Embedded Systems

O’H‘l’

...........

CS-ES

é'l f)
:

1¢ ﬁ

TMS320C6x Datapath

REVIEW

4

2 Data Paths
8 Functional Units

7

A

X3

S

¢ Orthogonal/Independent

¢ 6 Arithmetic Units

L-Unit (L1, L2)
¢ 40-bit Integer ALU
¢ Comparisons
¢ Bit Counting

¢ Normalization

¢ 2 Multipliers + S-Unit (S1, S2)

« Control o 32-bit ALU
¢ Independent ¢ 40-bit Shifter
+ Up to 8 32-bit Instructions in parallel ¢ Bitfield Operations

¢ Branching

< Registers)
g & M-Unit (M1, M2)

¢ 2 Files
& 32, 32-bit Registers Total ot 16x 16 - 32
. A : + D-Unit (D1, D2)
+ Cross paths (1X, 2X) o 32-bit Add/Subtract
& Address Calculations
Registers AO - A15 Registers BO - B15
A A A A A A | A A A A A
1X ‘ ‘ T 2X
Y Y 9 Y Y

weilimlllglly|lll ll|ellel[mlley

S1 DDL SL SLD DS S S S DDS SLbL D S2 81

L1 ['s1:|lmtllipel b2l M2l s2t ||| L2

DDATA_Of1 DDATA_I1 DDATA_I2 DDATA_O2 — 40-bit Write Paths (8 MSBs)

V(store data) (load data) ADR1 DADR load data) (store datazr __ 40-bit Read Paths/Store Paths
(address)(address

CS-ES 0.

Overview XILINX FPGA REVIEW

* All Xilinx FPGAs contain the same basic resources
— Slices grouped into Configurable Logic Blocks (CLBs)
» Contain combinatorial logic and register resources

— |10OBs
* |nterface between the FPGA and the outside world

— Programmable interconnect =

— Other resources
* Memory
* Multipliers
» Global clock buffers

e Boundary scan logic
CS-ES "y 9 _ 3.

| REVIEW
Embedded Processors in FPGASs

. 'Hard Core

» EP is a dedicated physical component of the chip
separate from the programmable logic
» E.g. Xilinx Virtex families (PowerPC 405)

I

= SoftiCore

» Embedded processor is also a synthesized to the FPGA to th
programmable logic on the chip

= E.g. Altera (NIOS), Xilinx (MicroBlaze)

CS-ES 4.

Partial Reconfiguration

Technology and Benefits

» Partial Reconfiguration enables:
= System Flexibility

« Perform more functions while
maintaining communication links

= Size and Cost Reduction

- Time-multiplex the hardware
to require a smaller FPGA

= PLower Reduction

« Shut down power-hungry tasks
when not needed

CS-ES

REVIEW

Embedded System Hardware REVIEW

= Embedded system hardware is frequently used in a loop
(“hardware in a loop“):

A/D converter ’j’gformation display
sample=and-hold rocessing s

D/A converter

(L

v

(physical)

sSensors | actuators

environment

'

“ cyber-physical systems

CS-ES - 6-

Communication REVIEW
- Requirements -

= Real-time behavior

= Efficient, economical
(e.g. centralized power supply)

= Appropriate bandwidth and communication delay
= Robustness

= Fault tolerance

= Maintainability

= Diagnosability
= Security
= Sa

CS-ES 7.

Memory REVIEW

= For the memory, efficiency is again a concern:
» speed (latency and throughput); predictable timing
= energy efficiency
" size
= cost
= other attributes (volatile vs. persistent, etc)

CS-ES 8-

Memory hierarc

),

ny

Register, internal

Energy Consumption

Level
Caches in CPU evel 0
External Caches
(SRAM) Level 1
Main Memory
(DRAM) Level 2
Disk Storage
/ (Magnetics) \Level 3
Tape Units Level 4
(Magnetics)
Capacity

CS - ES (in terms of energy consumption, access times, size)

mall IS beautifuljl

REVIEW

COSTS

- 9-

SAARLAND
UNIVERSITY

Static Timing Analysis —

producing the input to schedulability analysis SRR

REVIEW

Schedulability analysis has assumed the knowledge of the execution

time of tasks.
So, the problem to solve:

m Given

1 a software task to produce some reaction,
2 a hardware platform, on which to execute the software,
3 arequired reaction time, e.g. the period of the task.

m Derive:

» areliable (and precise) upper bound on the execution times.

