
- 1 -CS - ES

Embedded Systems                                  
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TMS320C6x Datapath
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 2 Data Paths
 8 Functional Units

 Orthogonal/Independent
 6 Arithmetic Units
 2 Multipliers

 Control
 Independent
 Up to 8 32-bit Instructions in parallel

 Registers
 2 Files
 32, 32-bit Registers Total

 Cross paths (1X, 2X)

 L-Unit (L1, L2)
 40-bit  Integer ALU
 Comparisons
 Bit Counting
 Normalization

 S-Unit (S1, S2)
 32-bit ALU
 40-bit Shifter
 Bitfield Operations
 Branching

 M-Unit (M1, M2)
 16 x 16 -> 32

 D-Unit (D1, D2)
 32-bit Add/Subtract
 Address Calculations
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REVIEW
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Overview XILINX FPGA

• All Xilinx FPGAs contain the same basic resources
– Slices grouped into Configurable Logic Blocks (CLBs)

• Contain combinatorial logic and register resources

– IOBs
• Interface between the FPGA and the outside world

– Programmable interconnect 

– Other resources
• Memory
• Multipliers
• Global clock buffers
• Boundary scan logic

REVIEW
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Embedded Processors in FPGAs

 Hard Core 
 EP is a dedicated physical component of the chip

separate from the programmable logic
 E.g. Xilinx Virtex families (PowerPC 405)

 Soft Core
 Embedded processor is also a synthesized to the FPGA to th

programmable logic on the chip
 E.g. Altera (NIOS), Xilinx (MicroBlaze)

REVIEW
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Partial Reconfiguration 
Technology and Benefits

 Partial Reconfiguration enables:
 System Flexibility

• Perform more functions while 
maintaining communication links

 Size and Cost Reduction
• Time-multiplex the hardware 

to require a smaller FPGA

 Power Reduction
• Shut down power-hungry tasks

when not needed 

REVIEW
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Embedded System Hardware

 Embedded system hardware is frequently used in a loop
(“hardware in a loop“):

 cyber-physical systems

REVIEW
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Communication
- Requirements -

 Real-time behavior
 Efficient, economical

(e.g. centralized power supply)
 Appropriate bandwidth and communication delay
 Robustness
 Fault tolerance
 Maintainability
 Diagnosability
 Security
 Safety

REVIEW
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Memory

 For the memory, efficiency is again a concern:
 speed (latency and throughput); predictable timing
 energy efficiency
 size
 cost
 other attributes (volatile vs. persistent, etc)

REVIEW
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Memory hierarchy
Register, internal
Caches in CPU

External Caches 
(SRAM)

Main Memory 
(DRAM)

Disk Storage 
(Magnetics)

Tape Units 
(Magnetics)
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Capacity

“Small is beautiful”
(in terms of energy consumption, access times, size)

REVIEW
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REVIEW
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REVIEW
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 Architecture Synthesis

 HW/SW Codesign

 Power Aware Computing

 3.2.2011 Lecture by Bernd Finkbeiner, Head 
of Reactive Systems Group at Saarland 
University(http://react.cs.uni-sb.de/
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Architecture Synthesis

 tasks:
 allocation (determine the necessary hardware resources)
 scheduling (determine the timing of individual operations)
 binding (determine relation between individual operations of the 

algorithm and hardware resources)

Classification of synthesis algorithms

 Synthesis methods can often be 
applied independently of granularity

Design a hardware architecture that efficiently
executes a given algorithm.
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Synthesis in Temporal Domain

 Scheduling and binding can be done in different orders or 
together

 Schedule:
 Mapping of operations to time slots (cycles)
 A scheduled sequencing graph is a labeled graph

[©Gupta]
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Schedule in Spatial Domain

 Resource sharing
 More than one operation bound to same resource
 Serialized operations

[©Gupta]
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BASICS

 Source: Teich: Dig. HW/SW Systeme;Thiele ETHZ
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Models
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Models
int diffeq(int x, int y, int u, int dx, int a)

