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m Small but very fast memories that buffer part of the main memory
m Bridge the gap between speed of CPU and main memory

[ab]
CPU Cache Main Memory
Capacity: 32 KB 2 MB
Latency: 3 cycles 100 cycles

m Why caches work: principle of locality

» spatial: e.g. in sequential instructions, accessing arrays
» temporal: e.g. in loops
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Address: < 109:(8+D) P
Block

Tag offset 1

Tag Data Block *
Tag Data Block

k = associativity

| Tag Data Block |$

H@—» T_|e|ts| MUX -

Mlss! Data
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Address: —log:(s) —p- = 1092(8 1) B
Block
Tag Index offset
Cache Set: Cache Set:
Tag Data Block Tag Data Block +
Tag Data Block e Tag Data Block k
| Tag | Data Block | | Tag | Data Block |+
< 5 i \—»
Yes: \
»( =7
'@' Hit!
No:
Data

Special cases: Miss!

m direct-mapped cache: only one line per cache set
m fully-associative cache: only one cache set

Caches in WCET Analysis January 18, 2011 6/54
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m Least-Recently-Used (LRU) used in
INTEL PENTIUM | and MIPS 24K/34K

m First-In First-Out (FIFO or Round-Robin) used in
MOTOROLA POWERPC 56X, INTEL XSCALE, ARM9, ARM11

m Pseudo-LRU (PLRU) used in
INTEL PENTIUM II-1V and POWERPC 75X

m Most-Recently-Used (MRU) as described in literature

Each cache set is treated independently:
— Set-associative caches are compositions of fully-associative caches.
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Two types of cache analyses:

Local guarantees: classification of individual accesses

» May-Analysis — Overapproximates cache contents
» Must-Analysis — Underapproximates cache contents

Global guarantees: bounds on cache hits/misses

m Cache analyses almost exclusively for LRU
m In practice: FIFO, PLRU, ...

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 9/54
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m Abstract interpretation is always based on the semantics of the
analyzed language.

m A semantics of a programming language that talks about time
needs to incorporate the execution platform!

m Static timing analysis is thus based on such a semantics.
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m Abstraction function «
m Concretization function ~
= vm e M :y(m') =~(m)
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Determines:

invariants about the values of variables (in registers, on the stack)
» to compute loop bounds
» to eliminate infeasible paths
» to determine effective memory addresses

invariants on architectural execution state

» Cache contents = predict hits and misses
» Pipeline states = predict or exclude pipeline stalls

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 12/54
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Always a cache hit/always a miss?
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Deriving Invariants about Cache States —_—
using Abstract Interpretation

Collecting Semantics =
set of states at each program point that
any execution may encounter there

read|  Tyq approximations:

X
Collecting Semantics ~ uncomputable
C Cache Semantics computable
C ~(Abstract Cache Sem.) efficiently

computable
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“Cache Miss™:

“Cache Hit”:

~ | X |I<|IN

XI<IN|O®O

NEIE

—~+ 0 [(<|N

~+ | <[N]|®»

COMPUTER SCIENCE

LRU has
notion of age

Reinhard Wilhelm
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m Used to predict cache hits.
m Maintains upper bounds on ages of memory blocks.
m Upper bound < associativity — memory block definitely cached.

Example

Abstract state:

{x}

{)

{s,f}

{

age 0

age 3

...and its interpretation:

Describes the set of all concrete cache
states in which x, s, and t occur,

m x with an age of 0,
m s and t with an age not older than 2.

Y([{x}, {1 {s, th{}H) =
{[x,s,t,a],[x,t,s,a],[x,st,b],...}
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Abstract Update

(must) (must')
Y
Lifted 7
Concrete
Update
/ \
concrete cache states concrete cache states
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) — )
X z
o - i
Potential Cache Miss”: \
{s.t} \ {}
{} {s.t}
-y
{x} {s}
P {} {x}
Definite Cache Hit”: 50 m
{} {}

Why does t not age in the second case?

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 18/54
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Need to combine information where control-flow merges.

Join should be conservative:
m 1(A) C(AUB)
= 1(B) C1(AUB)

“Intersection + Maximal Age”

{a}

{)

L

{c.f}

{d}

N/

{}

{a,c}

{d}

Reinhard Wilhelm Caches in WCET Analysis
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Need to combine information where control-flow merges.

