
- 1 -CS - ES

Embedded Systems

- 2 -CS - ES

TMS320C6x Datapath

Cross Paths
40-bit Write Paths (8 MSBs)
40-bit Read Paths/Store Paths

M2

Registers B0 - B15

L2S2

DDATA_I2
(load data)

S2
D

D
L

SLSL D DLS
2

S
1

S
1

S
2D2

DS
1

S
2

D

M1

Registers A0 - A15

L1 S1
S1 S2

D
D
L

SL SLDDL S
2

S
1

S
1

S
2 D1

D S
1

S
2

D

DDATA_O2
(store data)DADR2

(address)
DADR1

(address)

DDATA_I1
(load data)

DDATA_O1
(store data)

2X1X

 2 Data Paths
 8 Functional Units

 Orthogonal/Independent
 6 Arithmetic Units
 2 Multipliers

 Control
 Independent
 Up to 8 32-bit Instructions in parallel

 Registers
 2 Files
 32, 32-bit Registers Total

 Cross paths (1X, 2X)

 L-Unit (L1, L2)
 40-bit Integer ALU
 Comparisons
 Bit Counting
 Normalization

 S-Unit (S1, S2)
 32-bit ALU
 40-bit Shifter
 Bitfield Operations
 Branching

 M-Unit (M1, M2)
 16 x 16 -> 32

 D-Unit (D1, D2)
 32-bit Add/Subtract
 Address Calculations

S1

REVIEW

- 3 -CS - ES

Overview XILINX FPGA

• All Xilinx FPGAs contain the same basic resources
– Slices grouped into Configurable Logic Blocks (CLBs)

• Contain combinatorial logic and register resources

– IOBs
• Interface between the FPGA and the outside world

– Programmable interconnect

– Other resources
• Memory
• Multipliers
• Global clock buffers
• Boundary scan logic

REVIEW

- 4 -CS - ES

Embedded Processors in FPGAs

 Hard Core
 EP is a dedicated physical component of the chip

separate from the programmable logic
 E.g. Xilinx Virtex families (PowerPC 405)

 Soft Core
 Embedded processor is also a synthesized to the FPGA to th

programmable logic on the chip
 E.g. Altera (NIOS), Xilinx (MicroBlaze)

REVIEW

- 5 -CS - ES

Partial Reconfiguration
Technology and Benefits

 Partial Reconfiguration enables:
 System Flexibility

• Perform more functions while
maintaining communication links

 Size and Cost Reduction
• Time-multiplex the hardware

to require a smaller FPGA

 Power Reduction
• Shut down power-hungry tasks

when not needed

REVIEW

- 6 -CS - ES

Embedded System Hardware

 Embedded system hardware is frequently used in a loop
(“hardware in a loop“):

 cyber-physical systems

REVIEW

- 7 -CS - ES

Communication
- Requirements -

 Real-time behavior
 Efficient, economical

(e.g. centralized power supply)
 Appropriate bandwidth and communication delay
 Robustness
 Fault tolerance
 Maintainability
 Diagnosability
 Security
 Safety

REVIEW

- 8 -CS - ES

Memory

 For the memory, efficiency is again a concern:
 speed (latency and throughput); predictable timing
 energy efficiency
 size
 cost
 other attributes (volatile vs. persistent, etc)

REVIEW

- 9 -CS - ES

Memory hierarchy
Register, internal
Caches in CPU

External Caches
(SRAM)

Main Memory
(DRAM)

Disk Storage
(Magnetics)

Tape Units
(Magnetics)

E
ne

rg
y

C
on

su
m

pt
io

n

C
O

S
TS

Level 0

Level 1

Level 2

Level 3

Level 4

Capacity

“Small is beautiful”
(in terms of energy consumption, access times, size)

REVIEW

- 10 -CS - ES

REVIEW

- 11 -CS - ES

REVIEW

- 12 -CS - ES

 Architecture Synthesis

 HW/SW Codesign

 Power Aware Computing

 3.2.2011 Lecture by Bernd Finkbeiner, Head
of Reactive Systems Group at Saarland
University(http://react.cs.uni-sb.de/

- 13 -CS - ES

Architecture Synthesis

 tasks:
 allocation (determine the necessary hardware resources)
 scheduling (determine the timing of individual operations)
 binding (determine relation between individual operations of the

algorithm and hardware resources)

Classification of synthesis algorithms

 Synthesis methods can often be
applied independently of granularity

Design a hardware architecture that efficiently
executes a given algorithm.

