Embedded Systems

O’H‘l’

...........

CS-ES

é'l f)
:

1¢ ﬁ

REVIEW
Codesign Definition and Key Concepts

= Codesign

» The meeting of system-level objectives by exploiting the
trade-offs between hardware and software in a system
through their concurrent design

= Key concepts

= Concurrent: hardware and software developed at the same
time on parallel paths

* |ntegrated: interaction between hardware and software
development to produce design meeting performance
criteria and functional specs

CS-ES 0.

Typical Codesign Process

REVIEW

System
| FSM- Description Concurrent processes
directed graphs (FunCtlonal) Programming |anguages
HW/SW Unified representation
SW/ \HW

Another

HW/SW Software Interface Hardware

partition Synthesis Synthesis Synthesis

\ / HW/SW Cosimulation
System
Integration

CS-ES

Instruction set level
HW/SW evaluation 3.

| | REVIEW
Main Tasks of the Codesign Problem

= Specification of the system

= Hardware/Software Partitioning

» Architectural assumptions - type of processor, interface style
between hardware and software, etc.

= Partitioning objectives - maximize speedup, latency
requirements, minimize size, cost, etc.

= Partitioning strategies - high level partitioning by hand,
automated partitioning using various techniques, etc.
= Scheduling
» QOperation scheduling in hardware
» |nstruction scheduling in compilers
» Process scheduling in operating systems

= Modeling/Simulation of the hardware/software system
during the design process

CS-ES _4-

REVIEW
Issues Iin Partitioning

= Specification abstraction level

= Granularity

= System-component allocation

= Metrics and estimations

= Partitioning algorithms

» Objective and closeness functions

= Partitioning algorithms

* Flow of control and designer interaction

CS-ES . 5.

o REVIEW
Partitioning Methods

= Exact methods
» |nteger Linear Programming (ILP)
» Heuristic methods
= Constructive methods
« Random mapping
» Hierarchical clustering
» [terative methods
« Kernighan-Lin Algorithm
o Simulated Annealing

CS-ES . 6-

. . . REVIEW
Example: Hlerarchlcal Clusterlng

Pl PN
Py] L4 b
, - \

Max255) 25

Max(105) =
coee h o m .
04 Og 03 04 04 Og O3 04 01 Og 03 04

-—
-- -

- - .
- » - » " ~
. .
-~] - ' L4 -
e s ’
, l ,, r - ‘
r

\ \
: c
* -
g r -
4 . -

Min(255) = 5
Min(10.5) = 5

toe s h&& hh Iih

04 O3 053 04 04 02 03 04 04 02 D3 04 04 02 O3 04

CS-ES 7.

lterative Partitioning Algorithms

* The computation time in an iterative algorithm is
spent evaluating large numbers of partitions

» |terative algorithms differ from one another primarily
In the ways in which they modify the partition and in
which they accept or reject bad modifications

* The goal is to find global minimum while performing
as little computation as possible

A, B - Local minima
C - Global minimum

CS -|ES . 3.

And

MSc THESIS, Roel Meeuws, 2007, Delft

more ...

Static

Static

Static
Staric

Staric
Static
Static

Static

Static
Static

Static
Dynamic
Dynamic
Static
Dynamic

Static

Static

Static

Simulated Anneal-
ing
Greedy

Greedy (see [42])

Simulated Anneal-
ing

Simulated Anneal-
ing

GCLP

Binary Constraint
Search

Dynamic Program-
ming

GCLP (MIBS)

Evolutionary (Ge-
netic)

Clustering

Greedy, Clustering
Clustering
Evolutionary (Ge-
netic)

Evolutionary

Dynamic Program-

Simulated Anneal-
ing. Kernighan-Lin

n/a

Minimal area, data-
rate constraints

Minimal area. data-
rate constraints
Minimal communi-
cation cost

Hardware suitability
(compare local
phase [54])

GC objective func-
tion (e.g. Area com-
bined with speed)
Constraints of
encapsulated parti-
tioning algorithm
Temporal size
of loops / leaf
functions

