
- 1 -CS - ES

Embedded Systems

- 2 -CS - ES

ASAP Schedules

+

NOP



  + <
-

-
NOP

1

2
3

4

REVIEW

- 3 -CS - ES

ALAP Schedules

+

NOP










+ <
-

-
NOP

1

2
3

4

REVIEW

- 4 -CS - ES

(Resource constrained)
List Scheduling

List scheduling: extension of ALAP/ASAP method
Preparation:

 Greedy strategy (does NOT guarantee optimum solution)
 Topological sort of task graph G=(V,E)
 Computation of priority of each task:

Possible priorities u:
• Number of successors
• Longest path
• Mobility =  (ALAP schedule)-  (ASAP schedule)

– Defined for each operation
– Zero mobility implies that an operation can be started only

at one given time step
– Mobility greater than 0 measures span of time interval in

which an operation may start  Slack on the start time.

Source: Teich: Dig.
HW/SW SystemeREVIEW

- 5 -CS - ES

Integer linear programming models

 Ingredients:
 Cost function
 Constraints

Involving linear expressions of
integer variables from a set X

Def.: The problem of minimizing (1) subject to the constraints
(2) is called an integer linear programming (ILP) problem.

If all xi are constrained to be either 0 or 1, the IP problem said
to be a 0/1 integer linear programming problem.

Cost function)1(, NxRaxaC i
Xx

iii
i

 


 with

Constraints:)2(,: ,, RcbcxbJj
Xx

jjijiji
i

 


with

REVIEW

- 6 -CS - ES

(Time constrained)
Force-directed scheduling

Goal: balanced utilization of
resources
Based on spring model
Originally proposed for high-level synthesis
Force
 Used as a priority function
 Related to concurrency – sort operations for least

force
 Mechanical analogy: Force = constant x displacement

• Constant = operation-type distribution
• Displacement = change in probability

* [Pierre G. Paulin, J.P. Knight, Force-directed scheduling in automatic data path
synthesis, Design Automation Conference (DAC), 1987, S. 195-202]

© ACM

REVIEW

- 7 -CS - ES

1.Compute time frames R(j)
2. Compute “probability“ P(j,i) of assignment j  i

R(j)={ASAP-control step … ALAP-control step}

if
0 otherwise Fixed Free

REVIEW

- 8 -CS - ES

 Architecture Synthesis

 HW/SW Codesign

 Power Aware Computing

 3.2.2011 Lecture by Bernd Finkbeiner, Head
of Reactive Systems Group at Saarland
University(http://react.cs.uni-sb.de/

- 9 -CS - ES

Codesign Definition and Key Concepts

 Codesign
 The meeting of system-level objectives by exploiting the

trade-offs between hardware and software in a system
through their concurrent design

 Key concepts
 Concurrent: hardware and software developed at the same

time on parallel paths
 Integrated: interaction between hardware and software

development to produce design meeting performance
criteria and functional specs

- 10 -CS - ES

Low Power HW/SW Co-Design of Smart Cards:
Approach

Software Architecture

SW power management

High performance
optimizations

Software

Software Tools

Power emulation

Optimized compiler

Hardware

Selection of Silicon
Technology

Technology node
(130nm, 90nm, …)

Non-volatile memories
(Flash, EEPROM,…)

Selection of Architecture

CPU architecture
(8/16/32-bit)

Security level

Apply Low Power
Measures and Tools

Low power design
(supply voltage,…)

Automated tools
(clock gating, …)

- 11 -CS - ES

HW/SW Cosimulation

Typical Codesign Process

System
Description
(Functional)

HW/SW
Partitioning

Software
Synthesis

Interface
Synthesis

Hardware
Synthesis

System
Integration

Concurrent processes
Programming languages

Unified representation
(Data/control flow)

Instruction set level
HW/SW evaluation

SW HW

FSM-
directed graphs

Another
HW/SW
partition

- 12 -CS - ES

Co-design Flow in more detail

System
Model System SimulationInformal Specification

Hardware/Software Partitioning

Partitioned
Model

Schedule

Partitioned
Model & Sch.

HW/SW
Co-simulation

Refine

Algorithmic Design

- 13 -CS - ES

Co-design Flow Cont…
Partitioned

Model + Sch.

