
Timing analysis and timing predictability
Caches in WCET Analysis

Reinhard Wilhelm1 Jan Reineke2

1Saarland University, Saarbrücken, Germany

2University of California, Berkeley, USA

January 18, 2011

computer science

saarland
university

http://rw4.cs.uni-sb.de/people/wilhelm.shtml
http://www.eecs.berkeley.edu/~reineke

computer science

saarland
universityOutline

1 Caches

2 Cache Analysis for Least-Recently-Used

3 Beyond Least-Recently-Used
Predictability Metrics
Relative Competitiveness
Sensitivity – Caches and Measurement-Based Timing Analysis

4 Summary

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 2 / 54

computer science

saarland
universityOutline

1 Caches

2 Cache Analysis for Least-Recently-Used

3 Beyond Least-Recently-Used
Predictability Metrics
Relative Competitiveness
Sensitivity – Caches and Measurement-Based Timing Analysis

4 Summary

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 3 / 54

computer science

saarland
universityCaches

Small but very fast memories that buffer part of the main memory
Bridge the gap between speed of CPU and main memory

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

“hit”
[ab]

Why caches work: principle of locality
I spatial: e.g. in sequential instructions, accessing arrays
I temporal: e.g. in loops

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 4 / 54

computer science

saarland
universityCaches

Small but very fast memories that buffer part of the main memory
Bridge the gap between speed of CPU and main memory

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

a1

“hit”
[ab]

Why caches work: principle of locality
I spatial: e.g. in sequential instructions, accessing arrays
I temporal: e.g. in loops

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 4 / 54

computer science

saarland
universityCaches

Small but very fast memories that buffer part of the main memory
Bridge the gap between speed of CPU and main memory

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

a1!

“hit”
[ab]

Why caches work: principle of locality
I spatial: e.g. in sequential instructions, accessing arrays
I temporal: e.g. in loops

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 4 / 54

computer science

saarland
universityCaches

Small but very fast memories that buffer part of the main memory
Bridge the gap between speed of CPU and main memory

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

c3?

“miss”
[ab]

Why caches work: principle of locality
I spatial: e.g. in sequential instructions, accessing arrays
I temporal: e.g. in loops

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 4 / 54

computer science

saarland
universityCaches

Small but very fast memories that buffer part of the main memory
Bridge the gap between speed of CPU and main memory

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

c3? c?

“miss”
[ab]

Why caches work: principle of locality
I spatial: e.g. in sequential instructions, accessing arrays
I temporal: e.g. in loops

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 4 / 54

computer science

saarland
universityCaches

Small but very fast memories that buffer part of the main memory
Bridge the gap between speed of CPU and main memory

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

c3? c = 〈c1c2c3c4〉!

“miss”
[ac]

Why caches work: principle of locality
I spatial: e.g. in sequential instructions, accessing arrays
I temporal: e.g. in loops

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 4 / 54

computer science

saarland
universityCaches

Small but very fast memories that buffer part of the main memory
Bridge the gap between speed of CPU and main memory

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

c3!

“miss”
[ac]

Why caches work: principle of locality
I spatial: e.g. in sequential instructions, accessing arrays
I temporal: e.g. in loops

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 4 / 54

computer science

saarland
universityCaches

Small but very fast memories that buffer part of the main memory
Bridge the gap between speed of CPU and main memory

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

c4?

“hit”
[ac]

Why caches work: principle of locality
I spatial: e.g. in sequential instructions, accessing arrays
I temporal: e.g. in loops

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 4 / 54

computer science

saarland
universityCaches

Small but very fast memories that buffer part of the main memory
Bridge the gap between speed of CPU and main memory

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

c4!

“hit”
[ac]

Why caches work: principle of locality
I spatial: e.g. in sequential instructions, accessing arrays
I temporal: e.g. in loops

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 4 / 54

computer science

saarland
universityFully-Associative Caches

Tag Block
offset

Address:

B b
b

k s

log2(s) log2(8 ∗ b)

•
•
•

Tag Data Block

Tag Data Block
...

Tag Data Block

B b
b

k s

log2(s) log2(8 ∗ b) s

•
•
•

=?

No:
Miss!

Yes:
Hit! MUX

Data

= associativity

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 5 / 54

computer science

saarland
universitySet-Associative Caches

...

B b
b

k s

log2(s) log2(8 ∗ b) s

•
•
•

Tag Index Block
offset

Address:

B b
b

k s

log2(s) log2(8 ∗ b)

•
•
•

B b
b

k s

log2(s) log2(8 ∗ b)

•
•
•

Tag Data Block

Tag Data Block
...

Tag Data Block
Cache Set:

B b
b

k s

log2(s) log2(8 ∗ b) s

•
•
•

Tag Data Block

Tag Data Block
...

Tag Data Block
Cache Set:

=?

No:
Miss!

Yes:
Hit! MUX

Data
Special cases:

direct-mapped cache: only one line per cache set
fully-associative cache: only one cache set

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 6 / 54

computer science

saarland
universityCache Replacement Policies

Least-Recently-Used (LRU) used in
INTEL PENTIUM I and MIPS 24K/34K

First-In First-Out (FIFO or Round-Robin) used in
MOTOROLA POWERPC 56X, INTEL XSCALE, ARM9, ARM11

Pseudo-LRU (PLRU) used in
INTEL PENTIUM II-IV and POWERPC 75X

Most-Recently-Used (MRU) as described in literature

Each cache set is treated independently:
−→ Set-associative caches are compositions of fully-associative caches.

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 7 / 54

computer science

saarland
universityOutline

1 Caches

2 Cache Analysis for Least-Recently-Used

3 Beyond Least-Recently-Used
Predictability Metrics
Relative Competitiveness
Sensitivity – Caches and Measurement-Based Timing Analysis

4 Summary

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 8 / 54

computer science

saarland
universityCache Analysis

Two types of cache analyses:

1 Local guarantees: classification of individual accesses
I May-Analysis −→ Overapproximates cache contents
I Must-Analysis −→ Underapproximates cache contents

2 Global guarantees: bounds on cache hits/misses

Cache analyses almost exclusively for LRU
In practice: FIFO, PLRU, . . .

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 9 / 54

computer science

saarland
universityAbstract Interpretation in Timing Analysis

Abstract interpretation is always based on the semantics of the
analyzed language.
A semantics of a programming language that talks about time
needs to incorporate the execution platform!
Static timing analysis is thus based on such a semantics.