- 14 -CS - ES

Synthesis in Temporal Domain

 Scheduling and binding can be done in different orders or
together

 Schedule:
 Mapping of operations to time slots (cycles)
 A scheduled sequencing graph is a labeled graph

[©Gupta]

+

NOP



  + <
-

-
NOP

1

2
3

4

+

NOP











+

<
-

-

NOP

1

2
3

4

- 15 -CS - ES

Schedule in Spatial Domain

 Resource sharing
 More than one operation bound to same resource
 Serialized operations

[©Gupta]

+

NOP



  + <

-

-

NOP

1

2

3

4

- 16 -CS - ES

BASICS

 Source: Teich: Dig. HW/SW Systeme;Thiele ETHZ

- 17 -CS - ES

Models

- 18 -CS - ES

Models
int diffeq(int x, int y, int u, int dx, int a)

{ int x1, u1, y1;
while (x < a) {

x1 = x + dx;
u1 = u - (3 * x * u * dx) - (3 * y * dx);
y1 = y + u * dx;
x = x1; u = u1; y = y1;

}
return y;

- 19 -CS - ES

Allocation and Binding

- 20 -CS - ES

Scheduling

- 21 -CS - ES

Schedule

+

NOP



  + <
-

-
NOP

1

2
3

4

v2v1

v3

v4

v5

vn

v6

v7

v8

v9

v10

v11

L = (vn) -  (v0) = 4

(v1) = (v2) … = 1

(v0) = 

(v5) = 4

(vn) = 5



- 22 -CS - ES

+

NOP



  + <

-

-

NOP

1

2

3

4

Binding

Example ((r1) = 4, (r2) = 2):
(v1) = r1, (v1) = 1

v2v1

v3

v4

v5

vn

v6

v7

v8

v9

v10

v11

(v2) = r2, (v2) = 1

(v3) = r1, (v3) = 2



(v6) = r1, (v3) = 3



- 23 -CS - ES

As soon as possible (ASAP) scheduling

ASAP: All tasks are scheduled as early as possible

Loop over (integer) time steps:
 Compute the set of unscheduled tasks for which all

predecessors have finished their computation

 Schedule these tasks to start at the current time step.

- 24 -CS - ES

ASAP Schedules

+

NOP



  + <
-

-
NOP

1

2
3

4

- 25 -CS - ES

As-late-as-possible (ALAP) scheduling

ALAP: All tasks are scheduled as late as possible

Start at last time step*:
Schedule tasks with no successors and tasks for which

all successors have already been scheduled.

* Generate a list, starting at its end

- 26 -CS - ES

ALAP Schedules

+

NOP










+ <
-

-
NOP

1

2
3

4

- 27 -CS - ES

 Motivation
 Interface design.
 Control over operation start time.

 Constraints
 Upper/lower bounds on start-time difference of any operation pair.

 Minimum timing constraints between two operations
 An operation follows another by at least a number of prescribed time

steps

 Maximum timing constraints between two operations
 An operation follows another by at most a number of prescribed time

steps

Scheduling under Detailed Timing Constraints

- 28 -CS - ES

 Example

 Circuit reads data from a bus, performs computation, writes result
back on the bus.

 Bus interface constraint: data written three cycles after read.

 Minimum and maximum constraint of 3 cycles between read and
write operations.

Scheduling under Detailed Timing Constraints

- 29 -CS - ES

Constraint graph model
 Start from a sequencing graph

 Model delays as weights on edges

 Add forward edges for minimum constraints

 Add backward edges for maximum constraints

Add this edge for
max constraint

Add this edge for
min constraint

- 30 -CS - ES

Weighted Constraint Graph

Source: Thiele, ETHZ

- 31 -CS - ES

Weighted Constraint Graph

Example: w(v1) = w(v3) = 2 w(v2) = w(v4) = 1

Source: Thiele, ETHZ

- 32 -CS - ES

Mul delay = 2
ADD delay =1

- 33 -CS - ES

(Resource constrained)
List Scheduling

List scheduling: extension of ALAP/ASAP method
Preparation:

 Greedy strategy (does NOT guarantee optimum solution)
 Topological sort of task graph G=(V,E)
 Computation of priority of each task:

Possible priorities u:
• Number of successors
• Longest path
• Mobility =  (ALAP schedule)-  (ASAP schedule)

– Defined for each operation
– Zero mobility implies that an operation can be started only

at one given time step
– Mobility greater than 0 measures span of time interval in

which an operation may start  Slack on the start time.