{ int x1, u1, y1;
while ( x < a ) {

x1 = x + dx;
u1 = u - (3 * x * u * dx) - (3 * y * dx);
y1 = y + u * dx;
x = x1; u = u1; y = y1;

}
return y;
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Allocation and Binding
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Scheduling
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Schedule
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Example ((r1) = 4, (r2) = 2):
(v1) = r1, (v1) = 1
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As soon as possible (ASAP) scheduling

ASAP: All tasks are scheduled as early as possible

Loop over (integer) time steps:
 Compute the set of unscheduled tasks for which all 

predecessors have finished their computation

 Schedule these tasks to start at the current time step.
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ASAP Schedules
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As-late-as-possible (ALAP) scheduling

ALAP: All tasks are scheduled as late as possible

Start at last time step*:
Schedule tasks with no successors and tasks for which 

all successors have already been scheduled.

* Generate a list, starting at its end
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ALAP Schedules
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 Motivation
 Interface design.
 Control over operation start time.

 Constraints
 Upper/lower bounds on start-time difference of any operation pair.

 Minimum timing constraints between two operations
 An operation follows another by at least a number of prescribed time 

steps

 Maximum timing constraints between two operations
 An operation follows another by at most a number of prescribed time 

steps

Scheduling under Detailed Timing Constraints
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 Example

 Circuit reads data from a bus, performs computation, writes result 
back on the bus.

 Bus interface constraint: data written three cycles after read.

 Minimum and maximum constraint of 3 cycles between read and 
write operations.

Scheduling under Detailed Timing Constraints
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Constraint graph model
 Start from a sequencing graph

 Model delays as weights on edges

 Add forward edges for minimum constraints

 Add backward edges for maximum constraints

Add this edge for 
max constraint

Add this edge for 
min  constraint
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Weighted Constraint Graph

Source: Thiele, ETHZ
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Weighted Constraint Graph

Example: w(v1) = w(v3) = 2 w(v2) = w(v4) = 1

Source: Thiele, ETHZ
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Mul delay = 2
ADD delay =1
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(Resource constrained)
List Scheduling

List scheduling: extension of ALAP/ASAP method
Preparation:

 Greedy strategy (does NOT guarantee optimum solution)
 Topological sort of task graph G=(V,E)
 Computation of priority of each task:

Possible priorities u:
• Number of successors
• Longest path
• Mobility =  (ALAP schedule)-  (ASAP schedule) 

– Defined for each operation
– Zero mobility implies that an operation can be started only 

at one given time step
– Mobility greater than 0 measures span of time interval in 

which an operation may start  Slack on the start time.

Source: Teich: Dig. 
HW/SW Systeme
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Mobility as a priority function



Mobility is not very precise
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Algorithm

List(G(V,E), B, u){
i :=0;

repeat {
Compute set of candidate tasks Ai ;
Compute set of not terminated tasks Gi ;
Select Si  Ai of maximum priority r such that
| Si | + | Gi | ≤ B (*resource constraint*)

 foreach (vj  Si):  (vj):=i;        (*set start time*)
i := i +1;

}
until (all nodes are scheduled);
return ();

} Complexity: O(|V|)

may be 
repeated 

for 
different 

task/ 
processor 
classes
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Example

Assuming B =2, unit execution 
time and u : path length

u(a)= u(b)=4
u(c)= u(f)=3
u(d)= u(g)= u(h)= u(j)=2
u(e)= u(i)= u(k)=1
 i : Gi =0
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Modified example 
based on J. Teich
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does NOT guarantee optimum solution e.g.

List Scheduling
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Integer linear programming models

 Ingredients:
 Cost function
 Constraints

Involving linear expressions of 
integer variables from a set X

Def.: The problem of minimizing (1) subject to the constraints 
(2) is called an integer linear programming (ILP) problem.

If all xi are constrained to be either 0 or 1, the IP problem said 
to be a 0/1 integer linear programming problem. 