Join should be conservative:
m 1(A) C(AUB)
= 1(B) C1(AUB)

“Intersection + Maximal Age”

How many memory blocks
can be in the must-cache?

{a}

{

L]

{c.f}

{d}

N/

{)

{a,c}

{d}
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entry [{},{}, {},{}]

exit L
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entry [{},{}, {},{}]

LU B =L ]

[{A} {3 {3 3 [{A} {3 {3

[{8}{A} {1 U HCHA{AL {1 {3 =
({3 1AL {3 U
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entry [{}, {},{}, {}]

[{O} {3 AL IO . L U =
[ {3 ]

[{A} {3 {3 (3] [{A} {3 {3 {3

({8}, {A}L {1, {(HUCHA{AL L {3 =
[} {A {3 (]

exit [{D}a {}7 {A}7 {}]

No cache hits can be predicted :-(

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 20/54
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m Problem:
» The first iteration of a loop will always result in cache misses.
» Similarly for the first execution of a function.
m Solution:
» Virtually Unroll Loops: Distinguish the first iteration from others
» Distinguish function calls by calling context.

entry

(SRIRIRY]

Virtually unrolling the loop once:

[{AL 0. 0.0 AL (0. 00 1)

m Accesses to A and D are provably
hits after the first iteration

m Accesses to B and C can still not be exit
classified. Within each execution of 0 N

the loop, they may only miss once. [{A}, {D}, {} [{A}, {D}, {1, 1]
OO,
[{},{A}.{D}. {}]

— Persistence Analysis

(SRCINING|
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LRU: May-Analysis: Abstract Domain RSN

m Used to predict cache misses.
m Maintains lower bounds on ages of memory blocks.
m Lower bound > associativity

Example

Abstract state:

{x.y}

{}

{s.t}

{u}

age 0

age 3

COMPUTER SCIENCE

— memory block definitely not cached.

...and its interpretation:

Describes the set of all concrete cache states in
which no memory blocks except x, y, s, t, and
U occur,

m x and y with an age of at least 0,
m s and t with an age of at least 2,
m u with an age of at least 3.

’7([{X’ y}v {}’ {S’ t}v {U}]) =
{Ix.y.s.t,ly,x.s. 1], [x,y.s.4],...}

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 22/54
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) — )
Z
- 0w
Definite Cache Miss”: \
{s.t} \ {}
{v} {st}
-y
{x} {s}
. . {} {x}
Potential Cache Hit”: Py 0
{y} {y,t}

Why does t age in the second case?

Reinhard Wilhelm Caches in WCET Analysis
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Need to combine information where control-flow merges.

{a} {c}
e
er U
Join should be conservative: d @
m y(A) C~(AL B)
m +(B) C v(AUB) \/
: . . {a,c}
“Union + Minimal Age
{e}
{f}
{d}
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m Amount of uncertainty determines precision of WCET analysis
m Uncertainty in cache analysis depends on replacement policy

uncertainty
variation due to inputs X
and initial hardware state ~ penalty

BCET  ACET WCET upper  execution
bound time

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 27 /54
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read
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*~- 1. Initial cache contents unknown.
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Uncertainty in Cache Analysis AL

*~- 1. Initial cache contents unknown.

"3- 2. Need to combine information.

1
1
1
;.- 3. Cannot resolve address of z.

———
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Uncertainty in Cache Analysis

1

-——— s

Reinhard Wilhelm Caches in WCET Analysis
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*~- 1. Initial cache contents unknown.
3= 2. Need to combine information.

;.- 3. Cannot resolve address of z.

-* = Amount of uncertainty determined
by ability to recover information

January 18, 2011

28 /54
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Predictability Metrics UNIVERSITY
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Evict

d Fill

1
I
1
I

Sequence: (a, ..., e, f, g, h)

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 29/54
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Meaning of Metrics Sy
m Evict

» Number of accesses to obtain any may-information.
» l.e. when can an analysis predict any cache misses?

m Fill

» Number of accesses to complete may- and must-information.
» l.e. when can an analysis predict each access?

— Evict and Fill bound the precision of any static cache analysis.
Can thus serve as a benchmark for analyses.

