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Embedded Systems                                  
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 2 Data Paths
 8 Functional Units

 Orthogonal/Independent
 6 Arithmetic Units
 2 Multipliers

 Control
 Independent
 Up to 8 32-bit Instructions in parallel

 Registers
 2 Files
 32, 32-bit Registers Total

 Cross paths (1X, 2X)

 L-Unit (L1, L2)
 40-bit  Integer ALU
 Comparisons
 Bit Counting
 Normalization
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 Bitfield Operations
 Branching
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 32-bit Add/Subtract
 Address Calculations
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Overview XILINX FPGA

• All Xilinx FPGAs contain the same basic resources
– Slices grouped into Configurable Logic Blocks (CLBs)

• Contain combinatorial logic and register resources

– IOBs
• Interface between the FPGA and the outside world

– Programmable interconnect 

– Other resources
• Memory
• Multipliers
• Global clock buffers
• Boundary scan logic

REVIEW
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Embedded Processors in FPGAs

 Hard Core 
 EP is a dedicated physical component of the chip

separate from the programmable logic
 E.g. Xilinx Virtex families (PowerPC 405)

 Soft Core
 Embedded processor is also a synthesized to the FPGA to th

programmable logic on the chip
 E.g. Altera (NIOS), Xilinx (MicroBlaze)

REVIEW
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Partial Reconfiguration 
Technology and Benefits

 Partial Reconfiguration enables:
 System Flexibility

• Perform more functions while 
maintaining communication links

 Size and Cost Reduction
• Time-multiplex the hardware 

to require a smaller FPGA

 Power Reduction
• Shut down power-hungry tasks

when not needed 

REVIEW
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Embedded System Hardware

 Embedded system hardware is frequently used in a loop
(“hardware in a loop“):

 cyber-physical systems

REVIEW
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Communication
- Requirements -

 Real-time behavior
 Efficient, economical

(e.g. centralized power supply)
 Appropriate bandwidth and communication delay
 Robustness
 Fault tolerance
 Maintainability
 Diagnosability
 Security
 Safety

REVIEW
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Memory

 For the memory, efficiency is again a concern:
 speed (latency and throughput); predictable timing
 energy efficiency
 size
 cost
 other attributes (volatile vs. persistent, etc)

REVIEW
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Memory hierarchy
Register, internal
Caches in CPU

External Caches 
(SRAM)

Main Memory 
(DRAM)

Disk Storage 
(Magnetics)

Tape Units 
(Magnetics)
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Capacity

“Small is beautiful”
(in terms of energy consumption, access times, size)

REVIEW
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REVIEW
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REVIEW
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 Architecture Synthesis

 HW/SW Codesign

 Power Aware Computing

 3.2.2011 Lecture by Bernd Finkbeiner, Head 
of Reactive Systems Group at Saarland 
University(http://react.cs.uni-sb.de/
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Architecture Synthesis

 tasks:
 allocation (determine the necessary hardware resources)
 scheduling (determine the timing of individual operations)
 binding (determine relation between individual operations of the 

algorithm and hardware resources)

Classification of synthesis algorithms

 Synthesis methods can often be 
applied independently of granularity

Design a hardware architecture that efficiently
executes a given algorithm.
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Synthesis in Temporal Domain

 Scheduling and binding can be done in different orders or 
together

 Schedule:
 Mapping of operations to time slots (cycles)
 A scheduled sequencing graph is a labeled graph

[©Gupta]
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Schedule in Spatial Domain

 Resource sharing
 More than one operation bound to same resource
 Serialized operations

[©Gupta]
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BASICS

 Source: Teich: Dig. HW/SW Systeme;Thiele ETHZ
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Models
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Models
int diffeq(int x, int y, int u, int dx, int a)

{ int x1, u1, y1;
while ( x < a ) {

x1 = x + dx;
u1 = u - (3 * x * u * dx) - (3 * y * dx);
y1 = y + u * dx;
x = x1; u = u1; y = y1;

}
return y;
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Allocation and Binding
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Scheduling
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Schedule
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As soon as possible (ASAP) scheduling

ASAP: All tasks are scheduled as early as possible

Loop over (integer) time steps:
 Compute the set of unscheduled tasks for which all 

predecessors have finished their computation

 Schedule these tasks to start at the current time step.
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ASAP Schedules
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As-late-as-possible (ALAP) scheduling

ALAP: All tasks are scheduled as late as possible

Start at last time step*:
Schedule tasks with no successors and tasks for which 

all successors have already been scheduled.