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 10 / 54

computer science

saarland
universityGalois Connection

Abstraction function α
Concretization function γ

⇒ ∀m′ ∈ M ′ : γ(m′) = γ(m)

α

γ

α

γ

l

α(l)

γ(m)

m

L M

M ′

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 11 / 54

computer science

saarland
universityAbstract Interpretation in Timing Analysis

Determines:

1 invariants about the values of variables (in registers, on the stack)
I to compute loop bounds
I to eliminate infeasible paths
I to determine effective memory addresses

2 invariants on architectural execution state
I Cache contents⇒ predict hits and misses
I Pipeline states⇒ predict or exclude pipeline stalls

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 12 / 54

computer science

saarland
universityChallenges for Cache Analysis

read
z

read
y

read
x

write
z

Always a cache hit/always a miss?

1. Initial cache contents unknown.

2. Different paths lead to these points.

3. Cannot resolve address of z.

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 13 / 54

computer science

saarland
universityChallenges for Cache Analysis

read
z

read
y

read
x

write
z

Always a cache hit/always a miss?

1. Initial cache contents unknown.

2. Different paths lead to these points.

3. Cannot resolve address of z.

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 13 / 54

computer science

saarland
universityDeriving Invariants about Cache States

using Abstract Interpretation

read
z

read
y

read
x

write
z

Collecting Semantics =
set of states at each program point that
any execution may encounter there

Two approximations:

Collecting Semantics uncomputable

⊆ Cache Semantics computable

⊆ γ(Abstract Cache Sem.) efficiently
computable

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 14 / 54

computer science

saarland
universityDeriving Invariants about Cache States

using Abstract Interpretation

read
z

read
y

read
x

write
z

Collecting Semantics =
set of states at each program point that
any execution may encounter there

Two approximations:

Collecting Semantics uncomputable

⊆ Cache Semantics computable

⊆ γ(Abstract Cache Sem.) efficiently
computable

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 14 / 54

computer science

saarland
universityDeriving Invariants about Cache States

using Abstract Interpretation

read
z

read
y

read
x

write
z

Collecting Semantics =
set of states at each program point that
any execution may encounter there

Two approximations:

Collecting Semantics uncomputable

⊆ Cache Semantics computable

⊆ γ(Abstract Cache Sem.) efficiently
computable

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 14 / 54

computer science

saarland
universityDeriving Invariants about Cache States

using Abstract Interpretation

read
z

read
y

read
x

write
z

Collecting Semantics =
set of states at each program point that
any execution may encounter there

Two approximations:

Collecting Semantics uncomputable

⊆ Cache Semantics computable

⊆ γ(Abstract Cache Sem.) efficiently
computable

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 14 / 54

computer science

saarland
universityDeriving Invariants about Cache States

using Abstract Interpretation

read
z

read
y

read
x

write
z

Collecting Semantics =
set of states at each program point that
any execution may encounter there

Two approximations:

Collecting Semantics uncomputable

⊆ Cache Semantics computable

⊆ γ(Abstract Cache Sem.) efficiently
computable

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 14 / 54

computer science

saarland
universityLeast-Recently-Used (LRU): Concrete Behavior

“Cache Miss”:

z
y
x
t

s

s
z
y
x

LRU has
notion of age

“Cache Hit”:

z
y
s
t

s

s
z
y

t

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 15 / 54

computer science

saarland
universityLRU: Must-Analysis: Abstract Domain

Used to predict cache hits.
Maintains upper bounds on ages of memory blocks.
Upper bound ≤ associativity −→ memory block definitely cached.

Example

Abstract state:

{x}

{}

{s,t}

{}

age 0

age 3

. . . and its interpretation:

Describes the set of all concrete cache
states in which x , s, and t occur,

x with an age of 0,
s and t with an age not older than 2.

γ([{x}, {}, {s, t}, {}]) =
{[x , s, t ,a], [x , t , s,a], [x , s, t ,b], . . .}

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 16 / 54

computer science

saarland
universitySound Update – Local Consistency

(must) (must ′)
Abstract Update

concrete cache states concrete cache states

γ γ
Lifted
Concrete
Update

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 17 / 54

computer science

saarland
universityLRU: Must-Analysis: Update

“Definite Cache Hit”:

{x}

{}

{s,t}

{}

s

{s}

{x}

{t}

{}

“Potential Cache Miss”:

{x}

{}

{s,t}

{}

z

{z}

{x}

{}

{s,t}

Why does t not age in the second case?

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 18 / 54

computer science

saarland
universityMust-Analysis for LRU: Join

Need to combine information where control-flow merges.

Join should be conservative:
γ(A) ⊆ γ(A t B)

γ(B) ⊆ γ(A t B)

“Intersection + Maximal Age”

How many memory blocks
can be in the must-cache?

t
{a}

{}

{c,f}

{d}

{c}

{e}

{a}

{d}

{}

{}

{a,c}

{d}

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 19 / 54

computer science

saarland
universityMust-Analysis for LRU: Join

Need to combine information where control-flow merges.

Join should be conservative:
γ(A) ⊆ γ(A t B)

γ(B) ⊆ γ(A t B)

“Intersection + Maximal Age”

How many memory blocks
can be in the must-cache?

t
{a}

{}

{c,f}

{d}

{c}

{e}

{a}

{d}

{}

{}

{a,c}

{d}

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 19 / 54

computer science

saarland
universityMust-Analysis for LRU: Join

Need to combine information where control-flow merges.

Join should be conservative:
γ(A) ⊆ γ(A t B)

γ(B) ⊆ γ(A t B)

“Intersection + Maximal Age”

How many memory blocks
can be in the must-cache?

t
{a}

{}

{c,f}

{d}

{c}

{e}

{a}

{d}

{}

{}

{a,c}

{d}

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 19 / 54

computer science

saarland
universityMust-Analysis for LRU: Join

Need to combine information where control-flow merges.

Join should be conservative:
γ(A) ⊆ γ(A t B)

γ(B) ⊆ γ(A t B)

“Intersection + Maximal Age”

How many memory blocks
can be in the must-cache?

t
{a}

{}

{c,f}

{d}

{c}

{e}

{a}

{d}

{}

{}

{a,c}

{d}

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 19 / 54

computer science

saarland
universityMust-Analysis for LRU: Join

Need to combine information where control-flow merges.

Join should be conservative:
γ(A) ⊆ γ(A t B)

γ(B) ⊆ γ(A t B)

“Intersection + Maximal Age”

How many memory blocks
can be in the must-cache?

t
{a}

{}

{c,f}

{d}

{c}

{e}

{a}

{d}

{}

{}

{a,c}

{d}

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 19 / 54

computer science

saarland
universityMust-Analysis for LRU: Join

Need to combine information where control-flow merges.

