Embedded Systems

O’H‘l’

...........

CS-ES

é'l f)
:

1¢ ﬁ

TMS320C6x Datapath

REVIEW

4

2 Data Paths

8 Functional Units
¢ Orthogonal/Independent
¢ 6 Arithmetic Units

7

A

X3

S

L-Unit (L1, L2)
¢ 40-bit Integer ALU
¢ Comparisons
¢ Bit Counting

¢ Normalization
S-Unit (S1, S2)
¢ 32-bit ALU
¢ 40-bit Shifter
¢ Bitfield Operations
¢ Branching
<+ M-Unit (M1, M2)
¢ 16x16->32
<+ D-Unit (D1, D2)
¢ 32-bit Add/Subtract
¢ Address Calculations

¢ 2 Multipliers
< Control

¢ Independent

¢ Up to 8 32-bit Instructions in parallel
<+ Registers

¢ 2 Files

¢ 32, 32-bit Registers Total
< Cross paths (1X, 2X)

Registers AO - A15 Registers BO - B15
A A A A A A | A A A A A
1X ‘ ‘ T 2X
v v |® v v v v ® | v v
e UPY)] FUTUIh[[9Y
S1 S2 DDL SL SLD DS S S 8 DS § S SD S 8 S S DDS SLDL D S2 S1
L1 'S1 °||°'M1 |||DZX D2||| M21|° S2° L2
\ 4 y
DDATA_Of1 DDATA_I1 DDATA_I2 DDATA_O2 — 40-bit Write Paths (8 MSBs)
V(store data) (load data) ADR1 DADR load data) (store datazr __ 40-bit Read Paths/Store Paths

(address)(address

CS-ES 0.

Overview XILINX FPGA REVIEW

* All Xilinx FPGAs contain the same basic resources
— Slices grouped into Configurable Logic Blocks (CLBs)
» Contain combinatorial logic and register resources

— |10OBs
* |nterface between the FPGA and the outside world

— Programmable interconnect

— Other resources
* Memory
* Multipliers
» Global clock buffers

e Boundary scan logic
CS-ES "y 9 _ 3.

| REVIEW
Embedded Processors in FPGASs

= Hard Core

» EP is a dedicated physical component of the chip
separate from the programmable logic ;
» E.g. Xilinx Virtex families (PowerPC 405)

= Soft Core

» Embedded processor is also a synthesized to the FPGA to th
programmable logic on the chip

= E.g. Altera (NIOS), Xilinx (MicroBlaze)

CS-ES 4.

Partial Reconfiguration

Technology and Benefits

» Partial Reconfiguration enables:
= System Flexibility

« Perform more functions while
maintaining communication links

= Size and Cost Reduction

* Time-multiplex the hardware
to require a smaller FPGA

= Power Reduction

« Shut down power-hungry tasks
when not needed

CS-ES

REVIEW

Embedded System Hardware REVIEW

= Embedded system hardware is frequently used in a loop
(“hardware in a loop“):

A/D converter — information Ii‘di;\may

sample—and-hold processing

D/A converter

{

v

(physical)

sensors (€ actuators

environment

'

“ cyber-physical systems

CS-ES s

Communication REVIEW
- Requirements -

= Real-time behavior

= Efficient, economical
(e.g. centralized power supply)

= Appropriate bandwidth and communication delay
= Robustness

= Fault tolerance

= Maintainability

= Diagnosability

= Security

= Safety

CS-ES 7.

Memory REVIEW

= For the memory, efficiency is again a concern:
» speed (latency and throughput); predictable timing
= energy efficiency
" size
= cost
= other attributes (volatile vs. persistent, etc)

CS-ES 8-

Memory hierarchy REVIEW

Register, internal
’ Level
Caches in CPU evel 0
g i
= External Caches
§- (SRAM) Level 1 .
2 =
S Main Memory 2
S Q
% Disk Storage
5 (Magnetics) Level 3
Tape Units Level 4
(Magnetics)
Capacity
—

“Small is beautiful”

CS - ES (in terms of energy consumption, access times, size) 0.