See [54]

Minimal area, tim-
ing and concurrency
constraints
Minimal cost, min-
imal power, tim-
ing and power con-
straints

Minimize area, tim-
ing constraints

Area constraints
maximize fitness
(minimize area and
interconnect)
Maximum rank
(Pareto ranking in
pover and price)
Temporal size
of loops / leaf
functions

Minimum latency.
resource constraints
Minimize latency,

area constraints

n/a

System Graph
Model (like H-
CDFG

Hierarchical Se-
quence Graph
Petri-nets, (anno-
tated) CDFG

(extended) C* syn-
tax graph
n/a

n/a

n/a

CDFG

Task Graph

Task Graph
DFG

Task Graph
n/a

DFG

Call graph

n/a

operations

operations
operations

basic blocks

Tasks (instruction
level subgraphs)

n/a

loops, leaf functions

Tasks

functional elements

task clusters

task clusters
loop clusters
fine:operations
coarse:DFGs

Tasks

Tasks

funcrions

n/a

O(tn)
T=Temperature
seps

n/a
O(ne). e=edges

O(part(s))
part(S) = encaps.
part. alg.

n/a

on® + n?B).
B=bins
O(gp).

n/a
linear
n/a

n/a

n/a

n/a

Table 2.1: Inventarization of several papers on hardware software partitioning with cor-
responding partitioning schemes, criteria, and data structures

CS-ES

-9-

= Architecture Synthesis
= HW/SW Codesign

= = Power Aware Computing

CS-ES

* (mobile) PA Embedded Systems
« Power Aware Computing - Introduction

e Power Optimization

e Power Estimation

- 10 -

Processing units

*Need for efficiency (power + energy):
Why worry about ”
energy and power? Aﬁ }W}W

“Power is considered as the most important constraint in

embedded systems*
[in: L. Eggermont (ed): Embedded Systems Roadmap 2002, STW]

Energy consumption by IT is the key concern
of green computing initiatives (embedded
computing leading the way)

CS-ES - 11 -

Motivation (1)

— Rapidly growing market for portable devices

— Requirements: light weight, long battery life, high performance,
security

— Moore's law
— Battery technology can‘t keep up with that pace

10000000 Algorithmic Complexity

1000000

ocessor

100000 Performance

10000

1000 -

100

CS-ES 19

Power and energy are related to each other

E:det

t

In many cases, faster execution also means less energy,
but the opposite may be true if power has to be increased
to allow faster execution.

CS-ES . 13-

Low Power vs. Low Energy Consumption

= Minimizing power consumption important for ter_
« the design of the power supply jo
« the design of voltage regulators LR
 the dimensioning of interconnect
 short term cooling
= Minimizing energy consumption important due to ‘imz
 restricted availability of energy (mobile systems) |
— limited battery capacities (only slowly improving)
— very high costs of energy (solar panels, in space)
— RF-powered devices
 cooling
— high costs
— limited space
» dependability
CS-ESe |ong lifetimes, low temperatures

Design Constraints (1)

- Battery-powered vs. RF-powered devices

— Battery-powered devices
Requirement: long lifetime (ENERGY opt.)
 avoidance of intervals of high discharge current
 reduction of average load current
« allow the battery to recover (power idle states)

— RF-powered devices

3903 123488 740"
3. o R P =

Requirement: no reset and stable communication
(POWER opt.)
 avoidance of energy consumption exceeding the
budget available from the field and internal
capacities

mmmmmmm

CS-ES - 15-

“There's a great deal that software can contribute to
making a system manage power more effectively.”