SAARLAND i

Timing Analysis UNIvVERSITY B
REVIEW
% w Analysis-guaranteed timing bounds N
=
i —Overest.—
O
5
(&)
Q
>
(@)
©
c
- i
3 " 1T
2 LB BCET WCET UB Exec-time

=

= Architecture Synthesis
= HW/SW Codesign

= Power Aware Computing

Y 3.2.2@e0ture by Bernd Finkbeiner, Head

of Reactive Systems Group at Saarland
University(http://react.cs.uni-sb.de/

CS-ES - 12 -

Architecture Synthesis

Design a hardware architecture that efﬂClentIy
executes a given algorithm.

= tasks:
» allocation (determine the necessary hardware resources)
» scheduling (determine the timing of individual operations)
= binding (determine relation between individual operations of the

algorithm and hardware resources)
Allgemeine Tech
"

e —

Classification of synthesis algorithms - ‘/l by

ILP Constructiv Iterativ

= Synthesis methods can often be W e e

Hierarchisches Clustering
Simulated Annealing

applied independently of@ranularity

CS-ES - 13 -

Synthesis in Temporal Domain

Scheduling and binding can be done in different orders or
together
Schedule:

= Mapping of operations to time slots (cycles)
» A scheduled sequencing graph is a labeled graph

[©Gupta]

CS-ES - 14 -

Schedule in Spatial Domain

= Resource sharing
= More than one operation bound to same resource
= Serialized operations

CS -ES _ |©Gupta]

BASICS

= Source: Teich: Dig. HW/SW Systeme;Thiele ETHZ

CS-ES

- 16 -

Models

» Sequence graph Gg¢ = (Vg, Eg))
where V< denotes the operations of the algorithm and Eg
the depéndence relations.

» Resource graph Gp = (Vg,ER), Vp = Vg U Vp
where V- denote the resource types of the architecture

and G is a bipartite graph. An edge @ vt) € Ep
represents the availability of a resource type v, for an
operation v..

» Cost functlon@ Vp — Z

» Execution timesCw: EFrp— Z=Y
are assigned to each edge (s, ’Ut) € ER
and denote the execution time of operation vs € Vg
on resource type vt € V.

CS-ES

- 17 -

Models

int diffeq(int x, int y, int u, int dx, int a)

{intx1, u1, y1;

while (x<a){
x1 =x + dx;
ul=u-(3*x*u*dx)
yl=y+u*dx
x=x1;u=ul;y=yf1,

}

returny;

Resource graph:]

CS-ES

Sequence graph:

- (37 y " dx);

multiplier

o (r) B

- 18 -

Oy
Allocation and Binding O//g)@ T FS

R/

An allocation is a function « : Vi — Z=9 that
assigns to each resource type vy € Vp the num-

ber(a(v) of available instances. o —
== L) =
o
€

&
A binding is defined by functions 3 : Vg — Vp
and v Vg — 79, Here, B(vs) = vt and v(vs) =
r_denote that operationvs'€ Vg is implemented

on the /fth)instance of resource type v € V.

CS-ES - 19 -

Scheduling

A schedule is a function 7 : Vg — Z>0 that
determines the starting times of operations. A
schedule is feasible if the conditions

2P
—_—] S =

m(v)) = T(v) 2 w(v) ¥(vi,v;) € By o |
are satisfied. w(v;) = w(v;, B(v;)) denotes the

execution time of operation v;,.

The latency L of a schedule is the time differ-
ence between start node vg and end node wvp:

L =1(vn) —1(vg) .

CS-ES - 20 -

I

N

Schedule

CS-ES - 21-

Binding
:B(V1)= r1, Avy) =1

Example (a(ry) =4, a(r,) = 2):

Lv,) =11, Nv,) =2

:B(Vs) =11, Uvz) =2

Bve) =11, Nvs) =3

CS-ES - 22 -

As soon as possible (ASAP) scheduling

sASAP: All tasks are scheduled as early as possible

m——

*|_oop over (integer) time steps:

= Compute the set of unscheduled tasks for which all
predecessors have finished their computation

» Schedule these tasks to start at the current time step.