SAARLAND

Static Timing Analysis vy &
pl’OdUCing the input to SCheduIabiIity analYSiS COMPUTER SCIENC
REVIEW

Schedulability analysis has assumed the knowledge of the execution

time of tasks.
So, the problem to solve:

m Given
1 a software task to produce some reaction,
2 a hardware platform, on which to execute the software,
3 arequired reaction time, e.g. the period of the task.

m Derive:
» a reliable (and precise) upper bound on the execution times.

SAARLAND o

Timing Analysis e
REVIEW

g | Analysis-guaranteed timing bounds -

=

'*Z «-Overest.—

9

5

O

&

>

o

©

c

: LA

E | 111 —TT X

Iz LB BCET WCET UB Exec-time

=

= Architecture Synthesis
= HW/SW Codesign

= Power Aware Computing

= 3.2.2011 Lecture by Bernd Finkbeiner, Head
of Reactive Systems Group at Saarland
University(http://react.cs.uni-sb.de/

CS-ES - 12 -

Architecture Synthesis

Design a hardware architecture that efficiently
executes a given algorithm.

= tasks:
» allocation (determine the necessary hardware resources)
» scheduling (determine the timing of individual operations)
* binding (determine relation between individual operations of the

algorithm and hardware resources)

Classification of synthesis algorithms - ‘/l by

Constructiv Iterativ

» Synthesis methods can often be A S

applied independently of granularity

CS-ES - 13 -

Synthesis in Temporal Domain

Scheduling and binding can be done in different orders or
together
Schedule:

= Mapping of operations to time slots (cycles)
» A scheduled sequencing graph is a labeled graph

[©Gupta]

CS-ES - 14 -

Schedule in Spatial Domain

= Resource sharing
= More than one operation bound to same resource
= Serialized operations

CS -ES _ |©Gupta]

BASICS

= Source: Teich: Dig. HW/SW Systeme;Thiele ETHZ

CS-ES

- 16 -

Models

» Sequence graph Gg¢ = (Vg, Eg)
where V< denotes the operations of the algorithm and Eg
the dependence relations.

» Resource graph Gp = (Vg,ER), Vp = Vg U Vp
where V;denote the resource types of the architecture
and G is a bipartite graph. An edge (vs,v) € Ep
represents the availability of a resource type v, for an
operation v..

» Cost function c .V — 7

» Execution times w : Ep — 7,20
are assigned to each edge (vs,vt) € ER
and denote the execution time of operation vs € Vg
on resource type vt € V.

CS-ES - 17 -

Sequence graph: nop
Models

int diffeq(int x, int y, int u, int dx, int a)

{intx1, u1, y1;

while (x<a){
x1 =x + dx;
ul=u-@*x*u*dx)-(3*y*dx)
yl=y+u*dx
x=x1;u=ul;y=yf1,

}

returny;

Resource graph:]
multiplier

Ot(l‘l)=1

CS-ES

- 18 -

Allocation and Binding

An allocation is a function « : Vi — Z=9 that
assigns to each resource type vy € Vp the num-
ber a(vy) of available instances.

A binding is defined by functions 3 : Vg — Vp
and v : Vg — Z~0. Here, (vs) = vy and y(vs) =
r denote that operation vs € Vg is implemented
on the rth instance of resource type v; € V.

CS-ES - 19 -

Scheduling

A schedule is a function 7 : Vg — Z>0 that
determines the starting times of operations. A
schedule is feasible if the conditions

T(v;) — 7(v) 2 w(v;) V(v;,v5) € Eg

are satisfied. w(v;) = w(vw;, B(v;)) denotes the
execution time of operation v;,.

The latency L of a schedule is the time differ-
ence between start node vg and end node wvp:

L =1(vn) —1(vg) .

CS-ES

- 20 -

Schedule

CS-ES

- 21 -

Binding
:B(V1)= r1, Avy) =1

Example (a(ry) =4, a(r,) = 2):

Lv,) =12, Nv,) =1

:B(Vs) =11, Uvz) =2

Bve) =11, Nvs) =3

CS-ES - 22 -

As soon as possible (ASAP) scheduling

*ASAP: All tasks are scheduled as early as possible
*| oop over (integer) time steps:

= Compute the set of unscheduled tasks for which all
predecessors have finished their computation

» Schedule these tasks to start at the current time step.