Join should be conservative:
γ(A) ⊆ γ(A t B)

γ(B) ⊆ γ(A t B)

“Intersection + Maximal Age”

How many memory blocks
can be in the must-cache?

t
{a}

{}

{c,f}

{d}

{c}

{e}

{a}

{d}

{}

{}

{a,c}

{d}

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 19 / 54

computer science

saarland
universityMust-Analysis for LRU: Join

Need to combine information where control-flow merges.

Join should be conservative:
γ(A) ⊆ γ(A t B)

γ(B) ⊆ γ(A t B)

“Intersection + Maximal Age”

How many memory blocks
can be in the must-cache?

t
{a}

{}

{c,f}

{d}

{c}

{e}

{a}

{d}

{}

{}

{a,c}

{d}

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 19 / 54

computer science

saarland
universityExample: Must-Analysis

entry [{}, {}, {}, {}]

A
⊥

B
⊥

C
⊥

D ⊥

exit ⊥

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 20 / 54

computer science

saarland
universityExample: Must-Analysis

entry [{}, {}, {}, {}]

A
⊥ t [{}, {}, {}, {}] = [{}, {}, {}, {}]

B
⊥

C
⊥

D ⊥

exit ⊥

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 20 / 54

computer science

saarland
universityExample: Must-Analysis

entry [{}, {}, {}, {}]

A
⊥ t [{}, {}, {}, {}] = [{}, {}, {}, {}]

B
[{A}, {}, {}, {}]

C
[{A}, {}, {}, {}]

D ⊥

exit ⊥

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 20 / 54

computer science

saarland
universityExample: Must-Analysis

entry [{}, {}, {}, {}]

A
⊥ t [{}, {}, {}, {}] = [{}, {}, {}, {}]

B
[{A}, {}, {}, {}]

C
[{A}, {}, {}, {}]

D
[{B}, {A}, {}, {}] t [{C}, {A}, {}, {}] =
[{}, {A}, {}, {}]

exit ⊥

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 20 / 54

computer science

saarland
universityExample: Must-Analysis

entry [{}, {}, {}, {}]

A

[{D}, {}, {A}, {}] t [{}, {}, {}, {}] =
[{}, {}, {}, {}]

B
[{A}, {}, {}, {}]

C
[{A}, {}, {}, {}]

D
[{B}, {A}, {}, {}] t [{C}, {A}, {}, {}] =
[{}, {A}, {}, {}]

exit [{D}, {}, {A}, {}]
No cache hits can be predicted :-(

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 20 / 54

computer science

saarland
universityContext-Sensitive Analysis/Virtual Loop-Unrolling

Problem:
I The first iteration of a loop will always result in cache misses.
I Similarly for the first execution of a function.

Solution:
I Virtually Unroll Loops: Distinguish the first iteration from others
I Distinguish function calls by calling context.

Virtually unrolling the loop once:
Accesses to A and D are provably
hits after the first iteration
Accesses to B and C can still not be
classified. Within each execution of
the loop, they may only miss once.

−→ Persistence Analysis

entry

A
[{}, {}, {}, {}]

B

[{A}, {}, {}, {}]
C

[{A}, {}, {}, {}]

D
[{}, {A}, {}, {}]

exit

A
[{D}, {}, {A}, {}]

B

[{A}, {D}, {}, {}]
C

[{A}, {D}, {}, {}]

D
[{}, {A}, {D}, {}]

exitReinhard Wilhelm Caches in WCET Analysis January 18, 2011 21 / 54

computer science

saarland
universityLRU: May-Analysis: Abstract Domain

Used to predict cache misses.
Maintains lower bounds on ages of memory blocks.
Lower bound ≥ associativity

−→ memory block definitely not cached.

Example

Abstract state:

{x,y}

{}

{s,t}

{u}

age 0

age 3

. . . and its interpretation:

Describes the set of all concrete cache states in
which no memory blocks except x , y , s, t , and
u occur,

x and y with an age of at least 0,
s and t with an age of at least 2,
u with an age of at least 3.

γ([{x , y}, {}, {s, t}, {u}]) =
{[x , y , s, t], [y , x , s, t], [x , y , s,u], . . .}

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 22 / 54

computer science

saarland
universityLRU: May-Analysis: Update

“Definite Cache Miss”:

{x}

{}

{s,t}

{y}

z

{z}

{x}

{}

{s,t}

“Potential Cache Hit”:

{x}

{}

{s,t}

{y}

s

{s}

{x}

{}

{y,t}

Why does t age in the second case?

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 23 / 54

computer science

saarland
universityLRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative:
γ(A) ⊆ γ(A t B)

γ(B) ⊆ γ(A t B)

“Union + Minimal Age”

t
{a}

{}

{c,f}

{d}

{c}

{e}

{a}

{d}

{a,c}

{e}

{f}

{d}

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 24 / 54

computer science

saarland
universityLRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative:
γ(A) ⊆ γ(A t B)

γ(B) ⊆ γ(A t B)

“Union + Minimal Age”

t
{a}

{}

{c,f}

{d}

{c}

{e}

{a}

{d}

{a,c}

{e}

{f}

{d}

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 24 / 54

computer science

saarland
universityLRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative:
γ(A) ⊆ γ(A t B)

γ(B) ⊆ γ(A t B)

“Union + Minimal Age”

t
{a}

{}

{c,f}

{d}

{c}

{e}

{a}

{d}

{a,c}

{e}

{f}

{d}

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 24 / 54

computer science

saarland
universityLRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative:
γ(A) ⊆ γ(A t B)

γ(B) ⊆ γ(A t B)

“Union + Minimal Age”

t
{a}

{}

{c,f}

{d}

{c}

{e}

{a}

{d}

{a,c}

{e}

{f}

{d}

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 24 / 54

computer science

saarland
universityLRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative:
γ(A) ⊆ γ(A t B)

γ(B) ⊆ γ(A t B)

“Union + Minimal Age”

t
{a}

{}

{c,f}

{d}

{c}

{e}

{a}

{d}

{a,c}

{e}

{f}

{d}

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 24 / 54

computer science

saarland
universityLRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative:
γ(A) ⊆ γ(A t B)

γ(B) ⊆ γ(A t B)

“Union + Minimal Age”

t
{a}

{}

{c,f}

{d}

{c}

{e}

{a}

{d}

{a,c}

{e}

{f}

{d}

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 24 / 54

computer science

saarland
universityOutline

1 Caches

2 Cache Analysis for Least-Recently-Used

3 Beyond Least-Recently-Used
Predictability Metrics
Relative Competitiveness
Sensitivity – Caches and Measurement-Based Timing Analysis