CS-ES

- 23-

“e ’ZVCt/v] =7
ASAP Schedules

ASAP(Gg(Vg, Eg) éu}) {

T(vo) = 1,
EPEAT { o
Determine v; whose predec. are planed;
7(v;) = max{r(v;) + w(v;) V(vj,v;) € Eg} A— vy b
} UNTIL (vy is planned); Q
RETURN (7);) 3
f O uf
A @
2
3
4

CS-ES - 24 -

As-late-as-possible (ALAP) scheduling
——

"ALAP: All tasks are scheduled as late as possible

Start at last time step™:

Schedule tasks with No successors and tasks for which
@ all successors have already been scheduled.

* Generate a list, starting at its end

CS-ES - 25-

4 <
ALAP Schedules e T “n) 7;/7

ALAP(Gg(Vg, Eg), w, Lmaz) { /
c/’Q’:"(’Un) = Lmaz + 1, 1
REPEAT {—

Determine v; whose succ. are planed;
r(v) = min{r(v)) V(v;,v) € Bg} —w(v) ([, J

} UNTIL (vg is planned); T / .
RETURN (7): 755,(:)(\/(%\3
} Qoh 7)Ty,
& B~ ks
2\ D KO\ I\ 7
3\ @ 8
4 \ Q] O &

CS-ES - 26 -

Scheduling under Detailed Timing Constraints

_——

Motivation
» |nterface design.
= Control over operation start time.

Constraints
/ L] L] L] L]
= Upper/lower bounds on start-time difference of any operation pair.

Minimum timing constraints between two operations
= An operation follows another by at least a number of prescribed time

steps -

Maximum timing constraints between two operations

= An operation follows another by at most a number of prescribed time
steps

CS-ES - 27 -

Scheduling under Detailed Timing Constraints

= Example

= Circuit reads data from a bus, performs computatlon writes result
back on the bus. -

» Bus interface constraint: data written three cycles after read.

* Minimum and maximum constraint of 3 cycles between read and
write operations.

CS-ES - 28 -

Constraint graph model

Start from a sequencing graph
i

Model delays as weights on edges

Add forward edges for minimum constraints ..

Add this edge for
min constraint

Add backward edges for maximum constraint

Add this edge for
max constraint

CS-ES

Weighted Constraint Graph

» In order to represent a feasible schedule, we have one
edge corresponding to each precedence constraint with

d(vs,v5) = w(v;)

where w(v,) denotes the execution time of v;.

» A consistent assignment of starting times t(v;) to a%

operations can be done by solving a single source

—————

longest path problem.

» A possible algorithm (Bellman-Ford) has complexity
O([Vel |Ec)):
——=lteratively set 'r('uj) +— max{T('uj),T(’UZ-)—l-d('Ui,'Uj) :
(vi,vj) € Ecg} for all v; € Vi starting from

7(v;) = —oo for v; € Vo\{vo} and 7(vg) = 1.

Source: Thiele, ETHZ
CS-ES _ 30 -

- O

Weighted Constraint Graph _
—CR
Example: w(v1) = w(v3) = 2 w(v2) =w(v4) = 1
N~ —
‘r(vj) o max{r('vj), T('u,-)+d('v,-,'uj)
NOP g_lza
0 PN \0 A
SN m > & F -
X 4
max. C S > |,
time
3 SRS
I\\ ,//,] — 2
~ Nfdpli &

CS-ES - 31 -

Solution - Constraint Graph Model

CS-ES

Mul delay =2
ADD delay =1

Start time

OO | W R

- 32-

(Resource constrained) Source: Teich: Dig.