* Generate a list, starting at its end



- 26 -CS - ES

ALAP Schedules
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 Motivation
 Interface design.
 Control over operation start time.

 Constraints
 Upper/lower bounds on start-time difference of any operation pair.

 Minimum timing constraints between two operations
 An operation follows another by at least a number of prescribed time 

steps

 Maximum timing constraints between two operations
 An operation follows another by at most a number of prescribed time 

steps

Scheduling under Detailed Timing Constraints
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 Example

 Circuit reads data from a bus, performs computation, writes result 
back on the bus.

 Bus interface constraint: data written three cycles after read.

 Minimum and maximum constraint of 3 cycles between read and 
write operations.

Scheduling under Detailed Timing Constraints
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Constraint graph model
 Start from a sequencing graph

 Model delays as weights on edges

 Add forward edges for minimum constraints

 Add backward edges for maximum constraints

Add this edge for 
max constraint

Add this edge for 
min  constraint
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Weighted Constraint Graph

Source: Thiele, ETHZ
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Weighted Constraint Graph

Example: w(v1) = w(v3) = 2 w(v2) = w(v4) = 1

Source: Thiele, ETHZ
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Mul delay = 2
ADD delay =1
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(Resource constrained)
List Scheduling

List scheduling: extension of ALAP/ASAP method
Preparation:

 Greedy strategy (does NOT guarantee optimum solution)
 Topological sort of task graph G=(V,E)
 Computation of priority of each task:

Possible priorities u:
• Number of successors
• Longest path
• Mobility =  (ALAP schedule)-  (ASAP schedule) 

– Defined for each operation
– Zero mobility implies that an operation can be started only 

at one given time step
– Mobility greater than 0 measures span of time interval in 

which an operation may start  Slack on the start time.

Source: Teich: Dig. 
HW/SW Systeme
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Mobility as a priority function
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Algorithm

List(G(V,E), B, u){
i :=0;

repeat {
Compute set of candidate tasks Ai ;
Compute set of not terminated tasks Gi ;
Select Si  Ai of maximum priority r such that
| Si | + | Gi | ≤ B (*resource constraint*)

 foreach (vj  Si):  (vj):=i;        (*set start time*)
i := i +1;

}
until (all nodes are scheduled);
return ();

} Complexity: O(|V|)

may be 
repeated 

for 
different 

task/ 
processor 
classes
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Example

Assuming B =2, unit execution 
time and u : path length

u(a)= u(b)=4
u(c)= u(f)=3
u(d)= u(g)= u(h)= u(j)=2
u(e)= u(i)= u(k)=1
 i : Gi =0
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Modified example 
based on J. Teich
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does NOT guarantee optimum solution e.g.

List Scheduling
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Integer linear programming models

 Ingredients:
 Cost function
 Constraints

Involving linear expressions of 
integer variables from a set X

Def.: The problem of minimizing (1) subject to the constraints 
(2) is called an integer linear programming (ILP) problem.

If all xi are constrained to be either 0 or 1, the IP problem said 
to be a 0/1 integer linear programming problem. 

Cost function )1(, NxRaxaC i
Xx
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i

 


 with

Constraints: )2(,: ,, RcbcxbJj
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Example
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Remarks on integer programming

 Integer programming is NP-complete

 Running times depend exponentially on problem size,
but problems of >1000 vars solvable with good solver (depending on 
the size and structure of the problem)

 ILP/LP models good starting point for modeling, even if heuristics are 
used in the end.

