Embedded Systems

O’H‘l’

...........

CS-ES

é'l f)
:

1¢ ﬁ




REVIEW
ASAP Schedules

ASAP(Gg(Vs, Eg),w) {
7(vg) = 1;
REPEAT {
Determine v; whose predec. are planed;
7(v;) = max{r(v;) + w(v;) V(vj,v;) € Es}
} UNTIL (vp is planned);
RETURN (7);

E
9

CS-ES 0.



REVIEW
ALAP Schedules

ALAP(Gg(Vg, Eg), w, Lmaz) {
7(vn) = Lmaz + 1;
REPEAT {
Determine v; whose succ. are planed,
7(v;) = min{r(v;) ¥(v;,v;) € Eg} — w(v;)
} UNTIL (vg is planned);
RETURN (7);

CS-ES . 3.



(Resource constrained) REVIEW  Souce Teich: Dig
List Scheduling

»List scheduling: extension of ALAP/ASAP method

*Preparation:
» Greedy strategy (does NOT guarantee optimum solution)
= Topological sort of task graph G=(V,E)
= Computation of priority of each task:
Possible priorities u:
* Number of successors
» Longest path

* Mobility =t (ALAP schedule)- T (ASAP schedule)
— Defined for each operation

— Zero mobility implies that an operation can be started only
at one given time step

— Mobility greater than 0 measures span of time interval in
CS - ES which an operation may start - Slack on the start time,



. . REVIEW
Integer linear programming models

= Ingredients:

= Cost function Involving linear expressions of
= Constraints Integer variables from a set X
Cost function C= ) axwith a eR,x € &y (1)
X; € X

Constraints: Vje J: Y b . x; > ¢, withb, ;,c; € R (2)

XiEX

Def.: The problem of minimizing (1) subject to the constraints
(2) is called an integer linear programming (ILP) problem.

If all x; are constrained to be either O or 1, the IP problem said
to be a 0/1 integer linear programming problem.

CS-ES . 5.



(Time constrained) 2 ” "

§%1=00()
Force-directed scheduling oo | ° e |
| [vwww% o Mg

Q
h -]

i
-
L ]

o
s
2

{K: - DG(’3)

=Goal: balanced utilization of '
resources o ACH

*Based on spring model

=Originally proposed for high-level synthesis

"Force
» Used as a priority function

* Related to concurrency — sort operations for least
force

= Mechanical analogy: Force = constant x displacement
o Constant = operation-type distribution
* Displacement = change in probability

>
| =¢ |
3

REVIEW

* [Pierre G. Paulin, J.P. Knight, Force-directed scheduling in automatic data path
synthesis, Design Automation Conference (DAC), 1987, S. 195-202]

CS-ES . 6-



1.Compute time frames R(j) REVIEW

2. Compute “probability* P(j,1) of assignment j —> i

13 1/3

*

+

- =
A

ctr

R(j)={ASAP-control step ... ALAP-control step}

1 . . .
P(j,i) = { roy if 1€ R()
O otherwise Eixed Free

CS-ES S 7.




= Architecture Synthesis
= = HW/SW Codesign

= Power Aware Computing

= 3.2.2011 Lecture by Bernd Finkbeiner, Head
of Reactive Systems Group at Saarland
University(http://react.cs.uni-sb.de/

CS-ES 8-



Codesign Definition and Key Concepts

= Codesign

» The meeting of system-level objectives by exploiting the
trade-offs between hardware and software in a system
through their concurrent design

= Key concepts

= Concurrent: hardware and software developed at the same
time on parallel paths

* |ntegrated: interaction between hardware and software
development to produce design meeting performance
criteria and functional specs

CS-ES 9.



Low Power HW/SW Co-Design of Smart Cards:
Approach (infineon

seleeio e Sl Selection of Architecture Apply Low Power
Technology
Measures and Tools
Technology node CPU architecture Low power design )
(130nm, 90nm, ...) (8/16/32-bit) (supply voltage,...)
Non-volatile memories Security level Automated tools
(Flash, EEPROM,...) 4 (clock gating, ...)

Software Architecture

\ 1 / SW power management
=

High performance
optimizations

\ _
Hardware
Software Tools
e Power emulation
888888 E"\‘;r.".ﬁ':‘.';‘.i‘_‘i" e e VI
C é B DOO® . |
OGO Software Optimized compiler
OOO®O

CS-ES - 10 -



Typical Codesign Process

System
| FSM- Description Concurrent processes
directed graphs (FunCtlonal) Programming |anguages
HW/SW Unified representation
SW/ \HW

Another

HW/SW Software Interface Hardware

partition Synthesis Synthesis Synthesis

\ / HW/SW Cosimulation
System
Integration

CS-ES

Instruction set level

HW/SW evaluation 11



Co-design Flow in more detail

System
Model

Partitioned
Model
Partitioned
Model & Sch.

CS-ES

Refine

- 12-



Co-design Flow Cont...

Partitioned
Model + Sch.

> Refine
A

Hardware
Model

Software
Model

Refine
A

Gate-level
Model

Binary Exec.
Model

CS-ES - 13-



Categories of Codesign Problems

» Codesign of embedded systems
= Usually consist of sensors, controller, and actuators
= Are reactive systems
= Usually have real-time constraints
= Usually have dependability constraints

= Codesign of ISAs
= Application-specific instruction set processors (ASIPS)
= Compiler and hardware optimization and trade-offs

= Codesign of Reconfigurable Systems

= Systems that can be personalized after manufacture for a
specific application

CS-ES

- 14 -



Main Tasks of the Codesign Problem

= Specification of the system

= Hardware/Software Partitioning

» Architectural assumptions - type of processor, interface style
between hardware and software, etc.