CS-ES

- 23-

ASAP Schedules

ASAP(Gg(Vs, Eg),w) {
7(vg) = 1;
REPEAT {
Determine v; whose predec. are planed;
7(v;) = max{r(v;) + w(v;) V(vj,v;) € Es}
} UNTIL (vp is planned);
RETURN (7);

E
9

CS-ES

- 24 -

As-late-as-possible (ALAP) scheduling

"ALAP: All tasks are scheduled as late as possible

Start at last time step™:

Schedule tasks with no successors and tasks for which
@ all successors have already been scheduled.

* Generate a list, starting at its end

CS-ES - 25-

ALAP Schedules

ALAP(Gg(Vg, Eg), w, Lmaz) {
7(vn) = Lmaz + 1;
REPEAT {
Determine v; whose succ. are planed,
7(v;) = min{r(v;) ¥(v;,v;) € Eg} — w(v;)
} UNTIL (vg is planned);
RETURN (7);

}

CS-ES

- 26 -

Scheduling under Detailed Timing Constraints

Motivation
» |nterface design.
= Control over operation start time.

Constraints
= Upper/lower bounds on start-time difference of any operation pair.

Minimum timing constraints between two operations

= An operation follows another by at least a number of prescribed time
steps

Maximum timing constraints between two operations

= An operation follows another by at most a number of prescribed time
steps

CS-ES o7

Scheduling under Detailed Timing Constraints

= Example

= Circuit reads data from a bus, performs computation, writes result
back on the bus.

» Bus interface constraint: data written three cycles after read.

* Minimum and maximum constraint of 3 cycles between read and
write operations.

CS-ES - 28 -

Constraint graph model

Start from a sequencing graph
Model delays as weights on edges

Add forward edges for minimum constraints ..

Add this edge for
min constraint

& *, MIN

MM * 3 TIME

OWHONE
MAX
TIME
3

»
() -
Add this edge for
CS - ES max constraint

Weighted Constraint Graph

» In order to represent a feasible schedule, we have one
edge corresponding to each precedence constraint with

d(vs,v5) = w(v;)
where w(v,) denotes the execution time of v..

» A consistent assignment of starting times t(v;) to all

operations can be done by solving a single source
longest path problem.

» A possible algorithm (Bellman-Ford) has complexity
O([V¢l [Egl):
Iteratively set 7(v;) := max{r(v;), 7(v;)+d(v;,v;) :
(vi,vj) € Ecg} for all v; € Vi starting from
7(v;) = —oo for v; € Vo\{vg} and 7(vg) = 1.

Source: Thiele, ETHZ
CS-ES _ 30 -

Weighted Constraint Graph

Example: w(v1) = w(v3) = 2 w(v2) =w(v4) = 1
7(v;) = max{7(v;), 7(v;)+d(v;,v;)

NOP,_0

4
max. 3
time
3
| N /,’]
\""\ n
NOP,

- -

Source: Thiele, ETHZ
CS-ES - 31 -

Solution - Constraint Graph Model

CS-ES

Mul delay =2
ADD delay =1

Start time

OOUHWRH

- 32-

(Resource constrained) Source: Tadh: DIg
List Scheduling

= ist scheduling: extension of ALAP/ASAP method

*Preparation:
» Greedy strategy (does NOT guarantee optimum solution)
= Topological sort of task graph G=(V,E)
= Computation of priority of each task:
Possible priorities u:
* Number of successors
* Longest path

« Mobility =t (ALAP schedule)- t (ASAP schedule)
— Defined for each operation

— Zero mobility implies that an operation can be started only
at one given time step

— Mobility greater than 0 measures span of time interval in
CS - ES which an operation may start - Slack on the start time,, .