Communication
Synthesis

Software
Model

Hardware
Model

HW/SW
Co-simulation

Compilation Synthesis

Gate-level
Model

Binary Exec.
Model

Refine

Gate-level
Model

Binary Exec.
Model

Emulate or
Prototype

Refine

Fabrication

- 14 -CS - ES

Categories of Codesign Problems

 Codesign of embedded systems
 Usually consist of sensors, controller, and actuators
 Are reactive systems
 Usually have real-time constraints
 Usually have dependability constraints

 Codesign of ISAs
 Application-specific instruction set processors (ASIPs)
 Compiler and hardware optimization and trade-offs

 Codesign of Reconfigurable Systems
 Systems that can be personalized after manufacture for a

specific application

- 15 -CS - ES

Main Tasks of the Codesign Problem

 Specification of the system
 Hardware/Software Partitioning

 Architectural assumptions - type of processor, interface style
between hardware and software, etc.

 Partitioning objectives - maximize speedup, latency
requirements, minimize size, cost, etc.

 Partitioning strategies - high level partitioning by hand,
automated partitioning using various techniques, etc.

 Scheduling
 Operation scheduling in hardware
 Instruction scheduling in compilers
 Process scheduling in operating systems

 Modeling/Simulation of the hardware/software system
during the design process

- 16 -CS - ES

Issues in Partitioning

 Specification abstraction level
 Granularity
 System-component allocation
 Metrics and estimations
 Partitioning algorithms
 Objective and closeness functions
 Partitioning algorithms
 Flow of control and designer interaction

- 17 -CS - ES

Hardware Software Partitioning
 Decompose (i.e., partition) the

function F of the system into N sub-
functions F1, F2, F3 … FN

 Decompose the constraints and
design objectives of the system into
sub-constraints and design sub-
objectives

• Cluster F1, F2, F3 … FN into M
partitions to run on M processors
elements (mapping)

• Given:

F = { F1, F2, F3 … FN } ;
P = { P1, P2, P3 … PM }

• Find a lowest cost partition (cluster),
as computed by an objective function

• Exhaustive approach O(MN)

F

{F1, F2, F3 … FN}

PE1 PE2 PE3 PEM…

…

communication !!

- 18 -CS - ES

Computation of Metrics
 Two approaches to computing metrics
 Creating a detailed implementation
 Produces accurate metric values
 Impractical as it requires too much time

 Creating a rough implementation
 Includes the major register transfer

components of a design
 Skips details such as precise routing or

optimized logic, which require much design
time
 Determining metric values from a rough

implementation is called estimation

- 19 -CS - ES

Estimation

 Cost depends on components selected to implement the
application!
 Software Processors: PowerPC, ARM, Pentium, …
 Hardware: FPGAs, ASIC blocks, …
 Communication Infrastructure: buses, networks-on-chip, p2p links, …

 Profiling tools are used prior to partitioning to determine cost
and also to determine critical parts of application
 obtain performance (or power, area, …) metrics of the system
 helps the designer optimize the design and decide whether to implement

certain functions in hardware or software

- 20 -CS - ES

 POWERHOUSE vision

power
sensors

real-time power
emulation engine

controller

functional unit
(e.g. memory)

power
sensors

power
sensors

functional unit
(e.g. busses)

functional unit
(e.g. timer, UART)

FPGA-based power emulator

functional unit
(e.g. 16-bit CPU)

debugger interface

Poweremulation

Po
w

er
 [n

or
m

al
iz

ed
]

• Implementation of power model on emulation
platform: Power emulation (PE)

• Generate power estimates as a by-product of
functional emulation during system run-time

• Visualize and evaluate data within a software IDE
• Improve power-awareness based on power

feedback

- 21 -CS - ES

Objective and Closeness Functions

 Multiple metrics, such as cost, power, and
performance are weighed against one another
 An expression combining multiple metric values

into a single value that defines the quality of a
partition is called an Objective Function

 The value returned by such a function is called
cost

 Because many metrics may be of varying
importance, a weighted sum objective function is
used (and constr.)
 e.g Cost = c1 * F(area, area_constr)

+ c2 * F(delay, delay_constr)
+ c3 * F(power, power_constr)