Cost function )1(, NxRaxaC i
Xx

iii
i
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 with

Constraints: )2(,: ,, RcbcxbJj
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Example
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Remarks on integer programming

 Integer programming is NP-complete

 Running times depend exponentially on problem size,
but problems of >1000 vars solvable with good solver (depending on 
the size and structure of the problem)

 ILP/LP models good starting point for modeling, even if heuristics are 
used in the end.

 Solvers: lp_solve (public), CPLEX (commercial), …
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 Minimize latency given constraints on area or
the resources (ML-RCS)

 Use binary decision variables
 i = 0, 1, ..., n
 l = 1, 2, ..., ’+1 ’ given upper-bound on latency 
 xil = 1 if operation i starts at step l, 0 otherwise.

 Set of linear inequalities (constraints),
and an objective function (min latency)

ILP Formulation of ML-RCS
[Mic94] p.198, Kastner, UC S. Barbara
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 Observation

 ti = start time of op i.

 is op vi (still) executing at step l?

ILP Formulation of ML-RCS
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Start Time vs. Execution Time
 For each operation vi , only one start time
 If di=1, then the following questions are the 

same:
 Does operation vi start at step l?
 Is operation vi running at step l?

 But if di>1, then the two questions should be 
formulated as:
 Does operation vi start at step l?

• Does xil = 1 hold?

 Is operation vi running at step l?
• Does the following hold?

1
1
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l

dlm
im

i
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Operation vi Still Running at Step l ?
 Is v9 running at step 6?
 Is     x9,6 + x9,5 + x9,4 = 1 ?

 Note:
 Only one (if any) of the above three cases can happen
 To meet resource constraints, we have to ask the 

same question for ALL steps, and ALL operations of 
that type

v9

4
5
6

x9,4=1

v9

4
5
6

x9,5=1

v9

4
5
6

x9,6=1
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Operation vi Still Running at Step l ?

 Is vi running at step l ?
 Is     xi,l + xi,l-1 + ... + xi,l-di+1 = 1 ?

vi

l
l-1

l-di+1
...

xi,l-di+1=1

vil
l-1

l-di+1

...

xi,l-1=1

vil
l-1

l-di+1

...

xi,l=1

. . .
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 Constraints:
 Unique start times:

 Sequencing (dependency) relations must be satisfied

 Resource constraints

 Objective: min cTt.
 t =start times vector, c =cost weight

ILP Formulation of ML-RCS (cont.)
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ILP Example
 Assume  = 4
 First, perform ASAP and ALAP

 (we can write the ILP without ASAP and ALAP, but using ASAP and 
ALAP will simplify the inequalities)
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ILP Example: Unique Start Times Constraint
 Without using ASAP 

and ALAP values:
 Using ASAP and 

ALAP:

...
1

1

4,23,22,21,2

4,13,12,11,1





xxxx
xxxx

....
1
1

1
1

1
1
1
1
1

4,93,92,9

3,82,81,8

3,72,7

2,61,6

4,5

3,4

2,3

1,2

1,1



















xxx
xxx

xx
xx

x
x
x
x
x



- 49 -CS - ES

ILP Example: Dependency Constraints
 Using ASAP and ALAP, the non-trivial inequalities are: 

(assuming unit delay for + and *)

...
01.3.2.4
01.3.2.4.3.2
01.3.2.4.3.2
01.2.3.2

3,72,74,5
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




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ILP Example: Resource Constraints
 Resource constraints (assuming 2 adders and 2 multipliers)

 Objective: Min Xn,1 + 2Xn,2 +3Xn,3 +4Xn,4

2
2
2
2
2
2
2
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3,113,103,93,4
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Result is different from both 
ALAP and ASAP schedules
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(Time constrained)
Force-directed scheduling 