4 Summary

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 25 / 54

computer science

saarland
universityOutline

1 Caches

2 Cache Analysis for Least-Recently-Used

3 Beyond Least-Recently-Used
Predictability Metrics
Relative Competitiveness
Sensitivity – Caches and Measurement-Based Timing Analysis

4 Summary

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 26 / 54

computer science

saarland
universityUncertainty in WCET Analysis

Amount of uncertainty determines precision of WCET analysis
Uncertainty in cache analysis depends on replacement policy

execution
time

BCET ACET WCET upper
bound

uncertainty
×

penalty
variation due to inputs

and initial hardware state

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 27 / 54

computer science

saarland
universityUncertainty in Cache Analysis

read
z

read
y

read
x

write
z

1. Initial cache contents unknown.

2. Need to combine information.

3. Cannot resolve address of z.

=⇒ Amount of uncertainty determined
by ability to recover information

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 28 / 54

computer science

saarland
universityUncertainty in Cache Analysis

read
z

read
y

read
x

write
z

1. Initial cache contents unknown.

2. Need to combine information.

3. Cannot resolve address of z.

=⇒ Amount of uncertainty determined
by ability to recover information

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 28 / 54

computer science

saarland
universityUncertainty in Cache Analysis

read
z

read
y

read
x

write
z

1. Initial cache contents unknown.

2. Need to combine information.

3. Cannot resolve address of z.

=⇒ Amount of uncertainty determined
by ability to recover information

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 28 / 54

computer science

saarland
universityUncertainty in Cache Analysis

read
z

read
y

read
x

write
z

1. Initial cache contents unknown.

2. Need to combine information.

3. Cannot resolve address of z.

=⇒ Amount of uncertainty determined
by ability to recover information

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 28 / 54

computer science

saarland
universityUncertainty in Cache Analysis

read
z

read
y

read
x

write
z

1. Initial cache contents unknown.

2. Need to combine information.

3. Cannot resolve address of z.

=⇒ Amount of uncertainty determined
by ability to recover information

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 28 / 54

computer science

saarland
universityPredictability Metrics

Evict
Fill

[dex]
[fde]

[gfd]

[hgf][fec]

[gfe]

[fed]

Sequence: 〈a, . . . , e, f, g, h〉

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 29 / 54

computer science

saarland
universityMeaning of Metrics

Evict
I Number of accesses to obtain any may-information.
I I.e. when can an analysis predict any cache misses?

Fill
I Number of accesses to complete may- and must-information.
I I.e. when can an analysis predict each access?

−→ Evict and Fill bound the precision of any static cache analysis.
Can thus serve as a benchmark for analyses.

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 30 / 54

computer science

saarland
universityEvaluation of Least-Recently-Used

LRU “forgets” about past quickly:
I cares about most-recent access to each block only
I order of previous accesses irrelevant

?
?
?
?

a
a
?
?
?

b

b
a
?
?

c

c
b
a
?

d

d
c
b
a

In the example: Evict = Fill = 4
In general: Evict(k) = Fill(k) = k , where k is the associativity of
the cache

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 31 / 54

computer science

saarland
universityEvaluation of First-In First-Out (sketch)

Like LRU in the miss-case
But: “Ignores” hits

?
a
b
c

a

?
a
b
c

b

?
a
b
c

c

?
a
b
c

d

d
?
a
b

In the worst-case k − 1 hits and k misses: (k = associativity)
−→ Evict(k) = 2k − 1
Another k accesses to obtain complete knowledge:
−→ Fill(k) = 3k − 1

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 32 / 54

computer science

saarland
universityEvaluation of Pseudo-LRU (sketch)

Tree-bits point to block to be replaced

1

1 1

a b c d

c 0

1 1

a b c d

e 1

0 1

a e c d

Accesses “rejuvenate” neighborhood
I Active blocks keep their (inactive) neighborhood in the cache

Analysis yields:
I Evict(k) = k

2 log2 k + 1
I Fill(k) = k

2 log2 k + k − 1

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 33 / 54

computer science

saarland
universityEvaluation of Policies

Policy Evict(k) Fill(k) Evict(8) Fill(8)
LRU k k 8 8
FIFO 2k − 1 3k − 1 15 23
MRU 2k − 2 ∞/3k − 4 14 ∞/20
PLRU k

2 log2 k + 1 k
2 log2 k + k − 1 13 19

LRU is optimal w.r.t. metrics.
Other policies are much less predictable.

−→ Use LRU if predictability is a concern.

How to obtain may- and must-information within the given limits for
other policies?

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 34 / 54

computer science

saarland
universityOutline

1 Caches

2 Cache Analysis for Least-Recently-Used

3 Beyond Least-Recently-Used
Predictability Metrics
Relative Competitiveness
Sensitivity – Caches and Measurement-Based Timing Analysis

4 Summary

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 35 / 54

computer science

saarland
universityRelative Competitiveness

Competitiveness (Sleator and Tarjan, 1985):
worst-case performance of an online policy relative to the optimal
offline policy

I used to evaluate online policies

Relative competitiveness (Reineke and Grund, 2008):
worst-case performance of an online policy relative to another
online policy

I used to derive local and global cache analyses

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 36 / 54

computer science

saarland
universityDefinition – Relative Miss-Competitiveness

Notation

mP(p, s) = number of misses that policy P incurs on
access sequence s ∈ M∗ starting in state p ∈ CP

Definition (Relative miss competitiveness)

Policy P is (k , c)-miss-competitive relative to policy Q if

mP(p, s) ≤ k ·mQ(q, s) + c

for all access sequences s ∈ M∗ and cache-set states p ∈ CP,q ∈ CQ

that are compatible p ∼ q.

Definition (Competitive miss ratio of P relative to Q)

The smallest k , s.t. P is (k , c)-miss-competitive rel. to Q for some c.

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 37 / 54

computer science

saarland
universityDefinition – Relative Miss-Competitiveness

Notation

mP(p, s) = number of misses that policy P incurs on
access sequence s ∈ M∗ starting in state p ∈ CP

Definition (Relative miss competitiveness)

Policy P is (k , c)-miss-competitive relative to policy Q if

mP(p, s) ≤ k ·mQ(q, s) + c

for all access sequences s ∈ M∗ and cache-set states p ∈ CP,q ∈ CQ

that are compatible p ∼ q.

Definition (Competitive miss ratio of P relative to Q)

The smallest k , s.t. P is (k , c)-miss-competitive rel. to Q for some c.

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 37 / 54

computer science

saarland
universityDefinition – Relative Miss-Competitiveness

Notation

mP(p, s) = number of misses that policy P incurs on
access sequence s ∈ M∗ starting in state p ∈ CP

Definition (Relative miss competitiveness)

Policy P is (k , c)-miss-competitive relative to policy Q if

mP(p, s) ≤ k ·mQ(q, s) + c

for all access sequences s ∈ M∗ and cache-set states p ∈ CP,q ∈ CQ

that are compatible p ∼ q.