= Partitioning objectives - maximize speedup, latency
requirements, minimize size, cost, etc.

= Partitioning strategies - high level partitioning by hand,
automated partitioning using various techniques, etc.
= Scheduling
» QOperation scheduling in hardware
» |nstruction scheduling in compilers
» Process scheduling in operating systems

= Modeling/Simulation of the hardware/software system
during the design process

CS-ES

- 15 -



Issues Iin Partitioning

= Specification abstraction level

= Granularity

= System-component allocation

= Metrics and estimations

= Partitioning algorithms

» Objective and closeness functions

= Partitioning algorithms

* Flow of control and designer interaction

CS-ES

- 16 -



Hardware Software Partitioning

= Decompose (i.e., partition) the
function F of the system into N sub-
functions F, F,, F5 ... Fy

= Decompose the constraints and
design objectives of the system into
sub-constraints and design sub-

objectives l
F

» ClusterF, F,, F; ... Fyinto M

partitions to run on M processors F F
{F1. Fa,

elements (mapping)
« Given:

=Y

F={F.LFyF...Fy}i
P={P,P,,P;... Py}

 Find a lowest cost partition (cluster),

as computed by an objective function PE1 I PEZ | PE3 I PEM

e Exhaustive approach O(MN)

CS-ES I communication !l .



Computation of Metrics

= Two approaches to computing metrics
» Creating a detailed implementation
* Produces accurate metric values

* Impractical as it requires too much time

= Creating a rough implementation

* Includes the major register transfer
components of a design

= Skips details such as precise routing or
optimized logic, which require much design
time

» Determining metric values from a rough
Implementation is called estimation

CS-ES

- 18-



Estimation

= Cost depends on components selected to implement the
application!
= Software Processors: PowerPC, ARM, Pentium, ...
» Hardware: FPGAs, ASIC blocks, ...
= Communication Infrastructure: buses, networks-on-chip, p2p links, ...

= Profiling tools are used prior to partitioning to determine cost
and also to determine critical parts of application
= obtain performance (or power, area, ...) metrics of the system

» helps the designer optimize the design and decide whether to implement
certain functions in hardware or software

CS-ES - 19-



Poweremulation
= POWERHOUSE vision

= * Implementation of power model on emulation
platform: Power emulation (PE)

 Generate power estimates as a by-product of
functional emulation during system run-time

P — « Visualize and evaluate data within a software IDE

 Improve power-awareness based on power
= feedback

FPGA-based power emulator

. U
------------------ C '

functional unit |

(e'g' memory) Power Profile Emulation Comparison for a Payment Application

; ;ﬂ | =
: | [
! L]
functional unit .| functional unit g YL T f T
(e.g.busses) [T | (e.g.16-bit CPU) R T \v ‘M.J\ Lo T '\" A \"H
Jud InE ! *HW‘ Tt
i ‘ I ‘ |
functional unit o v V u # h
(e.g. timer, UART) [
Time [normal lized]

CS-ES - 20 -



Objective and Closeness Functions

= Multiple metrics, such as cost, power, and
performance are weighed against one another

= An expression combining multiple metric values
Into a single value that defines the guality of a
partition is called an Objective Function

= The value returned by such a function is called
cost

= Because many metrics may be of varying
Importance, a weighted sum objective function is
used (and constr.)

»e.gCost= cl*F(area, area_constr)
+ c2 * F(delay, delay constr)
+ c3 * F(power, power_constr)

CS-ES 01



Partitioning Algorithm Classes

» Constructive algorithms
= Group objects into a complete partition

» Use closeness metrics to group objects, hoping for a good
partition

» |terative algorithms

» Modify a complete partition in the hope that such
modifications will improve the partition

= Use an objective function to evaluate each partition

= Yield more accurate evaluations than closeness functions
used by constructive algorithms

* |n practice, a combination of constructive and
iterative algorithms is often employed

CS-ES - 22.



Partitioning Methods

= Exact methods
» |nteger Linear Programming (ILP)
» Heuristic methods
= Constructive methods
« Random mapping
» Hierarchical clustering
» [terative methods
« Kernighan-Lin Algorithm
o Simulated Annealing

CS-ES

- 23 -



ILP HW/SW Partitioning

Example from Christian Plessl, Universitat Paderborn

CS-ES

binary variables

Vasic

m=2

task | SW cost | HW cost
1 80 320
2 240 170
3 710 120
. 130 20
5 100 400
6 80 260

- 24 -



ILP HW/SW Partitioning

/t*id‘i*i***it**i*iiii*i*t/

/* objective function */
Jrukhkkhhkhhkhhkhhkrhhkhhkhhkhk [

/*ii**’t*i***iiiti*&ifi/
/* variables in {0,1} */
/iiit****iiiiﬁiiii*t**i,
x11l <= 1;

x12 <=
x21 <=
x22 <=
x31 <=

’
’
;

;

cost table

(all bindings possible)

task | SW cost

HW cost

1 80

320

2 240

170

3 710

120

4 130

20

5 100

400

x32
x41
x42
x51
x52
x61
x62

i 1
1
1
1
1;
<= 1;
1;
L
X;
1;
1

;

260

/* cls = 80 clh = 320 */
/* c2s = 240 c2h 170 */
/* e3s = 710 e3h 120 */
/* cds = 130 cdh 20 */
/* c5s = 100 c5h 400 */
/* cbs = 80 c6h = 260 */
min: 80 x11 + 320 x12 + 240 x21 + 170 x22 + 710 x31 +

+ 260 x62;