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 30/54



Evaluation of Least-Recently-Used
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m LRU “forgets” about past quickly:
» cares about most-recent access to each block only
» order of previous accesses irrelevant
a b c d
— 3 — 3 — .
? a b c d
o s a s b L
? ? ? ) a b
? T I ? ? a

m In the example: Evict = Fill = 4

m In general: Evict(k) = Fill(k) = k, where k is the associativity of

the cache

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 31/54
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Evaluation of First-In First-Out (sketch) —!
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m Like LRU in the miss-case
m But: “Ignores” hits

a b c d
—_ —_ —_ —_
? ? ? ? d
a a a a \ ?
b b b b a
c c c c \ b
m In the worst-case k — 1 hits and k misses: (k = associativity)

— Evict(k) =2k — 1
m Another k accesses to obtain complete knowledge:
— Fill(k) = 3k — 1

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 32/54
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Evaluation of Pseudo-LRU (sketch) UNIVERSITY

m Tree-bits point to block to be replaced

c (0) e (1)

—_— —_—

OO ©

lableld] [albfe]d| [a]e[c[d]

m Accesses “rejuvenate” neighborhood

» Active blocks keep their (inactive) neighborhood in the cache
m Analysis yields:

» Evict(k) = §log, k + 1

» Fill(k) = Xlog, k + k — 1

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 33/54
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Evaluation of Policies wﬁﬂ\
Policy | Evict(k) Fill(k) | Evict(8) Fill(8)
LRU k k 8 8
FIFO 2k — 1 3k — 1 15 23
MRU 2k — 2 00/3k — 4 14 ©0/20
PLRU | £log, k+1 Xlog, k + k — 1 13 19

m LRU is optimal w.r.t. metrics.
m Other policies are much less predictable.
— Use LRU if predictability is a concern.

m How to obtain may- and must-information within the given limits for
other policies?

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 34 /54
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Beyond Least-Recently-Used

m Relative Competitiveness
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Relative Competitiveness )

COMPUTER SCIENCE

m Competitiveness (Sleator and Tarjan, 1985):
worst-case performance of an online policy relative to the optimal
offline policy

» used to evaluate online policies

m Relative competitiveness (Reineke and Grund, 2008):
worst-case performance of an online policy relative to another
online policy

» used to derive local and global cache analyses

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 36/54
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Notation

mp(p,s) = number of misses that policy P incurs on
access sequence s € M* starting in state p € CP
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Definition — Relative Miss-Competitiveness ~ —=_!
Notation

mp(p,s) = number of misses that policy P incurs on
access sequence s € M* starting in state p € CP

Definition (Relative miss competitiveness)

Policy P is (k, c)-miss-competitive relative to policy Q if
mp(p,s) < k-mq(q,s)+c

for all access sequences s € M* and cache-set states p € CP,q € C®
that are compatible p ~ q.
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SAARLAND

Definition — Relative Miss-Competitiveness ~ —=_t
Notation

mp(p,s) = number of misses that policy P incurs on
access sequence s € M* starting in state p € CP

Definition (Relative miss competitiveness)
Policy P is (k, c)-miss-competitive relative to policy Q if
mp(p,s) < k- maq(q,s) + ¢

for all access sequences s € M* and cache-set states p € CP,q € C®
that are compatible p ~ q.

Definition (Competitive miss ratio of P relative to Q)

The smallest k, s.t. P is (k, c)-miss-competitive rel. to Q for some c.
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Example — Relative Miss-Competitiveness —

COMPUTER SCIENCE

P is (3, 4)-miss-competitive relative to Q.
If Q incurs x misses, then P incurs at most 3 - x + 4 misses.
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Example — Relative Miss-Competitiveness EANEIN

I —
COMPUTER SCIENCE

P is (3, 4)-miss-competitive relative to Q.
If Q incurs x misses, then P incurs at most 3 - x + 4 misses.

Best: P is (1, 0)-miss-competitive relative to Q.
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Example — Relative Miss-Competitiveness EANEIN

I —
COMPUTER SCIENCE

P is (3, 4)-miss-competitive relative to Q.
If Q incurs x misses, then P incurs at most 3 - x + 4 misses.

Best: P is (1, 0)-miss-competitive relative to Q.

Worst: P is not-miss-competitive (or co-miss-competitive) relative to Q.
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Example — Relative Hit-Competitiveness —

COMPUTER SCIENCE

P is (, 3)-hit-competitive relative to Q.
If Q has x hits, then P has at least £ - x — 3 hits.
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Example — Relative Hit-Competitiveness vy

I —
COMPUTER SCIENCE

P is (2, 3)-hit-competitive relative to Q.
If Q has x hits, then P has at least £ - x — 3 hits.