List Scheduling

= ist scheduling: extension of ALAP/ASAP method
*Preparation:

= Greedy strategy (does NOT guarantee optimum solution)

» Topological sort of task graph G=(V,E)

= Computation of priority of each task:

Possible priorities u:
* Number of successors
* Longest path

* Mobility =t (ALAP schedule)- t (ASAP schedule)

— Defined for each operation
— Zero mobility implies that an operation can be started only

at one given time-step—
— Mobility greater than 0 measures span eftime-intervan
CS-ES which an operation may start - Slack on the start time,; _

Mobility as a priority function

Mobility is not very precise

CS-ES - 34 -

Algorithm

"List(G(V,E), B, u){

i :=0; <
repeat {
Compute set of candidat -) maybe
Compute set of not terminated tasks G;; repeated
Select S, < A, of maximum priority r such that for
* Lk > different
1S +(G \<B (r_esource constraint®) vy
= foreach (VJ‘- (S Si): T (Vi):=|;4 (*Set start time*) processor
1 :=1+1;) classes
}
until (all nodes are scheduled);
return (t);
) Complexity: O(|V])

CS-ES - 35-

Example

. . . Modified example
sAssuming B =2, unit execution based on J. Teich
time andiu=pa r=@ @

u(a)= u(b)=4_ =
u(c)=u(h)= T=1®

u(d)= u(g)= u(h)= u(j)=2
u(e)= u()= u(k)=L 2@ (o>
Vi:G;=0 ' Q

does NOT guarantee optimum solution e.g.

List Scheduling

QO@
IRRE:
D@+ oD
\/

N
-

CS-ES

- 37-

Integer linear programming models

* |ngredients:
= Costfunction | |nvolving linear expressions of

= Constraints integer variables from a set X
2/,
Costfuncion ~ C=Y axwith a eR,x e AV (1)

Constraints: Vj e J : Zbi,j X = C;withb, ,,c, € & (2)

XiEX

Def.: The problem of minimizing (1) subject to the constraints
(2) is called an integer linear programming (ILP) problem..

/ —_—
If all x; are constrained to be either O or 1, the IP problem said
to be a 0/1 integer linear programming problem.

CS-ES - 38 -

Example

CS-ES

_—> C =5 +6x,+4X,

—= X X, + X, =2

X, Xy, X; €{0,1}

- 39 -

Remarks on integer programming

» |nteger programming is NP-complete

* Running times depend exponentially on problem size,
but problems of i1 000 vars solvable with good solver (depending on
the size and structure of the problem)

ILP/LP models good starting point for modeling, even if heuristics are
used in the end.

. Solvers:ﬁp_solve (public), CPLEX (commercial), ...

CS-ES - 40 -

[Mic94] p.198, Kastner, UC S. Barbara

ILP Formulation of ML-RCS

= Minimize latency given constraints on area or

tne resources (ML-RCS) I
» Use binary decision variables
" 1=0,1,..,n
n |=1,2,.., A+1 A’ given upper-bound on latency

= x; =1 if operation I starts at step |, O otherwise.

» Set of linear inequalities (constraints),
and an objective function (min latency)

CS-ES - 41 -

ILP Formulation of ML-RCS

= Observation

x, =0 for I<t> and I>t"
(t° = ASAP(v,), t; = ALAP(v,))

" L= ZI X t; = start time of op 1.
I .

. Z Xi o =1 = isopy; (still) executing at step I?
—|—d.

m +1

CS-ES - 42 -

Start Time vs. Execution Time
= For each operation v;, only one start time

= If di=1, then the following questions are the

same:
= Does operation v; start at /;tep 1?)
» |s operation v; running at step 1? \

= But if d;>1, then the two questions should be

formulated as:
= Does operation v;start at step 17
* Does x; =1 hold?

» |s operation v; running at step |?

* Does the following hold?

- 43 -

Operation v; Still Running at Step | ?

* |s v, running at step 67
" IS Xgg+ Xgs+ X, =1 7

U1
<
©

= Note:
= Only one (if any) of the above three cases can happen

= To meet resource constraints, we have to ask the
same question for ALL steps, and ALL operations of
that type

CS-ES - 44 -

Operation v; Still Running at Step | ?