- 22 -CS - ES

Partitioning Algorithm Classes

 Constructive algorithms
 Group objects into a complete partition
 Use closeness metrics to group objects, hoping for a good

partition

 Iterative algorithms
 Modify a complete partition in the hope that such

modifications will improve the partition
 Use an objective function to evaluate each partition
 Yield more accurate evaluations than closeness functions

used by constructive algorithms

 In practice, a combination of constructive and
iterative algorithms is often employed

- 23 -CS - ES

Partitioning Methods

 Exact methods
 Integer Linear Programming (ILP)
 …

 Heuristic methods
 Constructive methods

• Random mapping
• Hierarchical clustering

 Iterative methods
• Kernighan-Lin Algorithm
• Simulated Annealing
• …

- 24 -CS - ES

ILP HW/SW Partitioning
Example from Christian Plessl, Universität Paderborn

- 25 -CS - ES

ILP HW/SW Partitioning

- 26 -CS - ES

ILP HW/SW Partitioning

- 27 -CS - ES

ILP HW/SW Partitioning

- 28 -CS - ES

Partitioning Methods

 Exact methods
 Enumeration
 Integer Linear Programming (ILP)

 Heuristic methods
 Constructive methods

• Random mapping
• Hierarchical clustering

 Iterative methods
• Kernighan-Lin Algorithm
• Simulated Annealing
• …

- 29 -CS - ES

Constructive Methods

 Random mapping
 Each object randomly assigned to some block
 Used to find starting partition for iterative methods

 Hierarchical clustering
 Assumes closeness function: determines how desirable it is to group

two objects
 Start with singleton blocks
 Repeat until termination criterion (e.g., desired number of blocks

reached)
• Compute closeness of blocks (average closeness of object pairs)
• Find pair of closest blocks
• Merge blocks

 Difficulty: find proper closeness function

- 30 -CS - ES

Example: Hierarchical Clustering

- 31 -CS - ES

Case Study: YSC (IBM)

 Yorktown Silicon Compiler:
functional partitioning of hardware

 Input: functional description on the level of arithmetic
and logical expressions

 Target: partitioning to several chips
 Abstraction level: functional units of datapaths (ALUs,

registers)
 Method: hierarchical clustering



































)()()}(),(min{
),(

),(
21

ji

c

ji

c
ji

ji psizepsize
maxsize

psizepsize
maxsize

maxwires
ppssharedwire

ppcloseness

- 32 -CS - ES

Closeness function



































)()()}(),(min{
),(

),(
21

ji

c

ji

c
ji

ji psizepsize
maxsize

psizepsize
maxsize

maxwires
ppssharedwire

ppcloseness

- 33 -CS - ES

Partitioning Methods

 Exact methods
 Enumeration
 Integer Linear Programming (ILP)

 Heuristic methods
 Constructive methods

• Random mapping
• Hierarchical clustering

 Iterative methods
• Greedy
• Kernighan-Lin Algorithm
• Simulated Annealing
• …

- 34 -CS - ES

Iterative Partitioning Algorithms

 Two broad categories:
 Greedy algorithms

• Only accept moves that decrease cost
• Can get trapped in local minima

 Hill-climbing algorithms
• Allow moves in directions increasing cost (retracing)

– Through use of stochastic functions
• Can escape local minima
• E.g., simulated annealing

- 35 -CS - ES

Iterative Partitioning Algorithms

 The computation time in an iterative algorithm is
spent evaluating large numbers of partitions

 Iterative algorithms differ from one another primarily
in the ways in which they modify the partition and in
which they accept or reject bad modifications

 The goal is to find global minimum while performing
as little computation as possible

A
B

C
A, B - Local minima
C - Global minimum

- 36 -CS - ES

HW/SW Partitioning

 Special case: Bi-partitioning P={pSW, pHW}

 Software-oriented approach: P={O,}
 In software, all functions can be realized
 Performance might be too low  migrate objects to HW

 Hardware-oriented approach: P={,O}
 In hardware, performance is OK
 Cost might be too high  migrate objects to SW

- 37 -CS - ES

Greedy Hw/Sw Partitioning

Migration of objects to the other block (HW/SW) until no
more improvement

repeat
begin
P’=P;
for i=1 to n

begin
if (cost(move(P,oi) < cost(P))
then P’:=move(P,oi);

end;
end;

until (P==P‘)