Best: P is (1, 0)-hit-competitive relative to Q.
Equivalent to (1, 0)-miss-competitiveness.
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Example — Relative Hit-Competitiveness vy

I —
COMPUTER SCIENCE

P is (2, 3)-hit-competitive relative to Q.
If Q has x hits, then P has at least £ - x — 3 hits.

Best: P is (1, 0)-hit-competitive relative to Q.
Equivalent to (1, 0)-miss-competitiveness.

Worst: P is (0, 0)-hit-competitive relative to Q.
Analogue to co-miss-competitiveness.
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Local Guarantees: (1, 0)-Competitiveness —

COMPUTER SCIENCE

Let P be (1, 0)-competitive relative to Q:

mP(pa S) <1 mQ(qv S) +0

< mp(p, S) < ma(Q; S)
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Local Guarantees: (1, 0)-Competitiveness —

COMPUTER SCIENCE

Let P be (1,0)-competitive relative to Q:

mP(pa S) <1 mQ(q’ S) +0

& mp(p,s) < ma(q,s)

If Q “hits”, so does P, and
if P “misses”, so does Q.
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SAARLAND

Local Guarantees: (1, 0)-Competitiveness —

COMPUTER SCIENCE

Let P be (1,0)-competitive relative to Q:
mP(pa S) <1 mQ(q’ S) +0
< mp(p, s) < ma(q, s)
If Q “hits”, so does P, and

if P “misses”, so does Q.

As a consequence,
a must-analysis for Q is also a must-analysis for P, and
a may-analysis for P is also a may-analysis for Q.
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Global Guarantees: (k, c)-Competitiveness =2l

COMPUTER SCIENCE

Given: Global guarantees for policy Q.
Wanted: Global guarantees for policy P.
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Global Guarantees: (k, c)-Competitiveness =2l

COMPUTER SCIENCE

Given: Global guarantees for policy Q.
Wanted: Global guarantees for policy P.

Determine competitiveness of policy P relative to policy Q.
mp<k-mg+c )
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Global Guarantees: (k, c)-Competitiveness =2l

COMPUTER SCIENCE

Given: Global guarantees for policy Q.
Wanted: Global guarantees for policy P.

Determine competitiveness of policy P relative to policy Q.
mp<k-mg+c >

Compute global guarantee for task T under policy Q.

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 41/54



SAARLAND

Global Guarantees: (k, c)-Competitiveness =2l

Given: Global guarantees for policy Q.
Wanted: Global guarantees for policy P.

COMPUTER SCIENCE

Determine competitiveness of policy P relative to policy Q.

mpgk-mo+c>

Compute global guarantee for task T under policy Q.

Calculate global guarantee on the number of misses for P using
the global guarantee for Q and the competitiveness results of P

relative to Q.

mp <k-mg+c Hmg(T) » =

mp(T) »
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Relative Competitiveness: e .
Automatic Computation
P and Q (here: FIFO and LRU) induce transition system:

first-in MRU

hh) (le Iasfn J J LT
(leabc] o, [eabc],_RU]i—[[abcd]FlFo, [abed] LRU]’(DU; ")

Legend
ch h,h) d| . n) [abgd],:”:O Cache-set state
> hm),... %Zggs?;na;(:ierzsof
[[eabc] FiFo: [ceab] LRU] [[abcd] FiFo- [dabc] LRU] cache-set states

el (mm)

A d

(leabc] e eo, [cedal, o) ¢—([eabc] o, [edab]LRU]

(h,m)

() [[deab]FIFO [deab]LRU]

)

Competitive miss ratio = maximum ratio of misses in policy P to misses
in policy Q in transition system
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Transition System is oo Large —

COMPUTER SCIENCE

Problem: The induced transition system is oo large.
Observation: Only the relative positions of elements matter:

([abe] gy, [b0E] g 5o (79 - (9P o |

Q

c (h, m) / (h7 m)

Q

[[Cab]LRU’ [de]FIFO] [[/fg]LRU’ [Igh]FlFO]

Solution: Construct finite quotient transition system.
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~-Equivalent States in Running Example —