Source: Teich: Dig.
HW/SW Systeme

- 34 -CS - ES

Mobility as a priority function



Mobility is not very precise

=1

=2

=3

=4

=5

=1

=2

=3

=4

=5

a

b c d e f g

h i j

k l m

n

z

=0
a

b c d e f g

h i j

k l m

n

z

=0

- 35 -CS - ES

Algorithm

List(G(V,E), B, u){
i :=0;

repeat {
Compute set of candidate tasks Ai ;
Compute set of not terminated tasks Gi ;
Select Si  Ai of maximum priority r such that
| Si | + | Gi | ≤ B (*resource constraint*)

 foreach (vj  Si):  (vj):=i; (*set start time*)
i := i +1;

}
until (all nodes are scheduled);
return ();

} Complexity: O(|V|)

may be
repeated

for
different

task/
processor
classes

- 36 -CS - ES

Example

Assuming B =2, unit execution
time and u : path length

u(a)= u(b)=4
u(c)= u(f)=3
u(d)= u(g)= u(h)= u(j)=2
u(e)= u(i)= u(k)=1
 i : Gi =0

a b

i

c f

g

h j

k

d

e
a b

c

f

g

d

e

h

i

j

k

=0

=1

=2

=3

=4

=5

Modified example
based on J. Teich

- 37 -CS - ES

does NOT guarantee optimum solution e.g.

List Scheduling

- 38 -CS - ES

Integer linear programming models

 Ingredients:
 Cost function
 Constraints

Involving linear expressions of
integer variables from a set X

Def.: The problem of minimizing (1) subject to the constraints
(2) is called an integer linear programming (ILP) problem.

If all xi are constrained to be either 0 or 1, the IP problem said
to be a 0/1 integer linear programming problem.

Cost function)1(, NxRaxaC i
Xx

iii
i

 


 with

Constraints:)2(,: ,, RcbcxbJj
Xx

jjijiji
i

 


with

- 39 -CS - ES

Example

321 465 xxxC 

}1,0{,,
2

321

321




xxx
xxx

Optimal

C

- 40 -CS - ES

Remarks on integer programming

 Integer programming is NP-complete

 Running times depend exponentially on problem size,
but problems of >1000 vars solvable with good solver (depending on
the size and structure of the problem)

 ILP/LP models good starting point for modeling, even if heuristics are
used in the end.

 Solvers: lp_solve (public), CPLEX (commercial), …

- 41 -CS - ES

 Minimize latency given constraints on area or
the resources (ML-RCS)

 Use binary decision variables
 i = 0, 1, ..., n
 l = 1, 2, ..., ’+1 ’ given upper-bound on latency
 xil = 1 if operation i starts at step l, 0 otherwise.

 Set of linear inequalities (constraints),
and an objective function (min latency)

ILP Formulation of ML-RCS
[Mic94] p.198, Kastner, UC S. Barbara

- 42 -CS - ES

 Observation

 ti = start time of op i.

 is op vi (still) executing at step l?

ILP Formulation of ML-RCS

))(),((

0

i
L
ii

S
i

L
i

S
iil

vALAPtvASAPt

tlandtlforx





il
l

i xlt  .




1
1

l

dlm
im

i

x
?

- 43 -CS - ES

Start Time vs. Execution Time
 For each operation vi , only one start time
 If di=1, then the following questions are the

same:
 Does operation vi start at step l?
 Is operation vi running at step l?

 But if di>1, then the two questions should be
formulated as:
 Does operation vi start at step l?

• Does xil = 1 hold?

 Is operation vi running at step l?
• Does the following hold?

1
1




l

dlm
im

i

x ?