Goal: balanced utilization of 
resources
Based on spring model
Originally proposed for high-level synthesis
Force
 Used as a priority function
 Related to concurrency – sort operations for least 

force
 Mechanical analogy: Force = constant x displacement

• Constant = operation-type distribution
• Displacement = change in probability

* [Pierre G. Paulin, J.P. Knight, Force-directed scheduling in automatic data path 
synthesis, Design Automation Conference (DAC), 1987, S. 195-202]

© ACM
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Force-Directed Scheduling

The Force-Directed Scheduling approach 
reduces the amount of:

• Functional Units
• Registers
• Interconnect

This is achieved by balancing the concurrency of 
operations to ensure a high utilization of each unit.
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Next: computation of “forces”

 Direct forces push each task into the direction of lower
values of D(i).

 Impact of direct forces on dependent tasks taken into account by 
indirect forces

 Balanced resource usage  smallest forces
 For our simple example and time constraint=6:

result = ALAP schedule
0
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1.Compute time frames R(j)
2. Compute “probability“ P(j,i) of assignment j  i

R(j)={ASAP-control step … ALAP-control step}

if
0 otherwise Fixed Free
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3. Compute “distribution” D(i)
(# Operations in control step i)

P(j,i) D(i)
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Example
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Scheduling – An example





b

ti h
iDGjDGjForce )()()(

A metric called force is introduced. The force is used to 
optimize the utilization of units. A high positive force value 
indicates a poor utilization.

Step 3 : Calculate the force (a new metric)
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Scheduling – An example



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2

1 2
)()1()1(

i

iDGDGForce

Step 3 : Calculate the force (a new metric)
With the operation x’ in control-step 1.

DG(1) = 2.833 DG(3) = 0.833
DG(2) = 2.333 DG(4) = 0

25.0
2

333.2833.2833.2 

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utilization
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Scheduling – An example
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Step 3 : Calculate the force (a new metric)
With the operation x’ in control-step 2. 
(x’’ must be in control-step 3)

DG(1) = 2.833 DG(3) = 0.833
DG(2) = 2.333 DG(4) = 0

1
2

333.2833.0833.0
2

333.2833.2333.2 




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Good 
utilization

Direct force (calculated as before)

Indirect force (on x’’ in control-step 3)
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Scheduling – An example

By repeatedly assigning operations to various 
control-steps and calculating the force associated 
with the choice several force values will be available.

The Force-directed scheduling algorithm chooses 
the assignment with the lowest force value, which 
also balances the concurrency of operations most 
efficiently.
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Overall approach

procedure forceDirectedScheduling;
begin

AsapScheduling;
AlapScheduling;
while not all tasks scheduled do

begin
select task T with smallest total force;
schedule task T at time step minimizing forces;
recompute forces;

end;
end

May be 
repeated 

for 
different 

task/ 
processor 
classes

Not sufficient for today's complex, 
heterogeneous hardware platforms
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Force-Directed Scheduling

The Force-Directed Scheduling approach 
reduces the amount of:

• Functional Units
• Registers
• Interconnect

By introducing Registers and Interconnect as storage 
operations, the force is calcuted for these as well. 
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Force-Directed Scheduling
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 Architecture Synthesis

 HW/SW Codesign

 Power Aware Computing

 3.2.2011 Lecture by Bernd Finkbeiner, Head 
of Reactive Systems Group at Saarland 
University (http://react.cs.uni-sb.de/
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Codesign Definition and Key Concepts

 Codesign
 The meeting of system-level objectives by exploiting the 

trade-offs between hardware and software in a system 
through their concurrent design

 Key concepts
 Concurrent:  hardware and software developed at the same 

time on parallel paths
 Integrated:  interaction between hardware and software 

development to produce design meeting performance 
criteria and functional specs
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Typical Codesign Process

System 
Description
(Functional)

HW/SW
Partitioning

Software 
Synthesis

Interface 
Synthesis

Hardware 
Synthesis

System
Integration

Concurrent processes
Programming languages

Unified representation
(Data/control flow)

Instruction set level
HW/SW evaluation

SW HW
Another
HW/SW
partition