COMPUTER SCIENCE

(h, h) Qe
e (h, h)
([eabcle eo [eabc]LRU]m[[abcd]FlFo, [abed] v D,

Cl(h7 h) d|(h h)

([eabcle o, [ceab] g | ([abed] g, [dabe] g, |

el (m,m)

A 4

d
([eabc]e o [ceda]LRU]ﬁ[[eabc]FlF@ [edab]LRU]m)[[deab]F,Fo, [deab], g |
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Finite Quotient Transition System —

COMPUTER SCIENCE

Merging ~-equivalent states yields a finite quotient transition system:

(h.h)

(m, m) C([abed] o, [abed] gy )

Lo

([abcd] ¢, [dabe], g ) (m, h)

Ji--

([eabcle o, [ceda]LRU](W[[eabc]FlFo, [edab], )
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Competitive Ratio = Maximum Cycle Ratio —

COMPUTER SCIENCE
Competitive miss ratio =
maximum ratio of misses in policy P to misses in policy Q

(0,0)

A
e

0.0)|

@ (1.0)

|

—
(0.1)
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SAARLAND

Competitive Ratio = Maximum Cycle Ratio )

COMPUTER SCIENCE
Competitive miss ratio =
maximum ratio of misses in policy P to misses in policy Q

(0,0)

!
.hHeO)

.0

@
(1,1)1
o ©

(1,0)

i i0= 01+l _
Maximum cycle ratio = g5 =2
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Tool Implementation —_—

COMPUTER SCIENCE

m Implemented in Java, called Relacs
m Interface for replacement policies

m Fully automatic
m Provides example sequences for competitive ratio and constant

m Analysis usually practically feasible up to associativity 8

» limited by memory consumption
» depends on similarity of replacement policies

Online version:
http://rwd.cs.uni-sb.de/~reineke/relacs
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SAARLAND

Generalizations EAE

Identified patterns and proved generalizations by hand. .
Aided by example sequences generated by tool.
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Generalizations EAE

Identified patterns and proved generalizations by hand. R
Aided by example sequences generated by tool.

Previously unknown facts:
PLRU(k) is (1,0) comp.rel.to LRU(1 + logzk),
— LRU-must-analysis can be used for PLRU
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Generalizations EAE

Identified patterns and proved generalizations by hand. e
Aided by example sequences generated by tool.

Previously unknown facts:
PLRU(k) is (1,0) comp.rel.to LRU(1 + logzk),
— LRU-must-analysis can be used for PLRU

FIFO(k) is (3,%") hit-comp. rel. to LRU(k), whereas
LRU(k) is  (0,0) hit-comp. rel. to FIFO(k), but
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SAARLAND
UNIVERSITY

Generalizations SIS
Identified patterns and proved generalizations by hand.
Aided by example sequences generated by tool.

Previously unknown facts:
PLRU(k) is (1,0) comp.rel.to LRU(1+ logak),
— LRU-must-analysis can be used for PLRU

FIFO(k) is (3,%") hit-comp. rel. to LRU(k), whereas
LRU(k) is  (0,0) hit-comp. rel. to FIFO(k), but
(k)

LRU(2k—-1) is (1,0) comp.rel.to FIFO(k), and
LRU(2k—2) is (1,0) comp.rel.to MRU(k).
— LRU-may-analysis can be used for FIFO and MRU
— optimal with respect to predictability metric Evict

Reinhard Wilhelm Caches in WCET Analysis January 18, 2011 48 /54



SAARLAND
UNIVERSITY

Generalizations SIS
Identified patterns and proved generalizations by hand.
Aided by example sequences generated by tool.

Previously unknown facts:
PLRU(k) is (1,0) comp.rel.to LRU(1+ logak),
— LRU-must-analysis can be used for PLRU

FIFO(k) is (3,%") hit-comp. rel. to LRU(k), whereas
LRU(k) is  (0,0) hit-comp. rel. to FIFO(k), but
(k)

LRU(2k—-1) is (1,0) comp.rel.to FIFO(k), and
LRU(2k—2) is (1,0) comp.rel.to MRU(k).
— LRU-may-analysis can be used for FIFO and MRU
— optimal with respect to predictability metric Evict

FIFO-may-analysis used in the analysis of the branch target buffer of
the MOTOROLA POWERPC 56X.
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Outline EALSEEN)

COMPUTER SCIENCE

Beyond Least-Recently-Used

m Sensitivity — Caches and Measurement-Based Timing Analysis
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Measurement-Based Timing Analysis —_—