= Isv;running at step | ?
"s XXt X i+l T 7

l-d,+1 l-d;+1 l-d,+1
: : : 2
-1 -1 K
VO | Vi |
| \
X =1 Xi 1= Xi 1-gi+1=1

CS-ES .45

. Ty
ILP Formulation of ML-RCS (cont.) [
&

= Constraints: _ y
= Unique start times: ZX” =1, 1=01,...,n
|

—

= Sequencing (dependency) relations must be satisfied

t>t, +d; V(v;,v) e E:>ZI:I.XiI ZZI.xj|+dj
" Resource constraints

y inm k=1..,n., I=1..71+1

1T (vi)=k m=l-d;+1

= Objective: min c't.
= t =start times vector, ¢ =cost weight

CS-ES - 46 -

ILP Example

= Assume A = 4
—
= First, perform ASAP and ALAP

- 47 -

CS-ES

ILP Example: Unique Start Times Constraint

= Without using ASAP = Using ASAP and
and ALAP values: ALAP:

2 7 J @)
Xig T X0+ X3+ X 4= 1

Xog+ Xy X3+ X5 4 = 1

CS-ES - 48 -

. Y(”W)/Tc,/:-7
ILP Example: Dependency Constraints

» Using ASAP and ALAP, the non-trivial inequalities are:
(assuming unit delay for + and *)

_/

< -1 <

- / /
2.X; , +3.X; 3 —Xgq1 —2.Xg,—1=0

CS-ES

ILP Example: Resource Constraints

» Resource constraints (assuming 2 adders and 2 multipliers)
Xi1+Xpq +Xgq +Xgq <2

Xgpo +Xg o+ Xy 5+ Xg, <2

X; 53+ Xg5 <2

e A Xig1 = 2
i 9uOE Om Xo o+ Xipo 4+ Xiqo <2
< I 9,2 10,2 11,2 =

RE Xg3+Xgg+ Xgg+ X5 =2

Xg g+ Xg g+ Xipg <2
= Objective: Min X ; + 2X, 5, +3X,3+4X, 4

CS-ES .50

Result is different from both
ALAP and ASAP schedules

v
wt
\
)
5
Y
.
At o
1y 0
"
.
.
W
.
.
W
W
.

\“‘
\“
.
A
I“
o
K

) &2 10
TIME1 (+) (%) C+)
__/ __/ __/
\ / j _ i
I3 _. 6 1
TIME 2 l *< () ./<>
_/ _/ v\
\ / "-‘ g
>“\4 ‘/\7 8
TIME 3 (=Y () (+)i
_/ __ i
\ _/ [
}f\f’)-\9?
TIME 4 (=) ()i
N N
. . ..n o -
“NOP

CS-ES

- 51 -

(Time constrained) oy
Force-directed scheduling ok HEW? WA
E , [m{?\’)w% o hwwt

Q
h -]

i
-
L]

o
s
2

l-K3 =060 | .

*Goal: balanced utilization of
resources .
*Based on spring model
=Originally proposed for high-level synthesis
"Force- -
» Used as a priority function

* Related to concurrency — sort operations for least
force

» Mechanical analogy: Force = constant x displacement

« Constant = operation-type distribution

» Displacement = change in probability

| = |

* [Pierre G. Paulin; J.P. Knight, Force-directed scheduling in automatic data path
Sis, Design Automation Conference (DAC), 1987, S. 195-202]

CS-ES - 92 -

Force-Directed Scheduling

The Force-Directed Scheduling approach
reduces the amount of:

< Functional Units>

* Reqisters
e |nterconnect

This is achieved by balancing the concurrency of
operations to ensure a high utilization of each unit.

CS-ES . 53.-

Next: computation of “forces”

= Direct forces push each task into the direction of lower
values of D(i).

» |mpact of direct forces on dependent tasks taken into account by
indirect forces

= Balanced resource usage ~ smallest forces

= For our simple example and time constraint=6: 1 2 3 4 5

result = ALAP schedule . \\\:
:%\\ N N |
7 nmwm \:\
2_ \ \ \

3&\\%
N

—
P
<«

CS-ES - 54 -

1.Compute time frames R(j)
2. Compute “probability* P(j,1) of assignment j —> i
i A

112\ 1/3 13

* *

+

F
A

R(j)={ASAP-control step ... ALAP-control step}

1 . . .