Definition (Competitive miss ratio of P relative to Q)

The smallest k , s.t. P is (k , c)-miss-competitive rel. to Q for some c.

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 37 / 54

computer science

saarland
universityExample – Relative Miss-Competitiveness

P is (3,4)-miss-competitive relative to Q.
If Q incurs x misses, then P incurs at most 3 · x + 4 misses.

Best: P is (1,0)-miss-competitive relative to Q.

Worst: P is not-miss-competitive (or∞-miss-competitive) relative to Q.

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 38 / 54

computer science

saarland
universityExample – Relative Miss-Competitiveness

P is (3,4)-miss-competitive relative to Q.
If Q incurs x misses, then P incurs at most 3 · x + 4 misses.

Best: P is (1,0)-miss-competitive relative to Q.

Worst: P is not-miss-competitive (or∞-miss-competitive) relative to Q.

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 38 / 54

computer science

saarland
universityExample – Relative Miss-Competitiveness

P is (3,4)-miss-competitive relative to Q.
If Q incurs x misses, then P incurs at most 3 · x + 4 misses.

Best: P is (1,0)-miss-competitive relative to Q.

Worst: P is not-miss-competitive (or∞-miss-competitive) relative to Q.

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 38 / 54

computer science

saarland
universityExample – Relative Hit-Competitiveness

P is (2
3 ,3)-hit-competitive relative to Q.

If Q has x hits, then P has at least 2
3 · x − 3 hits.

Best: P is (1,0)-hit-competitive relative to Q.
Equivalent to (1,0)-miss-competitiveness.

Worst: P is (0,0)-hit-competitive relative to Q.
Analogue to∞-miss-competitiveness.

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 39 / 54

computer science

saarland
universityExample – Relative Hit-Competitiveness

P is (2
3 ,3)-hit-competitive relative to Q.

If Q has x hits, then P has at least 2
3 · x − 3 hits.

Best: P is (1,0)-hit-competitive relative to Q.
Equivalent to (1,0)-miss-competitiveness.

Worst: P is (0,0)-hit-competitive relative to Q.
Analogue to∞-miss-competitiveness.

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 39 / 54

computer science

saarland
universityExample – Relative Hit-Competitiveness

P is (2
3 ,3)-hit-competitive relative to Q.

If Q has x hits, then P has at least 2
3 · x − 3 hits.

Best: P is (1,0)-hit-competitive relative to Q.
Equivalent to (1,0)-miss-competitiveness.

Worst: P is (0,0)-hit-competitive relative to Q.
Analogue to∞-miss-competitiveness.

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 39 / 54

computer science

saarland
universityLocal Guarantees: (1, 0)-Competitiveness

Let P be (1,0)-competitive relative to Q:

mP(p, s) ≤ 1 ·mQ(q, s) + 0

⇔ mP(p, s) ≤ mQ(q, s)

1 If Q “hits”, so does P, and
2 if P “misses”, so does Q.

As a consequence,
1 a must-analysis for Q is also a must-analysis for P, and
2 a may-analysis for P is also a may-analysis for Q.

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 40 / 54

computer science

saarland
universityLocal Guarantees: (1, 0)-Competitiveness

Let P be (1,0)-competitive relative to Q:

mP(p, s) ≤ 1 ·mQ(q, s) + 0

⇔ mP(p, s) ≤ mQ(q, s)

1 If Q “hits”, so does P, and
2 if P “misses”, so does Q.

As a consequence,
1 a must-analysis for Q is also a must-analysis for P, and
2 a may-analysis for P is also a may-analysis for Q.

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 40 / 54

computer science

saarland
universityLocal Guarantees: (1, 0)-Competitiveness

Let P be (1,0)-competitive relative to Q:

mP(p, s) ≤ 1 ·mQ(q, s) + 0

⇔ mP(p, s) ≤ mQ(q, s)

1 If Q “hits”, so does P, and
2 if P “misses”, so does Q.

As a consequence,
1 a must-analysis for Q is also a must-analysis for P, and
2 a may-analysis for P is also a may-analysis for Q.

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 40 / 54

computer science

saarland
universityGlobal Guarantees: (k , c)-Competitiveness

Given: Global guarantees for policy Q.
Wanted: Global guarantees for policy P.

1 Determine competitiveness of policy P relative to policy Q.

mP ≤ k ·mQ + c mQ(T) = mP(T)

2 Compute global guarantee for task T under policy Q.

mP ≤ k ·mQ + c mQ(T) = mP(T)

3 Calculate global guarantee on the number of misses for P using
the global guarantee for Q and the competitiveness results of P
relative to Q.

mP ≤ k ·mQ + c mQ(T) = mP(T)

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 41 / 54

computer science

saarland
universityGlobal Guarantees: (k , c)-Competitiveness

Given: Global guarantees for policy Q.
Wanted: Global guarantees for policy P.

1 Determine competitiveness of policy P relative to policy Q.

mP ≤ k ·mQ + c mQ(T) = mP(T)

2 Compute global guarantee for task T under policy Q.

mP ≤ k ·mQ + c mQ(T) = mP(T)

3 Calculate global guarantee on the number of misses for P using
the global guarantee for Q and the competitiveness results of P
relative to Q.

mP ≤ k ·mQ + c mQ(T) = mP(T)

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 41 / 54

computer science

saarland
universityGlobal Guarantees: (k , c)-Competitiveness

Given: Global guarantees for policy Q.
Wanted: Global guarantees for policy P.

1 Determine competitiveness of policy P relative to policy Q.

mP ≤ k ·mQ + c mQ(T) = mP(T)

2 Compute global guarantee for task T under policy Q.

mP ≤ k ·mQ + c mQ(T) = mP(T)

3 Calculate global guarantee on the number of misses for P using
the global guarantee for Q and the competitiveness results of P
relative to Q.

mP ≤ k ·mQ + c mQ(T) = mP(T)

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 41 / 54

computer science

saarland
universityGlobal Guarantees: (k , c)-Competitiveness

Given: Global guarantees for policy Q.
Wanted: Global guarantees for policy P.

