . . determines the influence of initial state on cache performance.

Thank you for your attention!
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MRU-bits record whether line was recently used

[abcd ]0101 b,d

[ebcd ]1101 e,b,d

[ebcd ]0010 c

e

c

−→ Never converges
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1

1 0

a b c d

0

1 1

a b e d

1

1 1

a b e d

0

1 0

a b e f

Initial cache-
set state
[a,b, c,d ]110.

After a miss
on e. State:
[a,b,e,d ]011.

After a hit
on a. State:
[a,b,e,d ]111.

After a miss
on f . State:
[a,b,e, f ]010.

Hit on a “rejuvenates” neighborhood; “saves” b from eviction.
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MayP(s) :=
⋃

p∈CP

CCP(updateP(p, s))

MustP(s) :=
⋂

p∈CP

CCP(updateP(p, s))

mayP(n) :=
∣∣∣MayP(s)

∣∣∣ ,where s ∈ S 6= ( M∗, |s| = n

mustP(n) :=
∣∣∣MustP(s)

∣∣∣ ,where s ∈ S 6= ( M∗, |s| = n

S 6= : set of finite access sequences with pairwise different accesses
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EvictP := min
{

n | mayP(n) ≤ n
}
,

FillP := min
{

n | mustP(n) = k
}
,

where k is P’s associativity.
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Let P(k) be (1,0)-miss-competitive relative to policy Q(l), then
(i) EvictP(k) ≥ EvictQ(l),
(ii) mlsP(k) ≥ mlsQ(l).
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Let l be the smallest associativity, such that LRU(l) is
(1,0)-miss-competitive relative to P(k). Then

Alt-EvictP(k) = l .

Let l be the greatest associativity, such that P(k) is
(1,0)-miss-competitive relative to LRU(l). Then

Alt-mlsP(k) = l .
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2l+l ′︸︷︷︸
status bits
of P and Q

·
k∑

i=0

(
k
i

)
︸ ︷︷ ︸

non-empty lines in P

·
k ′∑

i ′=0

(
k ′

i ′

)
︸ ︷︷ ︸

non-empty lines in Q

·
min{i,i ′}∑

j=0

(
i
j

)(
i ′

j

)
j!

︸ ︷︷ ︸
number of overlappings

in non-empty lines

min{k ,k ′}∑
j=0

(
k
j

)(
k ′

j

)
j! ≤ k ! · k ′!

min{k ,k ′}∑
j=0

1
(k − j)!j!(k ′ − j)!

≤ k ! · k ′!
∞∑

j=0

1
j!

= e · k ! · k ′!

This can be bounded by

2l+l ′+k+k ′ ≤ |(C l
k × C l ′

k ′)/ ≈ | ≤ 2l+l ′+k+k ′ · e · k ! · k ′!︸ ︷︷ ︸
bound on number of overlappings
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iP = [⊥⊥⊥⊥]P iQ = [⊥⊥⊥⊥]Q≈

p

updateP(iP, s)

q

updateQ(iQ, s)

≈
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Let P be (1,0)-competitive relative to Q, then

p q≈

p′

mP(p, 〈x〉) = 1

q′

mQ(q, 〈x〉) = 1

≈

=⇒
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CP CQ≈

P

S

Q

S

≈

P ′

∀p ∈ P : mP(p, 〈x〉) = 1

Q′

∀q ∈ Q : mQ(q, 〈x〉) = 1

≈

=⇒
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Simple model of execution time from Hennessy & Patterson (2003)
CPIhit = Cycles per instruction assuming cache hits only
Memory accesses

Instruction including instruction and data fetches

Twc

Tmeas
=

CPIhit+
Memory accesses

Instruction ×Miss ratewc×Miss penalty

CPIhit+
Memory accesses

Instruction ×Miss ratemeas×Miss penalty

= 1.5+1.2×0.20×50
1.5+1.2×0.05×50 = 13.5

4.5 = 3
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Evolution of may/must-
information

8-way LRU:

k
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Evolution of may/must-
information

8-way FIFO:

k
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Evolution of may/must-
information

8-way PLRU:

k
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Evolution of may/must-
information

8-way MRU:

k-1

2k-2
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