Mobility as a priority function

Mobility is not very precise

CS-ES - 34 -

Algorithm

uList(G(V,E), B, u}{

1 :=0;
repeat {
Compute set of candidate tasks A, ;) maybe
Compute set of not terminated tasks G;; repeated
Select S; c A; of maximum priority r such that for
|S;|+|G/|<B (*resource constraint*) dlfaif/nt
= foreach (v; € §): © (v)):=1; (*set start time™) processor
1:=1+1;) classes
}
until (all nodes are scheduled);
return (t);
) Complexity: O(|V|)

CS-ES - 35-

Example

Modified example

*Assuming B =2, unit execution based on J. Teich
time and u : path length =
u(a)=u(b)=4 CTD /@
u(e)= u(h)=3 o= @ ()
) &
u(e)= u()= u(k)=1 = d
Vi:G;=0 = @
S ACXO
V¥ oy y YWRE i ;i
‘44 SERNONC
@\@ T=9 @

does NOT guarantee optimum solution e.g.

List Scheduling

? L)
y

Q@ 2@
A2

OO 2T

CS-ES

- 37-

Integer linear programming models

* |ngredients:

= Cost function Involving linear expressions of
= Constraints integer variables from a set X
Cost function C= Z:aixi with a. eR,x. € iy (1)
X eX

Constraints: Vj e J : Zbi,j X = C;withb, ,,c, € & (2)

XiEX

Def.: The problem of minimizing (1) subject to the constraints
(2) is called an integer linear programming (ILP) problem.

If all x; are constrained to be either O or 1, the IP problem said
to be a 0/1 integer linear programming problem.

CS-ES - 38 -

Example

CS-ES

C =5X%, +6X, +4X,

X, + X, + X322
X, X, X; €{0,1}

- 39-

Remarks on integer programming

Integer programming is NP-complete

* Running times depend exponentially on problem size,
but problems of >1000 vars solvable with good solver (depending on
the size and structure of the problem)

» |LP/LP models good starting point for modeling, even if heuristics are
used in the end.

= Solvers: Ip_solve (public), CPLEX (commercial), ...

CS-ES - 40 -

[Mic94] p.198, Kastner, UC S. Barbara

ILP Formulation of ML-RCS

= Minimize latency given constraints on area or
the resources (ML-RCS)

» Use binary decision variables
" 1=0,1,..,n
| =12,...,4+]1 A’ given upper-bound on latency
= x; =1 if operation I starts at step |, O otherwise.

= Set of linear inequalities (constraints),
and an objective function (min latency)

CS-ES - 41 -

ILP Formulation of ML-RCS

= Observation
x, =0 for I<t> and I>t'
(t> = ASAP(V.), t" = ALAP(V.))
"t = ZI X t; = start time of op i.
I I 2

. Z Xi o — 1 =—=isop v; (still) executing at step 1?

m=|—di +1

CS-ES - 42 -

Start Time vs. Execution Time
= For each operation v;, only one start time

= |f d;=1, then the following questions are the
same.
* Does operation v;start at step |?
» |s operation v, running at step |?

= But if d;>1, then the two questions should be
formulated as:

* Does operation v;start at step |?

 Does Xj =1 hold?

» |s operation v, running at step |?
* Does the following hold?

- 43 -

Operation v; Still Running at Step | ?

* |s v, running at step 67
" IS Xgg+ Xgs+ X, =1 7

4 4 4
> 5 5 | v
6 /99 6 [vo 6
, 1
Xg6=1 Xg5=1 X94=1
= Note:

= Only one (if any) of the above three cases can happen

= To meet resource constraints, we have to ask the
same question for ALL steps, and ALL operations of
that type

CS-ES - 44 -

Operation v; Still Running at Step | ?

= Isv;running at step | ?
"s XXt X i+l T 7

l-d,+1 l-d;+1 l-d,+1
: : : 2
-1 -1 K
VO | Vi |
| \
X =1 Xi 1= Xi 1-gi+1=1

CS-ES .45

ILP Formulation of ML-RCS (cont.)