1 Determine competitiveness of policy P relative to policy Q.

mP ≤ k ·mQ + c mQ(T) = mP(T)

2 Compute global guarantee for task T under policy Q.

mP ≤ k ·mQ + c mQ(T) = mP(T)

3 Calculate global guarantee on the number of misses for P using
the global guarantee for Q and the competitiveness results of P
relative to Q.

mP ≤ k ·mQ + c mQ(T) = mP(T)

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 41 / 54

computer science

saarland
universityRelative Competitiveness:

Automatic Computation
P and Q (here: FIFO and LRU) induce transition system:

[eabc]FIFO, [eabc]LRU

e(h,h)

[abcd]FIFO, [abcd]LRU
e

(m,m) a

(h,h)

[eabc]FIFO, [ceab]LRU

c (h,h)

[abcd]FIFO, [dabc]LRU

d (h,h)

[eabc]FIFO, [ceda]LRU [eabc]FIFO, [edab]LRU

e (m,m)

c

(h,m)
[deab]FIFO, [deab]LRU

d

(m,h)

Legend

[abcd]FIFO Cache-set state

· ·d Memory access
(h,m), . . . Misses in pairs of

cache-set states

LRU
MRU

last-in
first-in

Competitive miss ratio = maximum ratio of misses in policy P to misses
in policy Q in transition system

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 42 / 54

computer science

saarland
universityTransition System is∞ Large

Problem: The induced transition system is∞ large.
Observation: Only the relative positions of elements matter:

[abc]LRU, [bde]FIFO [fgl]LRU, [ghm]FIFO≈

[cab]LRU, [cbd]FIFO

(h,m)c

[lfg]LRU, [lgh]FIFO

(h,m)l

≈

Solution: Construct finite quotient transition system.

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 43 / 54

computer science

saarland
university≈-Equivalent States in Running Example

[eabc]FIFO, [eabc]LRU

e(h,h)

[abcd]FIFO, [abcd]LRU
e

(m,m) a

(h,h)

[eabc]FIFO, [ceab]LRU

c (h,h)

[abcd]FIFO, [dabc]LRU

d (h,h)

[eabc]FIFO, [ceda]LRU [eabc]FIFO, [edab]LRU

e (m,m)

c

(h,m)
[deab]FIFO, [deab]LRU

d

(m,h)

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 44 / 54

computer science

saarland
universityFinite Quotient Transition System

Merging ≈-equivalent states yields a finite quotient transition system:

[abcd]FIFO, [abcd]LRU

(h,h)

(m,m)

[abcd]FIFO, [dabc]LRU

(h,h)

[eabc]FIFO, [edab]LRU

(m,m)

(m,h)

[eabc]FIFO, [ceda]LRU
(h,m)

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 45 / 54

computer science

saarland
universityCompetitive Ratio = Maximum Cycle Ratio

Competitive miss ratio =
maximum ratio of misses in policy P to misses in policy Q

(1,1)

(0,0)

(0,0)

(1,1)

(1,0)

(0,1)

Maximum cycle ratio = 0+1+1
0+1+0 = 2

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 46 / 54

computer science

saarland
universityCompetitive Ratio = Maximum Cycle Ratio

Competitive miss ratio =
maximum ratio of misses in policy P to misses in policy Q

(1,1)

(0,0)

(0,0)

(1,1)

(1,0)

(0,1)

Maximum cycle ratio = 0+1+1
0+1+0 = 2

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 46 / 54

computer science

saarland
universityTool Implementation

Implemented in Java, called Relacs
Interface for replacement policies

Fully automatic
Provides example sequences for competitive ratio and constant

Analysis usually practically feasible up to associativity 8
I limited by memory consumption
I depends on similarity of replacement policies

Online version:
http://rw4.cs.uni-sb.de/~reineke/relacs

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 47 / 54

http://rw4.cs.uni-sb.de/~reineke/relacs

computer science

saarland
universityGeneralizations

Identified patterns and proved generalizations by hand.
Aided by example sequences generated by tool.

Previously unknown facts:
PLRU(k) is (1,0) comp. rel. to LRU(1 + log2k),

−→ LRU-must-analysis can be used for PLRU

FIFO(k) is (1
2 ,

k−1
2) hit-comp. rel. to LRU(k),

whereas

LRU(k) is (0,0) hit-comp. rel. to FIFO(k), but

LRU(2k − 1) is (1,0) comp. rel. to FIFO(k),

and

LRU(2k − 2) is (1,0) comp. rel. to MRU(k).
−→ LRU-may-analysis can be used for FIFO and MRU
−→ optimal with respect to predictability metric Evict

FIFO-may-analysis used in the analysis of the branch target buffer of
the MOTOROLA POWERPC 56X.

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 48 / 54

computer science

saarland
universityGeneralizations

Identified patterns and proved generalizations by hand.
Aided by example sequences generated by tool.

Previously unknown facts:
PLRU(k) is (1,0) comp. rel. to LRU(1 + log2k),

−→ LRU-must-analysis can be used for PLRU

FIFO(k) is (1
2 ,

k−1
2) hit-comp. rel. to LRU(k),

whereas

LRU(k) is (0,0) hit-comp. rel. to FIFO(k), but

LRU(2k − 1) is (1,0) comp. rel. to FIFO(k),

and

LRU(2k − 2) is (1,0) comp. rel. to MRU(k).
−→ LRU-may-analysis can be used for FIFO and MRU
−→ optimal with respect to predictability metric Evict

FIFO-may-analysis used in the analysis of the branch target buffer of
the MOTOROLA POWERPC 56X.

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 48 / 54

computer science

saarland
universityGeneralizations

Identified patterns and proved generalizations by hand.
Aided by example sequences generated by tool.

Previously unknown facts:
PLRU(k) is (1,0) comp. rel. to LRU(1 + log2k),

−→ LRU-must-analysis can be used for PLRU

FIFO(k) is (1
2 ,

k−1
2) hit-comp. rel. to LRU(k), whereas

LRU(k) is (0,0) hit-comp. rel. to FIFO(k), but

LRU(2k − 1) is (1,0) comp. rel. to FIFO(k),

and

LRU(2k − 2) is (1,0) comp. rel. to MRU(k).
−→ LRU-may-analysis can be used for FIFO and MRU
−→ optimal with respect to predictability metric Evict

FIFO-may-analysis used in the analysis of the branch target buffer of
the MOTOROLA POWERPC 56X.

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 48 / 54

computer science

saarland
universityGeneralizations

Identified patterns and proved generalizations by hand.
Aided by example sequences generated by tool.

Previously unknown facts:
PLRU(k) is (1,0) comp. rel. to LRU(1 + log2k),

−→ LRU-must-analysis can be used for PLRU

FIFO(k) is (1
2 ,

k−1
2) hit-comp. rel. to LRU(k), whereas

LRU(k) is (0,0) hit-comp. rel. to FIFO(k), but

LRU(2k − 1) is (1,0) comp. rel. to FIFO(k), and
LRU(2k − 2) is (1,0) comp. rel. to MRU(k).