- 38 -CS - ES

Kernighan-Lin (Min-Cut) Algorithm

SW tasks HW tasks

task

task task

tasktask
Execution time

moves

local
optimal

global
optimal

Kernighan/Lin – Fidducia/Mattheyses algorithm
• Start with all task vertices free to swap/move (unlocked)
• Label each possible swap/move with immediate change in execution time that

it causes (gain)
• Iteratively select and execute a swap/move with highest gain (whether

positive or negative); lock the moving vertex (i.e., cannot move again during
the pass),

• Best solution seen during the pass is adopted as starting solution for next
pass

- 39 -CS - ES

Example

a

d

b

c

e

h

f

g

a

g

b

c

e

h

f

d

a

g

b

f

e

h

c

d

Questions: How to compute
cost reduction? What pairs
to be swapped?

Consider the change of
internal & external
connections.

Step # Object
pair

Cost
reduction

Cut
cost

0 5
1 {d,g} 3 2
2 {c,f} 1 1
3 {b,h} -2 3
4 {a,e} -2 5

- 40 -CS - ES

Computing the cost reduction
 External cost of aA: Ea=vB cav

 Internal cost of aA: Ia=vA cav

 Cost reduction for moving a : Da=Ea-Ia
 Cost reduction for swapping a and b: gab=Da+Db-2cab

 Update to D-values when a and b are swapped:
D‘x = Dx + 2cxa – 2cxb for all xA-{a}
D‘y = Dy + 2cyb – 2cya for all yB-{b}

- 41 -CS - ES

Kernighan-Lin

 Repeat
 Compute Dv für all objects
 Mark all vertices as unlocked
 For i=1 to n/2 do

• Compute gab for all pairs a,b
• Pick unlocked ai,bi with largest gab,i
• Mark ai,bi as locked
• Store gain
• Update Dv für all objects

 Find k such that Gk=k
i=1 gab,i is maximal

 If Gk>0, then move a1,…,ak from A to B
and b1,…,bk from B to A.

 Until Gk0

O(n2)

O(n3).

Suppose the repeat loop
terminates after r passes.

The total running time: O(rn3)
Polynomial-time algorithm?

- 42 -CS - ES

Weighted Example
A={a,b,c}

B={d,e,f}

- 43 -CS - ES

g-Value Computation

- 44 -CS - ES

D-Value Computation

- 45 -CS - ES

Swapping Pair Determination

- 46 -CS - ES

Next Iteration

- 47 -CS - ES

Simulated Annealing

 General method for solving combinatorial optimization
problems.

 Based the model of slowly cooling crystal liquids.

 Changes leading to a poorer configuration (with respect
to some cost function) are accepted with a certain
probability.

 This probability is controlled by a temperature parameter:
the probability is smaller for smaller temperatures.

- 48 -CS - ES

Simulated Annealing Algorithm

procedure SimulatedAnnealing;
var i, T: integer;
begin
temp := temp_start;
cost:=c(P);
while (Frozen()==FALSE) do
begin
while (Equilibrium()==FALSE) do
begin P’ := RandomMove(P);
cost’=c(P’)
deltacost := cost’ - cost;
if (Accept(deltacost, temp)>random[0,1))
then P=P’; cost=cost’

end;
temp:= decreaseTemp(temp)

end;
end;

- 49 -CS - ES

Simulated Annealing

 Annealing schedule: DecreaseTemp(), Frozen()
• temp_start=1.0
• temp =   temp (typical: 0.8    0.99)
• stop at temp < temp_min or if no more improvement

 Equilibrium:
• After certain number of iterations or when no more improvement

 Complexity:
• From exponential to constant, depending on choice of Equilibrium(),

DecreaseTemp(), Frozen()
• The longer the runtime, the better the results
• Usually functions constructed to obtain polynomial runtime

- 50 -CS - ES

And
more …

MSc THESIS, Roel Meeuws, 2007, Delft

- 51 -CS - ES

HW/SW Co-Simulation

System Architect Designer

- 52 -CS - ES

Co-Simulation:
 Simulation methodology
 Individual components simulated

by different simulation tools
 Different modeling languages
 Different abstraction levels
 But: common co-simulation

Why use co-simulation?
 Handling increased complexity
 Flexibility
 Verification already in early design phases
 Simulation performance improvements
 Short development cycles