COMPUTER SCIENCE

m Run program on a number of inputs and
initial states.

m Combine measurements for basic blocks
to obtain WCET estimation.

m Sensitivity Analysis demonstrates this
approach may be dramatically wrong.
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COMPUTER SCIENCE

m Run program on a number of inputs and
initial states.

m Combine measurements for basic blocks
to obtain WCET estimation.

m Sensitivity Analysis demonstrates this
approach may be dramatically wrong.
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Influence of Initial Cache State EAE

COMPUTER SCIENCE

variation due to
initial cache state

BCET WCET Upper  execution
bound time

Definition (Miss sensitivity)

Policy P is (k, c)-miss-sensitive if
mp(q,s) < k-mp(q,s)+¢

for all access sequences s € M* and cache-set states g, ¢’ € CP.
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Sensitivity Results

SAARLAND
UNIVERSITY
— —
COMPUTER SCIENCE

Policy\ 2 3 4 5 6 7 8
LRU| 1,2 1,3 1,4 1,5 1,6 1,7 1,8
FIFO| 2,2 3,3 44 55 6,6 7,7 8.8
PLRU | 1,2 — 00 — — — 00
MRU| 1,2 3,4 56 7,8 MEM MEM MEM

m LRU is optimal. Performance varies in the least possible way.
m For FIFO, PLRU, and MRU the number of misses may vary

strongly.

m Case study based on simple model of execution time by
Hennessy and Patterson (2003):
WCET may be 3 times higher than a measured execution time

for 4-way FIFO.
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Outline EALSEEN)

COMPUTER SCIENCE

Summary
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Summary UNIVERSITY
Cache Analysis for Least-Recently-Used B

... efficiently represents sets of cache states by bounding the age
of memory blocks from above and below.

...requires context-sensitivity for precision.
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Summary UNIVERSITY
Cache Analysis for LeaSt'ReCently-Used COMPUTER SCIENCE

... efficiently represents sets of cache states by bounding the age
of memory blocks from above and below.

...requires context-sensitivity for precision.
Predictability Metrics

...quantify the predictability of replacement policies.

— LRU is the most predictable policy.
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Summary UNIVERSITY
Cache Analysis for Least-Recently-Used B

... efficiently represents sets of cache states by bounding the age
of memory blocks from above and below.

...requires context-sensitivity for precision.
Predictability Metrics
...quantify the predictability of replacement policies.
— LRU is the most predictable policy.
Relative Competitiveness
... allows to derive guarantees on cache performance,
... yields first may-analyses for FIFO and MRU.
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Summary UNIVERSITY
Cache Analysis for Least-Recently-Used B

... efficiently represents sets of cache states by bounding the age
of memory blocks from above and below.

...requires context-sensitivity for precision.
Predictability Metrics
...quantify the predictability of replacement policies.
— LRU is the most predictable policy.
Relative Competitiveness
... allows to derive guarantees on cache performance,
... yields first may-analyses for FIFO and MRU.
Sensitivity Analysis
... determines the influence of initial state on cache performance.
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Summary UNIVERSITY
Cache Analysis for Least-Recently-Used B

... efficiently represents sets of cache states by bounding the age
of memory blocks from above and below.

...requires context-sensitivity for precision.
Predictability Metrics
...quantify the predictability of replacement policies.
— LRU is the most predictable policy.
Relative Competitiveness
... allows to derive guarantees on cache performance,
... yields first may-analyses for FIFO and MRU.
Sensitivity Analysis
... determines the influence of initial state on cache performance.

Thank you for your attention!
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of memory blocks from above and below.
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... allows to derive guarantees on cache performance,
... yields first may-analyses for FIFO and MRU.
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Most-Recently-Used - MRU UNIVERSITY

COMPUTER SCIENCE

MRU-bits record whether line was recently used

[abcd]y1o1| = b,d
o

lebcd] 1|2 €,b,d

i
[ebcd]yy10 = C

— Never converges
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Pseudo-LRU - PLRU UNIVERSITY

COMPUTER SCIENCE

(0) (0)
OO OO

lafbleld] [alo]eld| [alblef[d] [a]bfe[f]

Initial cache- After a miss After a hit After a miss
set state on e. State: on a State: on f. State:
[a,b,c,d]y1o-  [a,b.e,d]gy1-  [ab,edly- &b, e fl.