−→ LRU-may-analysis can be used for FIFO and MRU
−→ optimal with respect to predictability metric Evict

FIFO-may-analysis used in the analysis of the branch target buffer of
the MOTOROLA POWERPC 56X.

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 48 / 54

computer science

saarland
universityGeneralizations

Identified patterns and proved generalizations by hand.
Aided by example sequences generated by tool.

Previously unknown facts:
PLRU(k) is (1,0) comp. rel. to LRU(1 + log2k),

−→ LRU-must-analysis can be used for PLRU

FIFO(k) is (1
2 ,

k−1
2) hit-comp. rel. to LRU(k), whereas

LRU(k) is (0,0) hit-comp. rel. to FIFO(k), but

LRU(2k − 1) is (1,0) comp. rel. to FIFO(k), and
LRU(2k − 2) is (1,0) comp. rel. to MRU(k).

−→ LRU-may-analysis can be used for FIFO and MRU
−→ optimal with respect to predictability metric Evict

FIFO-may-analysis used in the analysis of the branch target buffer of
the MOTOROLA POWERPC 56X.

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 48 / 54

computer science

saarland
universityOutline

1 Caches

2 Cache Analysis for Least-Recently-Used

3 Beyond Least-Recently-Used
Predictability Metrics
Relative Competitiveness
Sensitivity – Caches and Measurement-Based Timing Analysis

4 Summary

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 49 / 54

computer science

saarland
universityMeasurement-Based Timing Analysis

Run program on a number of inputs and
initial states.
Combine measurements for basic blocks
to obtain WCET estimation.
Sensitivity Analysis demonstrates this
approach may be dramatically wrong.

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 50 / 54

computer science

saarland
universityMeasurement-Based Timing Analysis

Run program on a number of inputs and
initial states.
Combine measurements for basic blocks
to obtain WCET estimation.
Sensitivity Analysis demonstrates this
approach may be dramatically wrong.

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 50 / 54

computer science

saarland
universityInfluence of Initial Cache State

execution
time

BCET WCET upper
bound

variation due to
initial cache state

Definition (Miss sensitivity)

Policy P is (k , c)-miss-sensitive if

mP(q, s) ≤ k ·mP(q′, s) + c

for all access sequences s ∈ M∗ and cache-set states q,q′ ∈ CP.

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 51 / 54

computer science

saarland
universitySensitivity Results

Policy 2 3 4 5 6 7 8
LRU 1,2 1,3 1,4 1,5 1,6 1,7 1,8

FIFO 2,2 3,3 4,4 5,5 6,6 7,7 8,8
PLRU 1,2 − ∞ − − − ∞
MRU 1,2 3,4 5,6 7,8 MEM MEM MEM

LRU is optimal. Performance varies in the least possible way.
For FIFO, PLRU, and MRU the number of misses may vary
strongly.
Case study based on simple model of execution time by
Hennessy and Patterson (2003):
WCET may be 3 times higher than a measured execution time
for 4-way FIFO.

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 52 / 54

computer science

saarland
universityOutline

1 Caches

2 Cache Analysis for Least-Recently-Used

3 Beyond Least-Recently-Used
Predictability Metrics
Relative Competitiveness
Sensitivity – Caches and Measurement-Based Timing Analysis

4 Summary

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 53 / 54

computer science

saarland
universitySummary

Cache Analysis for Least-Recently-Used
. . . efficiently represents sets of cache states by bounding the age
of memory blocks from above and below.
. . . requires context-sensitivity for precision.

Predictability Metrics
. . . quantify the predictability of replacement policies.
−→ LRU is the most predictable policy.

Relative Competitiveness
. . . allows to derive guarantees on cache performance,
. . . yields first may-analyses for FIFO and MRU.

Sensitivity Analysis
. . . determines the influence of initial state on cache performance.

Thank you for your attention!

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 54 / 54

computer science

saarland
universitySummary

Cache Analysis for Least-Recently-Used
. . . efficiently represents sets of cache states by bounding the age
of memory blocks from above and below.
. . . requires context-sensitivity for precision.

Predictability Metrics
. . . quantify the predictability of replacement policies.
−→ LRU is the most predictable policy.

Relative Competitiveness
. . . allows to derive guarantees on cache performance,
. . . yields first may-analyses for FIFO and MRU.

Sensitivity Analysis
. . . determines the influence of initial state on cache performance.

Thank you for your attention!

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 54 / 54

computer science

saarland
universitySummary

Cache Analysis for Least-Recently-Used
. . . efficiently represents sets of cache states by bounding the age
of memory blocks from above and below.
. . . requires context-sensitivity for precision.

Predictability Metrics
. . . quantify the predictability of replacement policies.
−→ LRU is the most predictable policy.

Relative Competitiveness
. . . allows to derive guarantees on cache performance,
. . . yields first may-analyses for FIFO and MRU.

Sensitivity Analysis
. . . determines the influence of initial state on cache performance.

Thank you for your attention!

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 54 / 54

computer science

saarland
universitySummary

Cache Analysis for Least-Recently-Used
. . . efficiently represents sets of cache states by bounding the age
of memory blocks from above and below.
. . . requires context-sensitivity for precision.

Predictability Metrics
. . . quantify the predictability of replacement policies.
−→ LRU is the most predictable policy.

Relative Competitiveness
. . . allows to derive guarantees on cache performance,
. . . yields first may-analyses for FIFO and MRU.

Sensitivity Analysis
. . . determines the influence of initial state on cache performance.

Thank you for your attention!

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 54 / 54

computer science

saarland
universitySummary

Cache Analysis for Least-Recently-Used
. . . efficiently represents sets of cache states by bounding the age
of memory blocks from above and below.
. . . requires context-sensitivity for precision.

Predictability Metrics
. . . quantify the predictability of replacement policies.
−→ LRU is the most predictable policy.

Relative Competitiveness
. . . allows to derive guarantees on cache performance,
. . . yields first may-analyses for FIFO and MRU.

Sensitivity Analysis
. . . determines the influence of initial state on cache performance.

Thank you for your attention!

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 54 / 54

computer science

saarland
universitySummary

Cache Analysis for Least-Recently-Used
. . . efficiently represents sets of cache states by bounding the age
of memory blocks from above and below.
. . . requires context-sensitivity for precision.

Predictability Metrics
. . . quantify the predictability of replacement policies.
−→ LRU is the most predictable policy.

Relative Competitiveness
. . . allows to derive guarantees on cache performance,
. . . yields first may-analyses for FIFO and MRU.

Sensitivity Analysis
. . . determines the influence of initial state on cache performance.

Thank you for your attention!

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 54 / 54

computer science

saarland
universityCousot, P. and Cousot, R. (1977).

Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints.
In POPL ’77: Proceedings of the 4th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, pages
238–252, New York, NY, USA. ACM Press.

Ferdinand, C. and Wilhelm, R. (1999).
Efficient and precise cache behavior prediction for real-time
systems.
Real-Time Systems, 17(2-3):131–181.

Reineke, J. and Grund, D. (2008a).
Relative competitive analysis of cache replacement policies.
In LCTES ’08: Proceedings of the 2008 ACM SIGPLAN-SIGBED
conference on Languages, compilers, and tools for embedded
systems, pages 51–60, New York, NY, USA. ACM.

Reineke, J. and Grund, D. (2008b).
Sensitivity of cache replacement policies.

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 54 / 54

computer science

saarland
universityReports of SFB/TR 14 AVACS 36, SFB/TR 14 AVACS.

ISSN: 1860-9821, http://www.avacs.org.

Reineke, J., Grund, D., Berg, C., and Wilhelm, R. (2007).
Timing predictability of cache replacement policies.
Real-Time Systems, 37(2):99–122.

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 54 / 54

computer science

saarland
universityMost-Recently-Used – MRU

MRU-bits record whether line was recently used

[abcd]0101 b,d

[ebcd]1101 e,b,d

[ebcd]0010 c

e

c

−→ Never converges

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 54 / 54

computer science

saarland
universityPseudo-LRU – PLRU

1

1 0

a b c d

0

1 1

a b e d

1

1 1

a b e d

0

1 0

a b e f

Initial cache-
set state
[a,b, c,d]110.

After a miss
on e. State:
[a,b,e,d]011.

After a hit
on a. State:
[a,b,e,d]111.

After a miss
on f . State:
[a,b,e, f]010.

Hit on a “rejuvenates” neighborhood; “saves” b from eviction.

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 54 / 54

computer science

saarland
universityMay- and Must-Information

MayP(s) :=
⋃

p∈CP

CCP(updateP(p, s))

MustP(s) :=
⋂

p∈CP

CCP(updateP(p, s))

mayP(n) :=
∣∣∣MayP(s)

∣∣∣ ,where s ∈ S 6= (M∗, |s| = n

mustP(n) :=
∣∣∣MustP(s)

∣∣∣ ,where s ∈ S 6= (M∗, |s| = n

S 6= : set of finite access sequences with pairwise different accesses

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 54 / 54

computer science

saarland
universityDefinitions of Metrics

EvictP := min
{

n | mayP(n) ≤ n
}
,

FillP := min
{

n | mustP(n) = k
}
,

where k is P’s associativity.

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 54 / 54

computer science

saarland
universityRelation: Pred. Metrics↔ Rel. Competitiveness

Let P(k) be (1,0)-miss-competitive relative to policy Q(l), then
(i) EvictP(k) ≥ EvictQ(l),
(ii) mlsP(k) ≥ mlsQ(l).

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 54 / 54

computer science

saarland
universityAlternative Pred. Metrics↔ Rel. Competitiveness

Let l be the smallest associativity, such that LRU(l) is
(1,0)-miss-competitive relative to P(k). Then

Alt-EvictP(k) = l .

Let l be the greatest associativity, such that P(k) is
(1,0)-miss-competitive relative to LRU(l). Then

Alt-mlsP(k) = l .

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 54 / 54

computer science

saarland
universitySize of Transition System

2l+l ′︸︷︷︸
status bits
of P and Q

·
k∑

i=0

(
k
i

)
︸ ︷︷ ︸

non-empty lines in P

·
k ′∑

i ′=0

(
k ′

i ′

)
︸ ︷︷ ︸

non-empty lines in Q

·
min{i,i ′}∑

j=0

(
i
j

)(
i ′

j

)
j!

︸ ︷︷ ︸
number of overlappings

in non-empty lines

min{k ,k ′}∑
j=0

(
k
j

)(
k ′

j

)
j! ≤ k ! · k ′!

min{k ,k ′}∑
j=0

1
(k − j)!j!(k ′ − j)!

≤ k ! · k ′!
∞∑

j=0

1
j!

= e · k ! · k ′!

This can be bounded by

2l+l ′+k+k ′ ≤ |(C l
k × C l ′

k ′)/ ≈ | ≤ 2l+l ′+k+k ′ · e · k ! · k ′!︸ ︷︷ ︸
bound on number of overlappings

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 54 / 54

computer science

saarland
universityCompatible States

iP = [⊥⊥⊥⊥]P iQ = [⊥⊥⊥⊥]Q≈

p

updateP(iP, s)

q

updateQ(iQ, s)

≈

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 54 / 54

computer science

saarland
university(1, 0)-Competitiveness and May/Must-Analyses

Let P be (1,0)-competitive relative to Q, then

p q≈

p′

mP(p, 〈x〉) = 1

q′

mQ(q, 〈x〉) = 1

≈

=⇒

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 54 / 54

computer science

saarland
university(1, 0)-Competitiveness and May/Must-Analyses

CP CQ≈

P

S

Q

S

≈

P ′

∀p ∈ P : mP(p, 〈x〉) = 1

Q′

∀q ∈ Q : mQ(q, 〈x〉) = 1

≈

=⇒

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 54 / 54

computer science

saarland
universityCase Study: Impact of Sensitivity

Simple model of execution time from Hennessy & Patterson (2003)
CPIhit = Cycles per instruction assuming cache hits only
Memory accesses

Instruction including instruction and data fetches

Twc

Tmeas
=

CPIhit+
Memory accesses

Instruction ×Miss ratewc×Miss penalty

CPIhit+
Memory accesses

Instruction ×Miss ratemeas×Miss penalty

= 1.5+1.2×0.20×50
1.5+1.2×0.05×50 = 13.5

4.5 = 3

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 54 / 54

computer science

saarland
universityEvolution of May- and Must-Information for LRU

Evolution of may/must-
information

8-way LRU:

k

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 54 / 54

computer science

saarland
universityEvolution of May- and Must-Information for FIFO

Evolution of may/must-
information

8-way FIFO:

k

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 54 / 54

computer science

saarland
universityEvolution of May- and Must-Information for PLRU

Evolution of may/must-
information

8-way PLRU:

k

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 54 / 54

computer science

saarland
universityEvolution of May- and Must-Information for MRU

Evolution of may/must-
information

8-way MRU:

k-1

2k-2

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 54 / 54

	Caches
	Cache Analysis for Least-Recently-Used
	Beyond Least-Recently-Used
	Predictability Metrics
	Relative Competitiveness
	Sensitivity -- Caches and Measurement-Based Timing Analysis

	Summary
	Appendix