P(j,i) = { moy if 0 € RU)
O otherwise Eixed Free

CS-ES - b5 -

3. Compute “distribution” D(I)
(# Operations in control step 1)

type(1)€H

- PG,i) ——>» < D(i) —»

D(i) =

J

4,_,_,1____,-_@__‘@13 1/3\\ 0 1 2 3
| o . | | | | | |

+ <

[
D(1)=2 5/6

M
- —

/

Opefat. | *

D(2)=2 2/6

Operat|{2 =

D(3)=5/6

D(4)=0

pel

CS-ES

- 56 -

Example

qadd(l)__: 0.33 0@ = 1+1+2+(§@
1 1 1 1 1 1
2)=—+—+—=1 g
Qaaa (2) 37373 Qi (2) = 1+2+2+3 2.33
1 1 1 1 1
3)=1l+—+—-+-=2 =—+=
Qoga (3) =1+ +2+2 Qe (3) = S+5=083
.44 (4) =1+%+% —1.66 qmult(4) =0

0.33 1

3 a4
4 /

CS-ES - 57-

Scheduling — An example

Step 3 : Calculate the force (a new metric)

A metric called force is introduced. The force is used to
optimize the utilization of units. A high positive force value
Indicates a poor utilization.

Force(j) = DG(j)- Y (bD_Gt (+i)1)

CS-ES . 58-

Scheduling — An example

Step 3 : Calculate the force (a new metric)
With the operation x' in control-step 1.

0 1 2

6%
=/

|

3

2 DG(i)

1=1

Force(l) = DG(1) -

2.833+2.333 ——
|=2.833- ;

”

DG(1) = 2.833 DG(3) = 0.833 Poor
DG(2) = 2.333 DG(4) =0 utilization

CS-ES

- 59 -

Indirect force (on X’ in control-step 3)
Scheduling — An example

Direct force (calculated as before)

Step 3 : Calculate’ the force (a new metric)
With the operati nﬂnj&ﬁrol-step 2.
(X" must be Iin gontrol-step 3)

Force (2) =06 (2) - 3, 22 UGG (3) - ZDﬁ

2.833+ 2. 333 0. 833+ 2 333
=2.333— +0.833—
2 _ 2 \
DG(1) = 2.833 DG(3) =0.833 Good
DG(2) = 2.333 DG(4) =0 utilization

CS-ES - 60 -

Scheduling — An example

By repeatedly assigning operations to various
control-steps and calculating the force associated
Wi choice several force values will be available.

The Force-directed scheduling algorithm chooses
the assignment with the lowest force value, which
also balances the concurrency of operations most
efficiently.

CS-ES . 61 -

Overall approach

=procedure forceDirectedScheduling; May be
begin repeated
- AsapScheduling; : for
. different
AlapScheduling; task/
while not all tasks scheduled do processor
begin ~ classes

select task T with smallest total force;
schedule task T at time step minimizing forces;
recompute forces;

end,; Not sufficient for today's complex,
end —heferogeneous-hardware platforms

CS-ES - 62-

Force-Directed Scheduling

The Force-Directed Scheduling approach
reduces the amount of:

e Functional Units

__*Regqisters

e Interconnect

By introducing Registers\and Interconnect as storage

operations, the force is calcuted for these as well.
\

CS-ES

- 63 -

O

Force-Directed Scheduling

ASAP schedule
| |

(ky> 2

Min. no. of registers = 7
/

CS-ES

Force-directed schedule

] Min. no. of registers EL

- 64 -

-

= Architecture Synthesis
= HW/SW Codesign

= Power Aware Computing

= 3.2.2011 Lecture by Bernd Finkbeiner, Head
of Reactive Systems Group at Saarland
University(http://react.cs.uni-sb.de/

CS-ES - 65 -

Codesign Definition and Key Concepts

= Codesign

» The meeting of system-level objectives by exploiting the
trade-offs between hardware and software in a system
through their concurrent design

= Key concepts "
= Concurrent: hardware and software developed at the same
time on parallel paths

* |ntegrated: interaction between hardware and software
development to produce design meeting performance
criteria and functional specs

CS-ES - 66 -

Typical

Codesign Process

System
Description Concurrent processes
(Functional) Programming languages
HW/SW Unified representation
sw/ \HW
Another
HW/SW Software Interface Hardware
partition Synthesis Synthesis Synthesis
System Instruction set level
Integration HW/SW evaluation
CS-ES

- 67 -