- 44 -CS - ES

Operation vi Still Running at Step l ?
 Is v9 running at step 6?
 Is x9,6 + x9,5 + x9,4 = 1 ?

 Note:
 Only one (if any) of the above three cases can happen
 To meet resource constraints, we have to ask the

same question for ALL steps, and ALL operations of
that type

v9

4
5
6

x9,4=1

v9

4
5
6

x9,5=1

v9

4
5
6

x9,6=1

- 45 -CS - ES

Operation vi Still Running at Step l ?

 Is vi running at step l ?
 Is xi,l + xi,l-1 + ... + xi,l-di+1 = 1 ?

vi

l
l-1

l-di+1
...

xi,l-di+1=1

vil
l-1

l-di+1

...

xi,l-1=1

vil
l-1

l-di+1

...

xi,l=1

. . .

- 46 -CS - ES

 Constraints:
 Unique start times:

 Sequencing (dependency) relations must be satisfied

 Resource constraints

 Objective: min cTt.
 t =start times vector, c =cost weight

ILP Formulation of ML-RCS (cont.)

 
l

il nix ,,1,0,1 

j
l

jl
l

ilijjji dxlxlEvvdtt   ..),(

1,,1,,,1,
)(: 1

 
 

 lnkax resk
kvTi

l

dlm
im

i i

- 47 -CS - ES

ILP Example
 Assume  = 4
 First, perform ASAP and ALAP

 (we can write the ILP without ASAP and ALAP, but using ASAP and
ALAP will simplify the inequalities)

+

NOP



  + <
-

-
NOP

1

2
3

4

+

NOP










+ <
-

-
NOP

1

2
3

4

v2v1

v3

v4

v5

vn

v6

v7

v8

v9

v10

v11

v2v1

v3

v4

v5

vn

v6

v7 v8

v9

v10

v11

- 48 -CS - ES

ILP Example: Unique Start Times Constraint
 Without using ASAP

and ALAP values:
 Using ASAP and

ALAP:

...
1

1

4,23,22,21,2

4,13,12,11,1





xxxx
xxxx

....
1
1

1
1

1
1
1
1
1

4,93,92,9

3,82,81,8

3,72,7

2,61,6

4,5

3,4

2,3

1,2

1,1



















xxx
xxx

xx
xx

x
x
x
x
x

- 49 -CS - ES

ILP Example: Dependency Constraints
 Using ASAP and ALAP, the non-trivial inequalities are:

(assuming unit delay for + and *)

...
01.3.2.4
01.3.2.4.3.2
01.3.2.4.3.2
01.2.3.2

3,72,74,5

3,102,101,104,113,112,11

3,82,81,84,93,92,9

2,61,63,72,7









xxx
xxxxxx
xxxxxx
xxxx

- 50 -CS - ES

ILP Example: Resource Constraints
 Resource constraints (assuming 2 adders and 2 multipliers)

 Objective: Min Xn,1 + 2Xn,2 +3Xn,3 +4Xn,4

2
2
2
2
2
2
2

4,114,94,5

3,113,103,93,4

2,112,102,9

1,10

3,83,7

2,82,72,62,3

1,81,61,21,1















xxx
xxxx
xxx
x
xx
xxxx
xxxx

- 51 -CS - ES

Result is different from both
ALAP and ASAP schedules

- 52 -CS - ES

(Time constrained)
Force-directed scheduling

Goal: balanced utilization of
resources
Based on spring model
Originally proposed for high-level synthesis
Force
 Used as a priority function
 Related to concurrency – sort operations for least

force
 Mechanical analogy: Force = constant x displacement

• Constant = operation-type distribution
• Displacement = change in probability

* [Pierre G. Paulin, J.P. Knight, Force-directed scheduling in automatic data path
synthesis, Design Automation Conference (DAC), 1987, S. 195-202]

© ACM

- 53 -CS - ES

Force-Directed Scheduling

The Force-Directed Scheduling approach
reduces the amount of:

• Functional Units
• Registers
• Interconnect

This is achieved by balancing the concurrency of
operations to ensure a high utilization of each unit.

- 54 -CS - ES

Next: computation of “forces”

 Direct forces push each task into the direction of lower
values of D(i).