/**'**ﬁ**ﬁ*ﬁ***'**i**ﬁ********i/

/* unique mapping constraints */
/i’i'i‘l’iiiittitt*it*i*iti*ttiitti/

120 x32 + 130 x41 + 20 x42 + 100 x51 + 400 x52

x11 + x12 = 1;
x21 + x22 = 1;
x31 + x32 = 1;
x41 + x42 = 1;
x51 + x52 = 1;
x61 + x62 = 1;

+ 80 x61

/*t***********t**i****/

/* integer variables */
/*i*****t*****'**i****/

int
int
int
int
int
int
int
int
int
int
int
int

x11;
x12;
x21;
x22;
x31;
x32;
x41;
x42;
x51;
x52;
x61;
x62;

CS-ES

- 25 -



ILP HW/SW Partitioning

allocation & binding cost table

task | SW cost | HW cost

........................... 1 80 320

2 240 170

3 710 120

.
-
"
oo**
----
...
a®
.
'S
B
.
.t

-+ 130 20

.
oooo
. v, .
.....
.
.
e
-
)

.
LT o
-
"tanngy et

B s i 5 100 400

.
-
-
.
.
-
.‘
.

n*m=12 6 80 260

total cost =570

m=

CS-ES - 26 -



ILP HW/SW Partitioning

* Constraint on the hardware cost

— cost of all tasks mapped to hardware must not exceed 300

allocation & binding

binary variables

/ititi*ittitt*‘l*i*ltiti*it*i*/

/* hardware cost constraint */
/I*l*.*'l"lﬁ**Ilil*ﬂ***l’ﬂ!ﬁl/

320 x12 + 170 x22 + 120 x32 + 20 x42 + 400 x52 + 260 x62 <= 300;

CS-ES

binary variables

cost table
task | SW cost | HW cost
1 80 320
Vprocessor
2 240 170
3| 710 | 120
- 130 20
5 100 400
6 80 260
Vasic
total cost = 570
m=2
task | SW cost | HW cost
1 80 320
processor
2 240 170
3 710 120
4 130 20
5 100 400
6 80 260
Vasic
constraint: HW cost <= 300
m=2

total cost

- 27 -

=640



Partitioning Methods

= Exact methods
= Enumeration
» |nteger Linear Programming (ILP)
= Heuristic methods
= Constructive methods
« Random mapping
» Hierarchical clustering
» [terative methods
« Kernighan-Lin Algorithm
o Simulated Annealing

CS-ES

- 28 -



Constructive Methods

= Random mapping

Each object randomly assigned to some block
Used to find starting partition for iterative methods

= Hierarchical clustering

CS-ES

Assumes closeness function: determines how desirable it is to group
two objects

Start with singleton blocks

Repeat until termination criterion (e.g., desired number of blocks
reached)

 Compute closeness of blocks (average closeness of object pairs)
» Find pair of closest blocks
* Merge blocks

Difficulty: find proper closeness function

- 29 -



Example: Hierarchical Clustering

Max255) 25

Max(105) =
coee h o m .
04 Og 03 04 04 Og O3 04 01 Og 03 04

-—
-- -

- - .
- » - » " ~
. .
” ' ”~ N - -
e s ’
, l ,, r - ‘
I

\ \
: c
* -
g r -
. -

Min(255) = 5
Min(10.5) = 5

toe s &ilH ﬁh Iih

04 O3 053 04 04 02 03 04 04 02 D3 04 04 02 O3 04

CS-ES

- 30 -



Case Study: YSC (IBM)

= Yorktown Silicon Compiler:
functional partitioning of hardware

* |nput: functional description on the level of arithmetic
and logical expressions

= Target: partitioning to several chips

= Abstraction level: functional units of datapaths (ALUs,
registers)

» Method: hierarchical clustering

haredwires(p.. p.) )" - c |
Closeness(pi,pj):(s aredwires(p, p,)j [ maxsize j [ maxsize J

maxwires min{size(p;), size(p;)} size(p;) + size(p;)

CS-ES . 31-



Closeness function
bit-wigth = 4
XV Z

# Transistors
+ | 120 Closeness (+,=) =
= | 140
- | 160 Closeness(—,<) =
< 180

8+0X300>< 300 _ 59
8 1207 120+ 140 7
0+4 300 300 B

g 160 " 160 + 120

maxsize

sharedwires(p;, p j)jCl (

closeness(p;, p;) = .
maxwires

CS-ES

maxsize J

min{size(p,), size( pj)}j . (size( p;) +size(p;)

- 32-



Partitioning Methods

= Exact methods
= Enumeration
» |nteger Linear Programming (ILP)
» Heuristic methods
= Constructive methods
« Random mapping
» Hierarchical clustering
= [terative methods
* Greedy
« Kernighan-Lin Algorithm
o Simulated Annealing

CS-ES

- 33-



lterative Partitioning Algorithms

= Two broad categories:
» Greedy algorithms
* Only accept moves that decrease cost
« Can get trapped in local minima

= Hill-climbing algorithms
« Allow moves in directions increasing cost (retracing)
— Through use of stochastic functions
e Can escape local minima
* E.g., simulated annealing

CS-ES

- 34 -



lterative Partitioning Algorithms

CS -

ES

The computation time in an iterative algorithm is
spent evaluating large numbers of partitions

Iterative algorithms differ from one another primarily
In the ways in which they modify the partition and in
which they accept or reject bad modifications

The goal is to find global minimum while performing
as little computation as possible

A, B - Local minima
C - Global minimum

- 35-




HW/SW Partitioning

= Special case: Bi-partitioning P={psw, Puw}

= Software-oriented approach: P={O,}
» |n software, all functions can be realized
» Performance might be too low = migrate objects to HW

= Hardware-oriented approach: P={,0}
* |n hardware, performance is OK
= Cost might be too high = migrate objects to SW