Introduction: Co-Simulation

- 53 -CS - ES

System Architect Designer SyAD

Multi-HDL design

 SystemC [SystemC]
 ModelSim [VHDL]
 ADVanceMS [VHDL/AMS]
 NCSIM-SimVision (AMS Designer) [VHDL/AMS]
 Saber [SaberMAST]
 Simulink [Matlab/Simulink]

- 54 -CS - ES

Design Methodology

- 55 -CS - ES

SyAD: Co-Simulation

Top-Level Model
Description,

Simulation Parameter
XML - Project File

Model Set n

Language nModel Set n

Language n
Model Set 1

Language 1

Simulation
Envronment
Information

Simulator
- Type
- Availability
- Location
- Access Rules
- Connection Type

 . . .

Simulator
Control
Scripts

SIM
CTRL

Modelling,
Partitioning

IP
Library

Cosimulation
Interface

Framework

Simulation
Framework
Generation

Cosimulation
Interface Generation

C++

Cosimulation
Interface

Configuration

CFG

Interface
Modules for

Cosimulation

CODE

Build
Scripts

Make
file

Simulation
Model

CODE

Distributing of generated
Code & Scripts

Synchronisation method is
implemented as decentralized,
“synchronous”, conservative
protocol

- 56 -CS - ES

Motivation for Run-Time
Co-Simulation Model Switching

System level:
 Validation and analysis of entire embedded systems
 Focus: short simulation time for longer simulated time (>> 1s)
 Abstracted behavior: hides low-level effects that might propagate

Physical level:
 High simulation time: simulation of complex analog components
 Relatively short simulated times (µs, ms)
 Detailed behavior

Co-simulation problems:
 Simulated times: physical level vs. system level
 Co-simulation performance: determined by slowest simulator

 critical in physical level/system level co-simulation

Idea: Run-time switching of co-simulation models

- 57 -CS - ES

Run-Time Co-Simulation Model Switching
Run-time co-simulation

model switching:
 Modeling of a single component by

using multiple HDL (discrete &
continuous) and abstraction levels

 Synchronized run-time switching
between the abstraction level models

Features:
 Long simulated time / high simulation

speed (system level models) plus high
accuracy (low physical level models)
 Using fast high level models during

normal circumstances
 Switch to high-detailed models during

time intervals of particular interest

 Enhances co-simulation speed
 Using computational expensive

simulation models only in a clearly
defined area

- 58 -CS - ES

TEODACS: Overview
TEODACS: Test, Evaluation and Optimization of Dependable

Automotive Communication Systems

- 59 -CS - ES

FlexRayXpert.Sim: Experimental Setup

SWITCH 0

Communication
Controller 2
(SystemC)

Application

Communication
Controller 1
(SystemC)

Application

Transceiver
(VHDL-AMS)

Transceiver
(VHDL-AMS)

Transceiver
(VHDL-AMS)

1: VHDL-AMS
Topology Model

2.0m
0.4m

1.0m2.0m

Communication
Controller 0
(SystemC)

Application

Communication
Controller 4
(SystemC)

Application

Communication
Controller 3
(SystemC)

Application

Transceiver
(VHDL-AMS)

0.5m 0.8m (7.0m)

T

T … FlexRay Termination

Transceiver
(SystemC)

Transceiver
(SystemC)

Transceiver
(SystemC)

2.0m 1.0m2.0m

Transceiver
(SystemC)

0.5m
2.0m

Transceiver
(SystemC)

2.0m
T

Transceiver
(VHDL-AMS)

1.0m … Cable Segment Length

2: SystemC
Topology Model

T

FlexRay
Node 0

FlexRay
Node 2

FlexRay
Node 4

FlexRay
Node 1

FlexRay
Node 3

SWITCH 1

SWITCH 2

SWITCH 3

SWITCH 4

2.0m
0.4m

1.0m2.0m

0.5m 0.8m (7.0m)
2.0m

T

- 60 -CS - ES

PowerCard - Methodologies for Designing
Power-Aware Smart Card Systems

- 61 -CS - ES

Contactless Smart Cards as Future Mobile
Devices
 Contactless smart card controllers are currently used in various

demanding applications
 payment, e.g. debit/credit cards
 identification, e.g. electronic passport
 pay TV

 …and there exist ideas for much more complex use cases by
connecting displays, buttons, and finger print sensors to the
controller

smart card with
OLED display

(Samsung, 2010)

smart card with
numeric key pad and

display (NagraID,
2010)

- 62 -CS - ES

System Abstraction

 Requirements
 In general independent of hardware and software
 Basic smart card OS functionality should be provided
 Focus on algorithm design and memory system (limited resource)

 Levels of Abstraction

Model representation Model of computation
Functional
Level

Object oriented
Interface-based commun.