= Constraints: |
= Unique start times: ZX” =1, 1=01,...,n
|

= Sequencing (dependency) relations must be satisfied
t>t +d, V(v,,v,\)eE=) L.x; 2> |.x; +d;
I I

= Resource constraints
|

> > Xn<a, k=1..n,, I=1.,1+1

iT(v;)=k m=l-d +1

= Objective: min c't.
= t =start times vector, ¢ =cost weight

CS-ES - 46 -

ILP Example

= Assume A = 4
» First, perform ASAP and ALAP
= (we can write the ILP without ASAP and ALAP, but using ASAP and
ALAP will simplify the inequalities)

- 47 -

CS-ES

ILP Example: Unique Start Times Constraint
= Without using ASAP = Using ASAP and

and ALAP values: ALAP:

X, =1

Xp1+ X, +X 53+X%X,=1 X,, =1

Xop T Xp0 + X5+ X%, 4 =1 X, =1
X,5=1
X5, =1
Xe1 T Xe,2 =
X702+ X3 =
Xg1 T Xgo T Xg 3 =
Kog2 T Xg3+ Xg 4 =

ILP Example: Dependency Constraints

» Using ASAP and ALAP, the non-trivial inequalities are:
(assuming unit delay for + and *)

2.X; 5, +3.X; 53— Xg,—2. X5, =120

2. X9, +3Xg3+4.Xg 4 —Xg1 —2. X5, —3.X5;—1=0

2. X115, +3. X153 +4.X 14— Xg1 — 2. X9, —3.X,553—1=0
A X5, —2.X;,—3.%X,5,—1=0

D
‘,5\@‘_;0 1 &1 &
Spve Y AN
Q909 9w
4 A= ©° 0

CS-ES

ILP Example: Resource Constraints

» Resource constraints (assuming 2 adders and 2 multipliers)
Xi1+Xpq +Xgq +Xgq <2

Xgpo +Xg o+ Xy 5+ Xg, <2

X; 53+ Xg5 <2

e A Xig1 = 2
i 9uOE Om Xo o+ Xipo 4+ Xiqo <2
< I 9,2 10,2 11,2 =

RE Xg3+Xgg+ Xgg+ X5 =2

Xg g+ Xg g+ Xipg <2
= Objective: Min X ; + 2X, 5, +3X,3+4X, 4

CS-ES .50

CS-ES

)

wY
.
)
W
5
.
At
)
'
'
W
i) » N
.
‘‘‘‘‘‘
W
wh
)
W
.
A
W
.
W
.
W
A

Result is different from both
ALAP and ASAP schedules

TIME 2

TIME 3

‘NOP:
10
(+)
N
; |
NG .-/£\11
./ _.,)
/1 i g
N ()

TIME 4

.
/ .
]
:
\ / ¢
§ — \“
-. “
& s.‘
“

. .
. §
. &
‘ P
'NOP

- 51-

(Time constrained) . w

¢ K1 =0G(1)
Force-directed scheduling oo | ° e o
[wvvwv% o Mg
. l-K,-DG(a) .

Q
h -]

i
-
L]

o
s
2

=Goal: balanced utilization of '
resources . =

*Based on spring model

*Originally proposed for high-level synthesis

*Force
» Used as a priority function

» Related to concurrency — sort operations for least
force

* Mechanical analogy: Force = constant x displacement
« Constant = operation-type distribution
 Displacement = change in probability

>
| =¢ |
3

* [Pierre G. Paulin, J.P. Knight, Force-directed scheduling in automatic data path
synthesis, Design Automation Conference (DAC), 1987, S. 195-202]

CS-ES - 52 -

Force-Directed Scheduling

The Force-Directed Scheduling approach
reduces the amount of:

< Functional Units>

* Registers
e Interconnect

This is achieved by balancing the concurrency of
operations to ensure a high utilization of each unit.

CS-ES - 63 -

Next: computation of “forces”

= Direct forces push each task into the direction of lower
values of D(i).

» [mpact of direct forces on dependent tasks taken into account by

indirect forces
» Balanced resource usage ~ smallest forces

» For our simple example and time constraint=6:
result = ALAP schedule

12345

[
»

| \\\\\\\

N/

\‘*\

CS-ES

- 54 -

1.Compute time frames R(j)
2. Compute “probability* P(j,1) of assignment j —> i

13 1/3

*

+

F
A

ctr

R(j)={ASAP-control step ... ALAP-control step}

1 e - :
P(j.i) :{ won it 1€ RU)
O otherwise Fixed Free

CS-ES - 55-

3. Compute “distribution” D(I)
(# Operations in control step i)

D)=, P(i)

Jrtype(j)eH

- P(j,i) - - D(i) .