 Impact of direct forces on dependent tasks taken into account by
indirect forces

 Balanced resource usage  smallest forces
 For our simple example and time constraint=6:

result = ALAP schedule
0

1

2

3

4

5

2 31 4 5

i

=1

=2

=3

=4

=5

a

b c d e f g

h i j

k l m

n

z

=0

- 55 -CS - ES

1.Compute time frames R(j)
2. Compute “probability“ P(j,i) of assignment j  i

R(j)={ASAP-control step … ALAP-control step}

if
0 otherwise Fixed Free

- 56 -CS - ES

3. Compute “distribution” D(i)
(# Operations in control step i)

P(j,i) D(i)

- 57 -CS - ES

Example

+

NOP



  + <
-

-
NOP

1

2
3

4

0)4(

83.0
3
1

2
1)3(

33.2
3
1

2
1

2
11)2(

83.2
3
1

2
111)1(









mult

mult

mult

mult

q

q

q

q

2.83

2.33

.83

66.1
3
1

3
11)4(

2
3
1

3
1

3
11)3(

1
3
1

3
1

3
1)2(

33.0
3
1)1(









add

add

add

add

q

q

q

q

0

1

2

1.66

0.33

- 58 -CS - ES

Scheduling – An example





b

ti h
iDGjDGjForce)()()(

A metric called force is introduced. The force is used to
optimize the utilization of units. A high positive force value
indicates a poor utilization.

Step 3 : Calculate the force (a new metric)

- 59 -CS - ES

Scheduling – An example





2

1 2
)()1()1(

i

iDGDGForce

Step 3 : Calculate the force (a new metric)
With the operation x’ in control-step 1.

DG(1) = 2.833 DG(3) = 0.833
DG(2) = 2.333 DG(4) = 0

25.0
2

333.2833.2833.2 




Poor
utilization

- 60 -CS - ES

Scheduling – An example





3

2

2

1 2
)()3(

2
)()2()2(

ii

iDGDGiDGDGForce

Step 3 : Calculate the force (a new metric)
With the operation x’ in control-step 2.
(x’’ must be in control-step 3)

DG(1) = 2.833 DG(3) = 0.833
DG(2) = 2.333 DG(4) = 0

1
2

333.2833.0833.0
2

333.2833.2333.2 







Good
utilization

Direct force (calculated as before)

Indirect force (on x’’ in control-step 3)

- 61 -CS - ES

Scheduling – An example

By repeatedly assigning operations to various
control-steps and calculating the force associated
with the choice several force values will be available.

The Force-directed scheduling algorithm chooses
the assignment with the lowest force value, which
also balances the concurrency of operations most
efficiently.

- 62 -CS - ES

Overall approach

procedure forceDirectedScheduling;
begin

AsapScheduling;
AlapScheduling;
while not all tasks scheduled do

begin
select task T with smallest total force;
schedule task T at time step minimizing forces;
recompute forces;

end;
end

May be
repeated

for
different

task/
processor
classes

Not sufficient for today's complex,
heterogeneous hardware platforms

- 63 -CS - ES

Force-Directed Scheduling

The Force-Directed Scheduling approach
reduces the amount of:

• Functional Units
• Registers
• Interconnect

By introducing Registers and Interconnect as storage
operations, the force is calcuted for these as well.

- 64 -CS - ES

Force-Directed Scheduling

- 65 -CS - ES

 Architecture Synthesis

 HW/SW Codesign

 Power Aware Computing

 3.2.2011 Lecture by Bernd Finkbeiner, Head
of Reactive Systems Group at Saarland
University (http://react.cs.uni-sb.de/

- 66 -CS - ES

Codesign Definition and Key Concepts

 Codesign
 The meeting of system-level objectives by exploiting the

trade-offs between hardware and software in a system
through their concurrent design

 Key concepts
 Concurrent: hardware and software developed at the same

time on parallel paths
 Integrated: interaction between hardware and software

development to produce design meeting performance
criteria and functional specs

- 67 -CS - ES

Typical Codesign Process

System
Description
(Functional)

HW/SW
Partitioning

Software
Synthesis

Interface
Synthesis

Hardware
Synthesis

System
Integration

Concurrent processes
Programming languages

Unified representation
(Data/control flow)

Instruction set level
HW/SW evaluation

SW HW
Another
HW/SW
partition