Sequential execution
Untimed/timed

Transaction
Level

TL1 SoC Model
Abstract processing units

SoC: Parallel tasks, timed
SW: untimed, delays

Prototype
Level

Cycle accurate HW
Cross-compiled software

Parallel hw models, FSMs
Sequential software

- 63 -CS - ES

Platform Lifetime

FP

Time

Le
ve

l o
f A

bs
tra

ct
io

n

FP

TLP TLP TLP

PP PP PP PP PP

Change of
functional

specification

Change of architecture

Derivate
development

 Abstract platforms are more stable
 Different solutions can be derived from an abstract model
 This results in more stable systems than old system redesign

- 64 -CS - ES

Design space Exploration based on
hierarchical platforms

Functional Platform

TL Platform

Specification

Virtual
Prototype

Architecture 2

Architecture 1

Application

32-bit 8-bit ASIP 32-bit 8-bit ASIP

Design Space

- 65 -CS - ES

Design Space Examination

Performance Power Chip size Security
User-defined delays
Memory delays
Communication delay

Memory
Programming
API objects

Memory
utilization
API usage

FP fault model
Fault injection

System busses
HW/SW interfaces
Task parallelism

Bus SA
Memory blocks
API energy

Processors
Coprocessors
Memory size

Architecture
fault model

SW: IS simulator
HW: Estimation tools

SW: simulator
HW: energy
estimation tools

High-level
synthesis
Code-size

Final
evaluation

FP

TLP

PP

Level of
Abstraction

- 66 -CS - ES

Vertical Codesign

 Target Architecture
 Existing processor platform
 HW acceleration based on instruction-set extension and

coprocessor
 Codesign Approach

 Evaluation of different configurations
 Optimization of the HW/SW interface
 Cosimulation comprising hardware, all software layers and

application

Processor Co-
processor

Vertical Boundary

- 67 -CS - ES

Vertical Codesign

Architecture Model

Processor Coprocessor

System Synthesis

Software Generator

IS
Simulator Coprocessor

Transaction-level Model:
-HW/SW Mapping
-HW/SW Interface Optimization
-Memory access optimization
-Memory system design

Prototype Platform:
-Software design
-Software power estimation
-Software power optimization
-Memory access optimization

Functional Platform Model:
-Interacting C++ objects
-SystemC simulation kernel
-Includes: Application, OS, HW

Functional Model

- 68 -CS - ES

Horizontal Codesign
 Target Architecture

 New hardware components, application specific instruction-
set processors

 Optimized hardware for a dedicated application

 Codesign Approach
 Design of hardware and software layers with regard to the

target application
 Stepwise refinement and cosimulation

HW

SW1Horizontal
Boundary

- 69 -CS - ES

Horizontal Codesign

Functional Model

Basic HW Architecture Instruction-Set
Definition

OS support OS Interface
Optimization

Application support Application Interface
Optimization

Refined Model
HW&ISA fixed

HW Design Flow SW Design Flow

Final System

- 70 -CS - ES

Design Flow with Security Extension based on
Power Profile

 Smart cards store and deal with sensitive data
 SIM cards in mobile phones
 e-purse
 contact-less ID systems

 Security attacks on smart cards
 invasive or semi-invasive attacks

 Test robustness against attacks
 Attack simulation early in the design process using fault

injection
 ease design changes and
 insertion of protection mechanisms

 SystemC for high simulation performance
 can be applied on all SystemC designs

- 71 -CS - ES

Attack Simulation Flow

Fault
Injection

Unit

Smart Card
Design

(SystemC)

Faulty Smart
Card Design
(SystemC)