 Solvers: lp_solve (public), CPLEX (commercial), …
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 Minimize latency given constraints on area or
the resources (ML-RCS)

 Use binary decision variables
 i = 0, 1, ..., n
 l = 1, 2, ..., ’+1 ’ given upper-bound on latency 
 xil = 1 if operation i starts at step l, 0 otherwise.

 Set of linear inequalities (constraints),
and an objective function (min latency)

ILP Formulation of ML-RCS
[Mic94] p.198, Kastner, UC S. Barbara
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 Observation

 ti = start time of op i.

 is op vi (still) executing at step l?

ILP Formulation of ML-RCS
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Start Time vs. Execution Time
 For each operation vi , only one start time
 If di=1, then the following questions are the 

same:
 Does operation vi start at step l?
 Is operation vi running at step l?

 But if di>1, then the two questions should be 
formulated as:
 Does operation vi start at step l?

• Does xil = 1 hold?

 Is operation vi running at step l?
• Does the following hold?

1
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Operation vi Still Running at Step l ?
 Is v9 running at step 6?
 Is     x9,6 + x9,5 + x9,4 = 1 ?

 Note:
 Only one (if any) of the above three cases can happen
 To meet resource constraints, we have to ask the 

same question for ALL steps, and ALL operations of 
that type

v9

4
5
6

x9,4=1

v9

4
5
6
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v9

4
5
6

x9,6=1



- 45 -CS - ES

Operation vi Still Running at Step l ?

 Is vi running at step l ?
 Is     xi,l + xi,l-1 + ... + xi,l-di+1 = 1 ?

vi

l
l-1

l-di+1
...

xi,l-di+1=1

vil
l-1

l-di+1

...

xi,l-1=1

vil
l-1

l-di+1

...

xi,l=1
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 Constraints:
 Unique start times:

 Sequencing (dependency) relations must be satisfied

 Resource constraints

 Objective: min cTt.
 t =start times vector, c =cost weight

ILP Formulation of ML-RCS (cont.)
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ILP Example
 Assume  = 4
 First, perform ASAP and ALAP

 (we can write the ILP without ASAP and ALAP, but using ASAP and 
ALAP will simplify the inequalities)
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ILP Example: Unique Start Times Constraint
 Without using ASAP 

and ALAP values:
 Using ASAP and 

ALAP:

...
1

1

4,23,22,21,2

4,13,12,11,1





xxxx
xxxx

....
1
1

1
1

1
1
1
1
1

4,93,92,9

3,82,81,8

3,72,7

2,61,6

4,5

3,4

2,3

1,2

1,1



















xxx
xxx

xx
xx

x
x
x
x
x



- 49 -CS - ES

ILP Example: Dependency Constraints
 Using ASAP and ALAP, the non-trivial inequalities are: 

(assuming unit delay for + and *)

...
01.3.2.4
01.3.2.4.3.2
01.3.2.4.3.2
01.2.3.2

3,72,74,5

3,102,101,104,113,112,11

3,82,81,84,93,92,9

2,61,63,72,7
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ILP Example: Resource Constraints
 Resource constraints (assuming 2 adders and 2 multipliers)

 Objective: Min Xn,1 + 2Xn,2 +3Xn,3 +4Xn,4

2
2
2
2
2
2
2

4,114,94,5

3,113,103,93,4

2,112,102,9

1,10

3,83,7

2,82,72,62,3

1,81,61,21,1















xxx
xxxx
xxx
x
xx
xxxx
xxxx



- 51 -CS - ES

Result is different from both 
ALAP and ASAP schedules



- 52 -CS - ES

(Time constrained)
Force-directed scheduling 

Goal: balanced utilization of 
resources
Based on spring model
Originally proposed for high-level synthesis
Force
 Used as a priority function
 Related to concurrency – sort operations for least 

force
 Mechanical analogy: Force = constant x displacement

• Constant = operation-type distribution
• Displacement = change in probability

* [Pierre G. Paulin, J.P. Knight, Force-directed scheduling in automatic data path 
synthesis, Design Automation Conference (DAC), 1987, S. 195-202]