.- —~
-

A2 13 13~ 0 1 2 3

A ’ ol I e N
| i + D(1)=2 5/6
<
. | @
T1& + N D(2)=2 2/6
©
_ é’ D(3)=5/6
- D(4)=0
CS-ES

- 56 -

Example

1 1 1
Oagq (1) = 3" 0.33 9. () :1+1+§+§ =2.83
1 1 1 1 1 1
2)=—+—+—=1 e it R
Oaaa (2) 37373 Qi (2) 1+2+2+3 2.33
1 1 1 1 1
3)=1+—+—+—=2 e e
Oaqq (3) 3313 qmu,t(3)_2+3—0.83

0.33 1

3 a4
4 /

CS-ES - o7 -

Scheduling — An example

Step 3 : Calculate the force (a new metric)

A metric called force is introduced. The force is used to
optimize the utilization of units. A high positive force value
iIndicates a poor utilization.

Force(j)=DG(j) - ZDG(')

CS-ES - 58 -

Scheduling — An example

Step 3 : Calculate the force (a new metric)
With the operation x’ in control-step 1.

Force(l) = DG(1) — iDG(')

o
b
nN
(]

@1] _| i=
2 |
@PSF - _2833_2833+2 33845
DG(1) = 2.833 DG(3) = 0.833 F’<_>9r |
DG(2) = 2.333 DG(4) =0 utilization

CS-ES . 59.

Indirect force (on x” in control-step 3)
Scheduling — An example

Direct force (calculated as before)

Step 3 : Calculate' the force (a new metric)
With the operatign x' in control-step 2.
(x” must be in gontrol-step 3)

Force (2) =BG (2)- Y, 206 (3)- Y, 21D

_ 9333 2.833+2. 333+O.833— 0.833+2. 333@

/

DG(1) = 2.833 DG(3)=0.833 Good
DG(2) = 2.333 DG(4) =0 utilization

CS-ES - 60 -

Scheduling — An example

By repeatedly assigning operations to various
control-steps and calculating the force associated
with the choice several force values will be available.

The Force-directed scheduling algorithm chooses
the assignment with the lowest force value, which
also balances the concurrency of operations most
efficiently.

CS-ES - 61 -

Overall approach

=procedure forceDirectedScheduling; May be
begin repeated
AsapScheduling; : 2l
. different
AlapScheduling; task/
while not all tasks scheduled do processor
begin classes

select task T with smallest total force;
schedule task T at time step minimizing forces;
recompute forces;

end; Not sufficient for today's complex,
end heterogeneous hardware platforms

CS-ES - 62 -

Force-Directed Scheduling

The Force-Directed Scheduling approach
reduces the amount of:

 Functional Units

__*Registers

* Interconnect

By introducing Registers and Interconnect as storage
operations, the force is calcuted for these as well.

CS-ES

- 63 -

Force-Directed Scheduling

ASAP schedule

Force-directed schedule

1
Min. no. of registers = 7 Min. no. of registers = 5

CS-ES - 64 -

-

= Architecture Synthesis
= HW/SW Codesign

= Power Aware Computing

= 3.2.2011 Lecture by Bernd Finkbeiner, Head
of Reactive Systems Group at Saarland
University (http://react.cs.uni-sb.de/

CS-ES - 65 -

Codesign Definition and Key Concepts

= Codesign

» The meeting of system-level objectives by exploiting the
trade-offs between hardware and software in a system
through their concurrent design

= Key concepts

= Concurrent: hardware and software developed at the same
time on parallel paths

» |ntegrated: interaction between hardware and software
development to produce design meeting performance
criteria and functional specs

CS-ES - 66 -

Typical

Codesign Process

System
Description
(Functional)

Concurrent processes
Programming languages

HW/SW Unified representation
sw/ \HW
Another
HW/SW Software Interface Hardware
partition Synthesis Synthesis Synthesis
System Instruction set level
Integration HW/SW evaluation
CS-ES

- 67 -