CS-ES

- 36 -



Greedy Hw/Sw Partitioning

Migration of objects to the other block (HW/SW) until no
more improvement

repeat
begin
P'=P;
fori=1ton
begin
If (cost(move(P,0;) < cost(P))
then P’:=zmove(P,0));

end;

end;
until (P==P’)

CS-ES . 37.-



Kernighan-Lin (Min-Cut)

task
Execution time
task )\ o N
task \_ /
task task /

local global

E optimal gptimal

SW tasks HW tasks moves

Kernighan/Lin — Fidducia/Mattheyses algorithm

 Start with all task vertices free to swap/move (unlocked)

* Label each possible swap/move with immediate change in execution time that
it causes (gain)

* |teratively select and execute a swap/move with highest gain (whether
positive or negative); lock the moving vertex (i.e., cannot move again during
the pass),

» Best solution seen during the pass is adopted as starting solution for next
pass

CS-ES - 38-




5 G
_

Step # Object Cost Cut
pair reduction cost Questions: How to compute
5

cost reduction? What pairs

@ 0) (&)
e @

B0
Sioolo

@Q

0
2
1 ol 5 to be swapped-
2 {c.f} 1 1 Consider the change of
3 {b,h} -2 3 internal & external
4 {a,e} -2 5 connections.

CS-ES - 39 -



Computing the cost reduction

Q900

External cost of acA: E,;=>, g C, ®
Internal cost of acA: I,=),,_, C,
Cost reduction for moving a : Da—Ea-Ia

Cost reduction for swapping a and b: g_,=D_+D,-2c_,

Update to D-values when a and b are swapped:
DY, =D, + 2c,, — 2c,,, for all xe A-{a}
D, =D, + 2c,, — 2c,, for all ye B-{b}

A B
before after
=/ f_\. C
6"—- swap
-+ C.\'H +2Cxa
Gain il - Dd_ Cab i
Gatngmy: Dp—cop +Ceb —Cb _2‘:.'(!7

Internal cost vs. Externaf cost updating D—values

CS-ES

- 40 -



Kernighan-Lin

= Repeat / O(n2)
= Compute D, fur all objects
Mark all vertices as unlocked O(n3).
For i=1ton/2 do /
« Compute g, for all pairs a,b
* Pick unlocked a;,b; with largest g,
» Mark a;,b, as locked
« Store gain
« Update D, fiir all objects Suppose the repeat loop

Find k such that G,=Y_; g,,;is maximal terminates after r passes.

If G,>0, then move a,,...,a, from Ato B
and b,,...,b, from B to A.

= Until G,<0

The total running time: O(rn3)
Polynomial-time algorithm?

CS-ES - 4] -



For /=1 to n/2 do

We i g h ted Exa m p I e + Compute g, for all pairs a,b

+ Pick unlocked a,b; with largest g, ;

A=fab.c}
i Update D, fur aﬁo}i{:jects ' .
B={d,e,f} . :ié’:()h::@”gfm :
* Until G0
a b cdef
b €

alfl 1 2 3 2 4
g bl 01 4 2 1
a cl2 1 0 3 21
gl 3 4 3 0 4 3
el2 2 2 4 0 2
f e fl4 11 3240

costs associcated with a

Initicd cut cost = (3+2+44)+(44+2+1 )+(3+2+1) = 22

e |teration 1:
Io=142=3;, E,=34+24+4=09; Dao=E;,—1,=9-3
Ipy=141=2;, Ey=44241=7, Dy=Ey— I=7-2

lg=4+4+3=7, E;4=34+443=10, Dy=E;—{34=10—-7=3
le=442=6, BE=24242=6; Deo=FEe—Io=6—-6=0
I1=342=5 Ef=44141=6; Diy=E;—I;=6-5=1

CS-ES 42



g-Value Computation

e |teration 1:
Ip=142=3, Eq=342+
Ih=14+1=2;, E,=4+42+4+
le=2+1=3 E —3424
[;=44+3=7, By=3+4+
Ip =44 2=06; =2+2+
If=3+2=5: f=4+1+
® = 4 _
g, =D, +D,-2c,,
Sad —
gae = 64+0-2x2=2
Saf = b+1-2%x4=-1
gy = 5+3-2x4=0
pe = 5+0-2x2=1
9%f = 5+1-2x1=4 (mazimum)
9oy = 3+3-2%x3=0
gee = 3+0-2x2=-1
9ef = 341-2%x1=2

Da+Dd—2Cad=5+3—2X3=3

e Swap band fl (§1=4)

CS-LES

N QO = s

I

01011-01‘4@

-

-

= Repeat
= Compute D, fur all objects
= Mark all vertices as unlocked
. Fort 1ton2do

+ Mark a,b, as locked
+ Store gain
« Update D, fur all objects

* Find k such that G,=X*_, g,,; is maximal
* If G,>0, then move a,,...,a, from Ato B

and b,,...,b, from B to A.

= Until G0
Do =Fag—Ig=9—3
Db=Eb-—fb—7 2
De=Fp—Ipo=06—
Di=E4—-I;=10-7=3
De =Fp—Ip=
Df—Ef———ff_ﬁ b=1

3=3
6—-6=0

- 43 -



= Repeat
= Compute D, fur all objects
= Mark all vertices as unlocked

D-Value Computation T ot . s

* B =D Fae-2

DI
Dy
D,

* Find k such that G,=%*_, g,,; is maximal

* If G,>0, then move a,,...,a, from Ato B
and by,...,b, from B to A.