-
>
=3

@
=]

@
=]

Richard Wirt
Intel Senior Fellow,
General Manager, Software
and Systems Group

eschwindigkeit (kv
-
=3

o 2
DD

Responsible for
the consumption
(fuel/energy) after

production
PQ35/A5 (2003): Da Vinci
VW Golf (5. Gen.), VW Jetta (5. Gen.), o OMGPb.I
Skoda en.), Seat Leon (2. Gen.), (Agirl]ica?iolne
Seat Toledo (3. Gen.), Audi A3 (2. Gen.), ... Platform) WLAN
latform
Petrol SUV | P NV
Hybrid OLED
Diesel E-Drive Texas Instruments
T1 C5000 Battery

- 16 -

Power Aware Computing

Circuit / Logic

CS-ES

Design Leveld

System

Algorithm / Behaviour ‘

Architecture ’

Physical Design

Mobile devices rechnolony
= high performance Povwer saving Potenta
= small

» |ess power consumption

Temperature Aware Computing (in general
puUrpose pProcessors)

- 17 -

Power/Energy Optimization Levels

HW level
 Low power design (transistors, gates, clock gating, ...)

Machine code optimization
e Operand switching
« Instruction reordering: minimize circuit state overhead
* Instruction replacing: use low power instructions

Source level optimization

» Algorithmic transformations: simplify computation by reducing quality
of service

* Loop optimization

HW-System level Power Optimization
« Data Representation (bus encoding)
 Memory Design Optimization (access, architecture, partitioning)

System Level
 Dynamic Power Management
 Dynamic voltage scaling / dynamic frequency scaling

CS - ES « Remote processing 1.

CS-ES

Introduction

- 19 -

Introduction

P =PFsc + Py + P

P......Short Circuit Power

[P.,, ---Switching Power

PLeakage Power

Minimize l,.4 by:

= Reducing operating ¢ lswiten
voltage —

= Fewer leaking
transistors

CS-ES

- 20 -

Introduction

Power consumption of CMOS
circuits (ignoring leakage):

P=a C_ V. f with

a . switching activity
C, : load capacitance
V4 :supply voltage

f . clock frequency

Delay for CMOS circuits:

Vdd
(Vdd _Vt)2
V, :threshhold voltage

(V. <thanV,,)

with

7 =kC,

“ Decreasing V, reduces P quadratically,
while the run-time of algorithms is only linearly increased

CS-ES

- 21 -

Switching Power Minimization

= Supply Voltage Scaling
= VDD versus delay
= Compensation of delay overhead

* ... Reduces circuit speed and throughput

= Different voltage domains on a chip (Unified power
format UPF)

= Switched Capacitance Optimization

Ceff —

CS-ES

- 22 -

Unified Power Format (UPF)

= Accellera defined the Unified Power Format (UPF) to fit
requirements

» |EEE standardization as project 1801
» UPF supplement common HDLs

» UPF extends the functional spezification with low power
Intent

» UPF Is spezified in a seperate file

CS-ES - 23 -

UPF by example

» 45nm TSMC library
= 4 Domains, 2 Hierarchies
= Top Level — 1.0v constant
» Secondary level SUBO
* 0.99v switched constant
» Secondary level SUB1
* 0.89v constant
» Secondary level SUB2
* 0.89v constant

CS-ES o4

UPF — domain creation

UPF Commands

»
>
m
o D o
o R D
HEY IS Y
S S S
N -) ., N -
: s

create_power_domain top -include_scope
create_power_domain SUBO -elements {u0}
create_power_domain SUBL1 -elements {ul}

create_power_domain SUB2 -elements {u2}

CS-ES - 25-

UPF — supply network creation

CS-ES

UPF Commands

#Supply net creation for domain top
create_supply_net VDD
create_supply _net VDD_SUB1
create_supply_net VDD_SUB2
create_supply_net GND

#Supply net creation for domain SUBO
create_supply_net VDD
create_supply_net VDD_SUBO_SW
create_supply_net GND

#Supply net creation for domain SUB1
create_supply_net VDD_SUB1
create_supply_net GND

#Supply net creation for domain SUB2
create_supply_net VDD_SUB2
create_supply_net GND

-domain top
-domain top
-domain top
-domain top

-domain SUBO -reuse
-domain SUBO
-domain SUBO -reuse

-domain SUB1 -reuse
-domain SUB1 -reuse

-domain SUB2 -reuse
-domain SUB2 -reuse

- 26 -

Power Management: Source & Flow
Power Source
File(s) AN
» The traditional Synthesis flow FF'{%/ A\—
» [|s augmented with Power

= Power source files are part of the EZ

design source. Synthesis

= Combined with the RTL, the power
files are used to describe the intent

of the designer. Power Source | _
File(s =
)]) . Verilog = — /C
= This collection of source files is the (Netlist)
input to several tools, e.qg.,
simulation, synthesis, STA, test, EZ
formal verification, power

consistency checking.