Hit on a “rejuvenates” neighborhood; “saves” b from eviction.
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May- and Must-Information —

COMPUTER SCIENCE

May®(s) := | ] CCp(updatep(p,s))
peCP
MustP(s) = (7] CCp(updatep(ps))
pecCP
may®(n) = ’Mayp(s)‘ ,where s € S C M*|s|=n
must®(n) = ’Mustp(s) ,where se€ S C M* |s| =n

S7 : set of finite access sequences with pairwise different accesses
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Definitions of Metrics ey

COMPUTER SCIENCE

Evict® = min {n| mayP(n) < n},
FilP .= min {n | must®(n) = k} :

where k is P’s associativity.
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Relation: Pred. Metrics < Rel. Competitiveness&Z=l!

COMPUTER SCIENCE

Let P(k) be (1,0)-miss-competitive relative to policy Q(/), then
(iy Evict”(k) > EvictQ(!),
(iy misP(k) > misQ().
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Alternative Pred. Metrics « Rel. Competitiveness =l

COMPUTER SCIENCE

Let / be the smallest associativity, such that LRU(/) is
(1,0)-miss-competitive relative to P(k). Then

Alt-Evict” (k) = 1.

Let / be the greatest associativity, such that P(k) is
(1,0)-miss-competitive relative to LRU(/). Then

Alt-misP (k) = 1.
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Size of Transition System —

COMPUTER SCIENCE

K k K K mln{ll}
141
e - (5 - x0) X Q)
status bits i=0 i’=0

of Pand Q ~—
non-empty lines in P non-empty lines in @ number of overlappings
in non-empty lines

min{k,k’} min{k,k’}

(= ek 1
SO ) < kK Y — .
j=0 <f / = (k=YK =)
< k!-k’!z;!:e-k!-k’!
j=0

This can be bounded by
Ik < |(Ch x Cl) ) ~ | < 2l kK e k! k'l
D et

bound on number of overlappings
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Compatible States UNIVERS TV

COMPUTER SCIENCE

(P=[1111]p] ~ [@=[1111]y]

updatep(i®, s) updateq(i®, s)

(°) [@)

%
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(1,0)-Competitiveness and May/Must- Analysesﬂ”ﬂY

COMPUTER SCIENCE

Let P be (1,0)-competitive relative to Q, then

P~ @

mP(p> <X>) =1 = mQ(Q? <X>) =1

=]
2
<
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(1,0)-Competitiveness and May/Must-Analysesiol

COMP! UIH{ SCIENCE

: o
Q
(l) o

V)
<
&
<

{;}

VpeP:mp(p,<x>):1l = |vaeQ:ma(q (x) =1
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Case Study: Impact of Sensitivity )

COMPUTER SCIENCE

m Simple model of execution time from Hennessy & Patterson (2003)
m CPl; = Cycles per instruction assuming cache hits only

g Memory accesses a1, ding instruction and data fetches

Instruction
Twe _ CPly+ % xMiss rateyc x Miss penalty
— M - -
Tmeas CPlpip+ 22228558 » Miss ratemeas x Miss penalty

_ 1.541.2x0.20x50 _ 13.5 3
— 1.5+1.2x0.05x50 7 4.5 -
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Evolution of May- and Must-Information for LRURE 8

COMPUTER SCIENCE

must/may
information

/N
o

8 : k

6
4
2

5 8 10 15 20 #accesses
mls

evictym
fillam
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Evolution of May- and Must-Information for FIFQ &

COMPUTER SCIENCE

must/may
information
~
G =i S s S s S S s e i
15 S
14 S
12 o N
10 TS
8 ) k
6
4
2
1 5 10 15 20 23 #taccesses
mls evictum fillum
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Evolution of May- and Must-Information for PL R

COMPUT EI{ SCIENCE

must/may
information

/N
Cigs == —r= = mam e s e = e

13 _ -
12 b

10 S

N~ O 00
H
~

4 5 10 13 15 1920 F#accesses
mls evictym fillum
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Evolution of May- and Must-Information for MR G

COMPUTER SCIENCE

must/may
information
~
G e T s S s o e e T s :
14 E e e e 2k-2
12
10
8
k-1
6
4
2
2 5 10 1415 20 F#accesses
mls evictum Filly
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