= Until G20

1

Cr VX€A—{p}(swappandq,peA,qecB)

Da+2cqp— 26, =6+2x1-2x4=0
De+2c,—2¢c,; =34+2%x1—-2%x1=3
Dij+2cqy —2¢c4p=3+2x3-2x4=1
= De+2c—2chp=04+2%x2-2%x2=0

* O =Sl T~ 26,

Gad

Gae
God

Gee

Dp+ Dj—2c,q=04+1-2x3=-5
D+ D, —2c0e =0+4+0-2x2=—4
D+ Dj—2cq=34+1—2x3=-2
D4 Dl — 2c0e =34+ 0—2x%2=—1 (mazimum)

e Swapcande! (g =-1)

CS-ES

- 44 -



= Repeat
= = = = = Compute D, fur all objects
Swapping Pair Determination ¢ Wara e 3 ik
* Fori=1ton/2do

+ Compute g,, for all pairs a,b

« Pick unlocked a,b; with largest g, ;

+ Mark a,b; as locked

+ Store gain

+ Update D, fiir all object:
* Find k such that G,=3%_; g,,,is maximal
= If G,>0, then move a,,.__.a, from Ato B

and b;,...,b, from B to A.

= Until G,=0

NN

e D',=D,+2¢c,-2c

o ¥V xeA={p)

D/
D}

D)4 2cic—2c0e =0+2%x2—-2%2=0
Di42c4e—2c4p0=14+2x4-2x3=3

e L 7 Gk © iRl I

gad = Do+ Dj—2cq=0+3-2x3=-3(f3=-3)
* Note that this step is redundant (37,1 & = 0).

e Summary: g1 =gpf =4, 92 =gee = —1, §3 = gyqg = —3.
e Largest partial sum maxy%_, 5 =4 (k=1)=Swaphbandf.

CS-ES - 45 -



= Repeat

Next lteration

* If G,>0, the
db,..b

~
Qe
]
@

BN Lan e e oy =

w0 R
AN LN -
b DDy O
— 0D s o O
o O o oy o | R
NS AN NN

Initial cut cost = (I+34+2)+(1+34+2)+({+3+2) = 18 (22—4)

e [teration 2: Repeat what we did at Iteration 1 (Initial cost
= 22-4 =18).

e Summary: §1 =gee = -1, 2 = gqp = =3, §3 = gpd = 4.
e | argest partial sum = max Z§=1§i = 0 (k=3) = Stop!

CS-ES . 46 -



Sim

CS-ES

ulated Annealing

General method for solving combinatorial optimization
problems.

Based the model of slowly cooling crystal liquids.

Changes leading to a poorer configuration (with respect
to some cost function) are accepted with a certain
probability.

This probabillity is controlled by a temperature parameter:

the probability is smaller for smaller temperatures.

- 47 -



Simulated Annealing Algorithm

procedure SimulatedAnnealing;
var i, T: integer;

begin
temp = temp_start;
cost:=c(P);
while (Frozen()==FALSE) do
begin

while (Equilibrium()==FALSE) do

begin P’ := RandomMove(P);
cost’'=c(P’)
deltacost := cost’ - cost;
If (Accept(deltacost, temp)>random[0,1))
then P=P’; cost=cost’

end;

temp:= decreaseTemp(temp)

end;
end;

CS-ES

- 48 -



Simulated Annealing

» Annealing schedule: DecreaseTemp(), Frozen()

e temp_start=1.0

e temp = o - temp (typical: 0.8 < o £0.99)

 stop at temp < temp_min or if no more improvement
= Equilibrium:

 After certain number of iterations or when no more improvement
= Complexity:

* From exponential to constant, depending on choice of Equilibrium(),
DecreaseTemp(), Frozen()

* The longer the runtime, the better the results
» Usually functions constructed to obtain polynomial runtime

CS-ES . 49-



And

MSc THESIS, Roel Meeuws, 2007, Delft

more ...

Static

Static

Static
Staric

Staric
Static
Static

Static

Static
Static

Static
Dynamic
Dynamic
Static
Dynamic

Static

Static

Static

Simulated Anneal-
ing
Greedy

Greedy (see [42])

Simulated Anneal-
ing

Simulated Anneal-
ing

GCLP

Binary  Constraint
Search

Dynamic Program-
ming

GCLP (MIBS)

Evolutionary  (Ge-
netic)

Clustering

Greedy, Clustering
Clustering
Evolutionary  (Ge-
netic)

Evolutionary

Dynamic Program-

Simulated Anneal-
ing. Kernighan-Lin

n/a

Minimal area, data-
rate constraints

Minimal area. data-
rate constraints
Minimal communi-
cation cost

Hardware suitability
(compare local
phase [54])

GC objective func-
tion (e.g. Area com-
bined with speed)
Constraints of
encapsulated parti-
tioning algorithm
Temporal size
of loops / leaf
functions

See [54]

Minimal area, tim-
ing and concurrency
constraints
Minimal cost, min-
imal power, tim-
ing and power con-
straints

Minimize area, tim-
ing constraints

Area constraints
maximize fitness
(minimize area and
interconnect)
Maximum rank
(Pareto ranking in
pover and price)
Temporal size
of loops / leaf
functions

Minimum  latency.
resource constraints
Minimize latency,

area constraints

n/a

System Graph
Model (like H-
CDFG

Hierarchical Se-
quence Graph
Petri-nets,  (anno-
tated) CDFG

(extended) C* syn-
tax graph
n/a

n/a

n/a

CDFG

Task Graph

Task Graph
DFG

Task Graph
n/a

DFG

Call graph

n/a

operations

operations
operations

basic blocks

Tasks  (instruction
level subgraphs)

n/a

loops, leaf functions

Tasks

functional elements

task clusters

task clusters
loop clusters
fine:operations
coarse:DFGs

Tasks

Tasks

funcrions

n/a

O(tn)
T=Temperature
seps

n/a
O(ne). e=edges

O(part(s))
part(S) = encaps.
part. alg.

n/a

on® + n?B).
B=bins
O(gp).