© ACM
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Force-Directed Scheduling

The Force-Directed Scheduling approach 
reduces the amount of:

• Functional Units
• Registers
• Interconnect

This is achieved by balancing the concurrency of 
operations to ensure a high utilization of each unit.
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Next: computation of “forces”

 Direct forces push each task into the direction of lower
values of D(i).

 Impact of direct forces on dependent tasks taken into account by 
indirect forces

 Balanced resource usage  smallest forces
 For our simple example and time constraint=6:

result = ALAP schedule
0
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1.Compute time frames R(j)
2. Compute “probability“ P(j,i) of assignment j  i

R(j)={ASAP-control step … ALAP-control step}

if
0 otherwise Fixed Free
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3. Compute “distribution” D(i)
(# Operations in control step i)

P(j,i) D(i)
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Example
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Scheduling – An example





b

ti h
iDGjDGjForce )()()(

A metric called force is introduced. The force is used to 
optimize the utilization of units. A high positive force value 
indicates a poor utilization.

Step 3 : Calculate the force (a new metric)



- 59 -CS - ES

Scheduling – An example
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Step 3 : Calculate the force (a new metric)
With the operation x’ in control-step 1.

DG(1) = 2.833 DG(3) = 0.833
DG(2) = 2.333 DG(4) = 0

25.0
2

333.2833.2833.2 




Poor 
utilization
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Scheduling – An example
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Step 3 : Calculate the force (a new metric)
With the operation x’ in control-step 2. 
(x’’ must be in control-step 3)

DG(1) = 2.833 DG(3) = 0.833
DG(2) = 2.333 DG(4) = 0

1
2

333.2833.0833.0
2

333.2833.2333.2 







Good 
utilization

Direct force (calculated as before)

Indirect force (on x’’ in control-step 3)
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Scheduling – An example

By repeatedly assigning operations to various 
control-steps and calculating the force associated 
with the choice several force values will be available.

The Force-directed scheduling algorithm chooses 
the assignment with the lowest force value, which 
also balances the concurrency of operations most 
efficiently.
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Overall approach

procedure forceDirectedScheduling;
begin

AsapScheduling;
AlapScheduling;
while not all tasks scheduled do

begin
select task T with smallest total force;
schedule task T at time step minimizing forces;
recompute forces;

end;
end

May be 
repeated 

for 
different 

task/ 
processor 
classes

Not sufficient for today's complex, 
heterogeneous hardware platforms
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Force-Directed Scheduling

The Force-Directed Scheduling approach 
reduces the amount of:

• Functional Units
• Registers
• Interconnect

By introducing Registers and Interconnect as storage 
operations, the force is calcuted for these as well. 
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Force-Directed Scheduling
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 Architecture Synthesis

 HW/SW Codesign

 Power Aware Computing

 3.2.2011 Lecture by Bernd Finkbeiner, Head 
of Reactive Systems Group at Saarland 
University (http://react.cs.uni-sb.de/
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Codesign Definition and Key Concepts

 Codesign
 The meeting of system-level objectives by exploiting the 

trade-offs between hardware and software in a system 
through their concurrent design

 Key concepts
 Concurrent:  hardware and software developed at the same 

time on parallel paths
 Integrated:  interaction between hardware and software 

development to produce design meeting performance 
criteria and functional specs
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Typical Codesign Process

System 
Description
(Functional)

HW/SW
Partitioning

Software 
Synthesis

Interface 
Synthesis

Hardware 
Synthesis

System
Integration

Concurrent processes
Programming languages

Unified representation
(Data/control flow)

Instruction set level
HW/SW evaluation

SW HW
Another
HW/SW
partition