Simulation
&

Analysis

Faulty System
Behavior

Regular System
Behavior

Fault
Information

Fault

Possible Attack

Analysis Report

presented at ATS’04

- 72 -CS - ES

Fault Injection in Functional Design
Functional

Block
Functional

Block Memory 1

Functional
Block

Functional
Block Memory 2

Fault Injection
Control UnitFIM

F
I
M

F
I
M

F
I
M

F
I
M

FIM … Fault Injection Module

FIP

FIP

FIP … Fault Injection Port

- 73 -CS - ES

Methodology Evaluation

 Evaluation with a Java Card™ Virtual Machine
Implementation

 Evaluation Steps:
 Implementation JCVM functional platform model
 Vertical Codesign

• 32-bit Solution based on MIPS Architecture
• 8-bit Solution based on 8051 Architecture

 Horizontal Codesign
• Application Specific Instruction-set Processor

- 74 -CS - ES

System architecture

Horizontal Codesign Solutions

 Vertical integration of functional units
 Model comprises virtual machine as well as JC runtime

Hardware

Assembly Code

JCRE - Java

Java Card Applets

Command
Dispatcher

 EEPROM
persistent
Objects

RAM
transient
Objects

Dynamic Memory Manager

RAM
Operand
Stack

Applet &
System
Manager

Receiver
Transmitter

Linker/
Loader

Bytecode
Interpreter

 EEPROM
system control data

 ROM/FLASH/
EEPROM
Applets

Firew all

 EEPROM
temporary
Memory

User-defined object
API object
Active object w ith
ow n thread

- 75 -CS - ES

JAVA Card ASIP Concept

Simple
Instructions

Additional
Instructions

Complex InstructionsJCVM

Java Card System Classes

Java Card Applets
JC API

Security concept:
• User and kernel mode
• different instructions for

different memory areas
• large MMU

3 Classes of instructions:
• simple byte codes
• instruction set extension
• complex instructions

- 76 -CS - ES

JAVA Card ASIP Architecture

NOP SALOAD SDIV IF_SCMPLT PUTFIELD_S IF_SCMPEQ_W
ACONST_NULL ASTORE SREM IF_SCMPGE INVOKEVIRTUAL IF_SCMPNE_W
SCONST_M1 SATORE SNEG IF_SCMPGT INVOKESPECIAL IF_SCMPLT_W
SCONST_0 ASTORE_0 SSHL IF_SCMPLE INVOKESTATIC IF_SCMPGE_W
SCONST_1 ASTORE_1 SSHR GOTO INVOKEINTERFACE IF_SCMPGT_W
SCONST_2 ASTORE_2 SUSHR JSR NEW IF_SCMPLE_W
SCONST_3 ASTORE_3 SAND RET NEWARRAY GOTO_W
SCONST_4 SSTORE_0 SOR STABLESWITCH ANEWARRAY GETFIELD_A_W
SCONST_5 SSTORE_1 SXOR SLOOKUPSWITCH ARRAYLENGTH GETFIELD_B_W
BSPUSH SSTORE_2 SINC ARETURN ATHROW GETFIELD_S_W
SSPUSH SSTORE_3 S2B SRETURN CHECKCAST GETFIELD_A_THIS
ALOAD AASTORE IFEQ RETURN INSTANCEOF GETFIELD_B_THIS
SLOAD BASTORE IFNE GETSTATIC_A SINC_W GETFIELD_S_THIS
ALOAD_0 SASTORE IFLT GETSTATIC_B IFEQ_W PUTFIELD_A_W
ALOAD_1 POP IFGE GETSTATIC_S IFNE_W PUTFIELD_B_W
ALOAD_2 POP2 IFGT PUTSTATIC_A IFLT_W PUTFIELD_S_W
ALOAD_3 DUP IFLE PUTSTATIC_B IFGE_W PUTFIELD_A_THIS
SLOAD_0 DUP2 IFNULL PUTSTATIC_S IFGT_W PUTFIELD_B_THIS
SLOAD_1 DUP_X IFNONNULL GETFIELD_A IFLE_W PUTFIELD_S_THIS
SLOAD_2 SWAP_X IF_ACMPEQ GETFIELD_B IFNULL_W
SLOAD_3 SADD IF_ACMPNE GETFIELD_S IFNONNULL_W
AALOAD SSUB IF_SCMPEQ PUTFIELD_A IF_ACMPEQ_W
BALOAD SMUL IF_SCMPNE PUTFIELD_B IF_ACMPNE_W