n/a
linear
n/a

n/a

n/a

n/a

Table 2.1: Inventarization of several papers on hardware software partitioning with cor-
responding partitioning schemes, criteria, and data structures

CS-ES

- 50 -



CS-ES

HW/SW Co-Simulation

System Architect Designer

ccccccccccccc

- 51 -



Introduction: Co-Simulation

Co-Simulation: System Design

=  Simulation methodology b SubsystemsB

= Individual components simulated — o 1
by different simulation tools HDL#1 <—t_ Subsystem C

= Different modeling languages o

m Different abstraction levels
= But: common co-simulation

Why use co-simulation? _ / sms  L—| |

= Handling increased complexity ‘ S P Simeor
ithili Sim Ialt(;rA<

= Flexibility

» Verification already in early design phases
=  Simulation performance improvements
=  Short development cycles

CS-ES .52



System Architect Designer SyAD

Multi-HDL design

= SystemC [SystemC]

= ModelSim [VHDL]

= ADVanceMS [VHDL/AMS]

= NCSIM-SimVision (AMS Designer) [VHDL/AMS]
= Saber [SaberMAST]

=  Simulink [Matlab/Simulink]

CS-ES . 53.-



Design Methodology

System Design Flow

Top-Level System Design

St T
(Partitioning/ Block-Level Modellingj

Automatic Generation of Cosimulation
Framework
——< Cosimulation }—/

<O

Automated Processes

—— e ————— — — — — — — — —

\

N

Verification

CS-ES




SyAD: Co-Simulation

%4 System Architect Designer - CISC Semiconductor Design + Consulting GmbH =18 %]

Bo B Prowct Model [Plbrary Masger Snulston Took bep

‘g s a W b | i ® g| | B2 ey nose 17R_System Overvew

ProjectExplorer | iP Library Explorer | E\mlﬂnﬂnn" g FlexRay_node |

f3 User Workspace:

1) Fleay._Coble [ocshost #yad._arner]

=1 {75 FR_System_Overview [localhost syad_karmer]
- Testbenches

BRI

5 Fexkay_node
() simudation configuration Defack’
) Charnel_topokogy
Comemuncation_ Controlier_t

Ports Parameters | Nets |
Parameters Communication_ Con 1 | 17 | ¥ |
Nome | vae | oatatype | e [ vext|lf; ong pescription

Problems | Objectinfo | session info| Action Result|
Modified: 2008-07-11, 10111 _-!

Flexray C

ion controller model

Resources

d | i|||menerated codes:  communication_controlard (up-to-date] s

CS-ES

Synchronisation method is
Implemented as decentralized,
“synchronous”, conservative
protocol

Modelling,
Partitioning

¥

Cosimulation
Interface Generation

L
i & =

/ P
Library
\ Simulator

Model Set n - Type
TODp:;i\rlf Itihg?]del L Simulation - Availability
Simulation FI:’an:-u;weter Model Set 1 Envronment - Location
i - Information | -Access Rules
XML - Project File Language 1 - Connection Type

Cosimulation

Simulator Simulation Interface Cosimulation Build Cosimulation
Control Model Modules for Interface Scripts Interface
Framework

o \ \

Distributing of generated

Cosimulation

Configur‘ation/

Code & Scripts




Motivation for Run-Time
Co-Simulation Model Switching

System level:

= Validation and analysis of entire embedded systems

= Focus: short simulation time for longer simulated time (>> 1s)

= Abstracted behavior: hides low-level effects that might propagate

Physical level:

= High simulation time: simulation of complex analog components
» Relatively short simulated times (us, ms)

= Detalled behavior

Co-simulation problems:
= Simulated times: physical level vs. system level

= Co-simulation performance: determined by slowest simulator
- critical in physical level/system level co-simulation

ldea: Run-time switching of co-simulation models

CS-ES . 56-



Run-Time Co-Simulation Model Switching

Run-time co-simulation
model switching:

= Modeling of a single component by
using multiple HDL (discrete &
continuous) and abstraction levels

= Synchronized run-time switching
between the abstraction level models

Features:

= Long simulated time / high simulation Component N
speed (system level models) plus high_.

Model N-A:

accuracy (low physical level models) o |—{ Swich Language A

(Split)

= Using fast high level models during Model

normal circumstances Selection
=  Switch to high-detailed models during

Model N-B:
Language B

time intervals of particular interest Data OUT

<
Model N-C:
Language C

= Enhances co-simulation speed

= Using computational expensive

simulation models only in a clearly
defined area

CS-ES - 57-



TEODACS: Overview
TEODACS:

Test, Evaluation and Optimization of Dependable

Automotive Communication Systems

Co-simulation platform
FlexRayXpert.Sim

B b e

Car simulator
CarMaker /
AVL InMotion™

Interface testcase definition

)
I
I
I
|
I
I
I
I
I

Hardware prototype platform
FlexRayXpert.Lab .