P&R

Simulation, Logical Equivalence Checking, ...

» The details of the “What” (IP
developers - low power) and the
“How” (System Integraters) are often
produced by different parties.

= Design refinement

Power Source

File(s) g
/GEV}

Verilog
(Netlist)

Voltage domains

CS-ES

Vdd=3.3 V

| converter

Vdd=5,0 V

- 28 -

CS-ES

RTL Optimization

- 29 -

RLT Power Optimisation

= Dynamic Power Management (DPM)

= Shut down the blocks which are not in use during some particular clock
cycles

= Approaches:
e Pre-computation
Selectively pre-compute the circuit output value before
they are required ldentify small and efficient predictor functions

* Operand-Isolation
|dentify redudant computation of datapath components and
isolate them. Can be implemented in HDL

» Clock-Gating

CS-ES - 30 -

Clock Gating

= Stop the clock to registers which are not in use

= Activity-driven clock gating

= Clock gating should not be applied to high switching activity
registers, choice is based on threshold

DATA

N /|

LATCH
Flipflop
CLK | LG
ENL
CLK
CS-ES

>_

D Q

Register—

bank

ENLCLK

DATA

(_’_)UE

- 31-

Clock tree

—P—>—

Clock
Source

CS-ES

ure
SLLILE‘ V15

l >

[~

{> v

- N~

4‘>_ v

| ™

D v

[~

[>. v

™~

[> v

™~

[

Mesh
Level O
Level |
Level 2
Level 3

4| -

H-Tree
O 0-idle
B 1 - active

- 32 -

Software Power Estimation/Optimization

CS-ES

- 33-

“Software” Power Dissipation

= Memory System

= [For portable computers: 10% - 25%

» Reading/writing memory
» High capacitive data, address lines

= Cache

» Avoid Cache Misses -> memory access expensive
o Smaller

» Shorter and less capacitive data, address lines
« Higher performance and more energy efficient

CS-ES

- 34 -

“Software” Power Dissipation

= Busses

* High capacitance components

= Multiple busses
o Address
 Instruction
 Data

= Switching activity determined by software
* |nstruction bus: sequence of op-codes
» Address bus: sequence of data and instruction accesses

CS-ES . 35.

“Software” Power Dissipation

= Data Paths

ALU (Arithmetic Logic Unit)

FPU (Floating Point Unit)

Pipelining, Parallelism
* More stages active
* Multiple execution units

Energy to evaluate expression
 Shift left vs. multiply by 2

CS-ES

- 36 -

“Software” Power Dissipation

= QOther sources

Control logic

Clock distribution

Each instruction cycle -> energy consumption

Less cycles -> less energy
* Make programs fast!

CS-ES

- 37-

Generic Energy Model

ntotal

Etotal = Z[E| (n) + Ed (n) + Ec (n) + Ep (n)]
n=0
* The overall energy consumption is split into 4
parameters

» E instruction dependent energy dissipation

* Independent on source and target operands and operand values
» Estimation based on base cost and CSO (Tiwatri et all.)