= g g

—_———

Car simulator

| carmaker/ o
|AVL InMotion™ |&~"===
(real-time) Ba| T |

(car environment, stimuli)

| Stimulation A
..... I and analysis I
I
FlexRay network: -
Co-simulation framework CISC SyAD" | (5 s'gnﬂ'«l.ef,lkw |
FlexRay FlexRay FlexRay \ is /I ~
CarMaker Node Node Node

Interface

AUTOSAR
Functionality

Application

AUTOSAR
Functionalit

AUTOSAR
Functionalit

ommunication
Controller
SystemC

Tester Node

ommunication
Controller

ommunication
Controller
SystemC)

SystemC

I

Transceiver Pr

Transceiver Br Transceiver Pr Transceiver
(VHDL-AMS, [5: (VHDL-AMS, [5: (VHDL-AMS, [°:
SystemC) SystemC) SystemC)

Ev——
 Trame evel )

sample level

Further Further
FlexRay Nodes FlexRay Channel FlexRay Nodes
FlexRay Topology -

(VHDL-AMS, SystemC)

FlexRay network:
realistic hardware prototype




FlexRayXpert.Sim; EX

Application

Communication

CS-ES

FlexRay
Node 0

Controller 0
(SystemC)

FlexRay
Node 2

1: VHDL-AMS

erimental Setup

Communication
Controller 2
SystemC

Transceiver

0.8m (7.0m)

[ Transceiver
(VHDL-AMS)

] [ Transceiver ]
(VHDL-AMS)

2: SystemC

Topology Model SystemC

0.4m

1.0m

0.5m

2.0m

0.8m (7.0m)

Transceiver
(SystemC)

[ Transceiver ]
(SystemC)

Communication
Controller 1
SystemC

Application

FlexRay
Node 1

Communication

Controller 3 FlexRay
SystemC Node 3

Application

... FlexRay Termination
1.0m ... Cable Segment Length

FlexRay
Node 4

Application

Communication
Controller 4
SystemC

- 59-




PowerCard - Methodologies for Designing
Power-Aware Smart Card Systems

CS-ES

- 60 -



Contactless Smart Cards as Future Mobile
Devices

CS-ES

Contactless smart card controllers are currently used in various
demanding applications

= payment, e.g. debit/credit cards
» [dentification, e.g. electronic passport
= pay TV

...and there exist ideas for much more complex use cases by
connecting displays, buttons, and finger print sensors to the
controller

: ¥
smart card with
numeric key pad and
display (NagralD,
2010)

smart cérd with
OLED display
(Samsung, 2010)

- 61 -



System Abstraction

* Requirements

= In general independent of hardware and software
= Basic smart card OS functionality should be provided
= Focus on algorithm design and memory system (limited resource)

= |_evels of Abstraction

CS-ES

Model representation

Model of computation

Functional
Level

Object oriented
Interface-based commun.

Sequential execution
Untimed/timed

Transaction
Level

TL1 SoC Model
Abstract processing units

SoC: Parallel tasks, timed
SW: untimed, delays

Prototype
Level

Cycle accurate HW
Cross-compiled software

Parallel hw models, FSMs
Sequential software

- 62 -



Platform Lifetime

= Abstract platforms are more stable
= Different solutions can be derived from an abstract model

= This results in more stable systems than old system redesign

S . [ Change of architecture

.§ / .

7 FP/ / —y Change of

2 —_ Va — —_— functional
Derivate specification

[ development Jq\kH\DP PP PP PP
(D)
—

Time
CS-ES - 63 -



Design space Exploration based on
hierarchical platforms

Application

Design Space
Specification

_ Functional Platform \ /
Architecture 2 AREsmN----ooo oo oooo oo P -
TN g
|‘ \\ /// ’I
Architecture 1
TL Platform - \-l
I\\ l/l \ 1
|| ‘\ 1' \\‘ III
A v
Virtual AN v
: : "Pfétb’tyb'é""". """" . """"""
32-bit 8-bit ASIP

CS-ES

- 64 -



Design Space Examination

Level of

Abstraction

FP

TLP

PP

CS-ES

- Performanee— Power Chipsize—__ Security
User-defined delays Memory Memory FP fault mo
Memory delays Programming utilization Fault injection
Communicati —APtobjects

ystem busses A, Preeessors— | Architectu
HW/SW interfaces Memory blocks | Coprocessors | fault model
ask parallelism APl-energy Memenysize
W: IS simulator SWesimulater—High=tevei Final
HW: Estimation tools | HW: energy synthesis evaluation
estimation tools | Code-size

- 65 -



Vertical Codesign e ey

= Target Architecture
= EXisting processor platform

= HW acceleration based on instruction-set extension and
coprocessor

= Codesign Approach
= Evaluation of different configurations
= Optimization of the HW/SW interface

= Cosimulation comprising hardware, all software layers and
application

ROM I RAM | EEPROM

Frocessor
Co-
processor

CS-ES - 66 -



Vertical Codesign

Functional Model Architecture Model

. B

. =

System Synthesis

. =

Processor<:>

. =

Functional Platform Model:
-Interacting C++ objects
-SystemC simulation kernel
-Includes: Application, OS, HW

Coprocessor

. =

Software Generator

. =

IS
Simulator

Transaction-level Model:
-HW/SW Mapping

-HW/SW Interface Optimization
-Memory access optimization
-Memory system design

—>

Coprocessor

CS-ES

Prototype Platform:
-Software design
-Software power estimation
-Software power optimization
-Memory access optimization

- 67 -



2 1 Horizontal -
Horizontal Codesign .

= Target Architecture

» New hardware components, application specific instruction-
set processors

= Optimized hardware for a dedicated application

= Codesign Approach

= Design of hardware and software layers with regard to the
target application

= Stepwise refinement and cosimulation

System architecture

Java Card Applets

s cooe

CS-ES - 68 -



Horizontal Codesign

Functional Model

CS-ES

Basic HW Architecture

- =

Instruction-Set
Definition

OS support

- =

- =

OS Interface
Optimization

Application support

- =

, Refined Model Q
\Q HW&ISA fixed ’/

Application Interface
Optimization

HW Design Flow

SW Design Flow

‘-t

- 69 -



Design Flow with Security Extension based on
Power Profile

= Smart cards store and deal with sensitive data
= SIM cards in mobile phones
= e-purse
= contact-less ID systems
= Security attacks on smart cards
= |nvasive or semi-invasive attacks

= Test robustness against attacks
= Attack simulation early in the design process using fault
Injection
= ease design changes and
= |nsertion of protection mechanisms

= SystemC for high simulation performance

= can be applied on all SystemC designs
CS-ES - 70-



Attack Simulation Flow

Possib';Attack Iptesented at ATS’04

>
* Fault

Smart Card Fault Faulty Smart
Design —P»| Injection p—P»| Card Design
(SystemC) Unit (SystemC)
I Fault
| Information
Regular System | Faulty System
Behavior v Behavior
Simulation
&
Analysis

<5

Analysis ReportJ

CS-ES - 71 -



Fault Injection In Functional Design

Functional
Block

Functional
Block

-

Fault Injection

Functional
Block

Control Unit

~N

Memory 1

)¢

Functional
Block

CS-ES

FIM ... Fault Injection Module
FIP ... Fault Injection Po;t2



Methodology Evaluation

= Evaluation with a Java Card™ Virtual Machine
Implementation

= Evaluation Steps:

= Implementation JCVM functional platform model

= Vertical Codesign
e 32-bit Solution based on MIPS Architecture
» 8-bit Solution based on 8051 Architecture

= Horizontal Codesign
« Application Specific Instruction-set Processor

CS-ES

- 73-



Horizontal Codesign Solutions

= Vertical integration of functional units
= Model comprises virtual machine as well as JC runtime

System architecture

EEPROM | [ ROMIFLASH | [ EEPROM RAM |
temporary EEPROM persistent transient Java Card A pp lets
Memory Applets Objects Objects
A 4 A A * *
: | Dynamic Memory Manager |
Loader JCRE - Java
.
; Applet & RAM
Receiver | | Command | | Bytecode Assembly Code
Transmitter [ | Dispatcher | System = Interpreter [ Operand y
Manager Stack
v ] .
User-definedobject
EEPRON - Hardware
systemcontroldata [ APt object

Activeobjectw ith
ow nthread

CS-ES



JAVA Card ASIP Concept

3 Classes of instructions: Security concept:
* simple byte codes e User and kernel mode
* instruction set extension o different instructions for
e complex instructions different memory areas
e large MMU
| Java Card Applets
JCAPI® -
Java Card System Classes { - - | _,* 1
JCVM | Complex Instructions | iy Eé%ﬁ? ENEN
Simple } [Additional “ el i 1]l
Instructions) lnstructions) wren | i T |
S 1 N ot =~ s &

Address Data

CS-ES - 75-



JAVA Card ASIP Architecture

Control Unit
: 4 i L Table| Decoder (~
i ]
S‘; I
—» Decoder |-» 21" d g1
Fetch [} {--=-t--4--1 Logic IYYX XX X! k3
i = HE
Unit Parameter| | ® | ‘ : & _I
— nalP : 8/16 A& s |
Unit a : ~i= i |
¢ ? PCF LT g 1
YV v - —
MMU BT fprecncrncer . | I
v PP - Y v
Address Data Data Address
NOP SALOAD SDIV IF_SCMPLT PUTFIELD_S IF_SCMPEQ_W Pe rfor mance com pa rison
ACONST_NULL ASTORE SREM IF_SCMPGE INVOKEVIRTUAL IF_SCMPNE_W
SCONST_M1 SATORE SNEG IF_SCMPGT INVOKESPECIAL __|IF_SCMPLT_W
SCONST 0 ASTORE_0 SSHL IF_SCMPLE INVOKESTATIC __|IF_SCMPGE_W
SCONST_1 ASTORE 1 SSHR GOTO INVOKEINTERFACE |IF_SCMPGT_W. MIPS ASIP
SCONST 2 ASTORE_2 SUSHR ISR NEW IF_SCMPLE_W
SCONST 3 ASTORE 3 SAND RET NEWARRAY GOTO_ W asReturn: 74 bytes asReturn: 10 bytes
SCONST 4 SSTORE 0 SOR STABLESWITCH __|ANEWARRAY GETFIELD_A W i .
SCONST 5 SSTORE_1 SXOR SLOOKUPSWITCH |ARRAYLENGTH __|GETFIELD_B_W pop Frame: 80 bytes popFrame. 20 bytes
BSPUSH SSTORE_2 SINC ARETURN ATHROW GETFIELD S W . .
SSPUSH SSTORE 3 s28 SRETURN CHECKCAST GETFIELD_A THIS pushFrame: 164 bytes pushFrame: 129 bytes
ALOAD [AASTORE IFEQ RETURN INSTANCEOF GETFIELD_B_THIS
SLOAD BASTORE IFNE GETSTATIC A SINC W GETFIELD_S THIS
ALOAD 0 SASTORE IFLT GETSTATIC B IFEQ_W. PUTFIELD A W
ALOAD_1 POP IFGE GETSTATIC_S IFNE_W PUTFIELD B_W .
ALOAD_2 POP2 IFGT PUTSTATIC_A IFLT_W. PUTFIELD_S W | nterpretatlon
ALOAD_3 DUP IFLE PUTSTATIC_B IFGE_W. PUTFIELD_A THIS
SLOAD_0 DUP2 IFNULL PUTSTATIC_S IFGT_W. PUTFIELD B_THIS o .
SLOAD_1 DUP_X IFNONNULL GETFIELD_A IFLE_W PUTFIELD_S_THIS » Code dens{ty is much h|gher
SLOAD 2 SWAP_X IF_ACMPEQ GETFIELD_B IFNULL_W
SLOAD_3 SADD IF_ACMPNE GETFIELD_S IFNONNULL_W i 1 i 1
Lo Saoo PTG R e » Microcoded routines run therefor faster (less instructions)
BALOAD SMUL IF_SCMPNE PUTFIELD_B IF_ACMPNE_W

» Specialized hardware gives additional performance boost

CS-ES . 76-