*» Ed data dependent energy dissipation

» Energy consumption of each instruction depends on operands and operand values
 Hamming distance and hamming weight

= Ec energy dissipation of the cache system
e Cash hit/ miss

= EP memories and peripherals
» Power state models

* Huge number of parameters, which have to be

characterized
CS-ES - 38-

Concept

F E M A W
@®)|| I-Cache
I\/IMDU AMDU WMDU
External
= System
Adder Multiplier | Internal Busses
@) | D-Cache
Logic Unit Shifter Register File
Ecycle_ Einstr T Edata T Ecaches T Eexternal

CS-ES - 39-

Instruction-level power modeling

N N -1 N
Z;Bcj+zllcsoj,j+l+;||cj
_ 1= = =

#CC
= BC ... Base Costs
= CSO ... Circuit State Overhead
= ||IC ... Inter Instruction Costs
= #CC ... Number of clock cycles
= N ... Number of instructions
- average current

CS-ES

- 40 -

Instruction Path Characterization

Basecosts:

10: loop:

20: addto, t1, t2
30: addto,tl, t2
40. addto, t1, t2
50: ..

2000: b loop
2010: nop

CS-ES

* Independent to the previous state
» Excludes pipeline stalls, cache
misses, bus switching, ...

* Instruction sequence for characterization

* Repeat the same instruction in a
loop

» Should be long enough to amortize
the loop overhead (jump statement
at the end of the loop)

» But, short enough not to cause
cache misses

» Calculate the average power and
energy
* By measuring the current,
supply voltage and # of
execution cycles per instruction

- 4] -

Instruction Path Characterization

» Associated “power’cost

 Instruction bus as the op-code Circuit State Overhead:
switches

« Switching of control lines , _

* Mode changes within the ALU 10: loop:

« Switching of data lines to 20: add 10, t1, t2
reroute signals between ALU 30: ort0,tl, 2
and register file 40: add t0, t1, t2

o o 50: ort0,tl,t2
e Pair-wise characterization 60"
* Large space '
J9° 5P 2000: b loop
2010: nop

CS-ES .42

Instruction Path Energy Dissipation

= Considers only instruction flow in pipeline

» Base Costs (BC)
= Circuit State Overhead (CSO)

|BCAND : |BCADD BCADD : BCSW : BCOR

VT

AND ... ADD ... ADD ... SW ... OR...

>

E. = Z BC(I) + niCSO(instr[k], Instr[k +1], k)

CS-ES . 43-

Instruction-level power modeling

= |nter Instruction Costs

» |nstruction/data cache misses

= EXxceptions

* |n general: pipeline stallings

» Characterization: Define Assembly programs which cause such
costs

CS-ES - 44 -

Instruction Path Characterization

= Measurement Setup
= High precision ampere meter
= Measurement of the average current

= BC, CSO calculation

... T.xBC,—N, xBC .—N, BC
BC(I;J): i I Lnop ”I‘;T'J i stall

stall |

k=1

CS (i iy, J) =7, {6§— S'BC,,, . - iBC(.l,k) s BC(lz,k)}

CS-ES - 45 -

Instruction Path Energy Dissipation

Overhead compared to BCnop

= Basecosts 7
= Nearly constant ey
= Fast characterization possible |

N
o

-"7

= Circuit State Overhead ;
= Strong variation | — i
= High characterization effort — { | = 10 [%4l
' I \ S
| e | | 6
| g
| >0
&

Second
instruction

- 46 -

instruction

CS-ES

Data Path Energy Dissipation

E-Stage M-Stage | A-Stage
Register|] _|Adder [
File
Read | |—{ Logic |]|'Memory' | Load |
—1 Unit Unit ligner
v 1]
— . Data
___|Shifter Cache

CS-ES

W-Stage

Register
File
Write

- 47 -

Data Path Energy Dissipation

= Considers only data flow

= Data path model consists of functional units
= Adder, Multiplier, Logic Unit, Shifter
= Macro models for power estimation

10:

20:

30:

40:

CS-ES

add to, t1, t2
add t3, t4, t5
add to, t1, t2

add t3, t4, t5

il

t1=t2=0
t4, t5 = variable

t1=12=0

t4, t5 = variable

- 48 -

Data Path Energy Dissipation

45

" /‘A Power footprint of the adder

35

i A //;\\ /'/1/,?// :g)ég]gztsrigr?ﬁg?r\\/rigirng distances
3 FA //‘27 \\ % \4 - same behavior for add, sub, ... with
gV

regard to the arithmetic function

10

-
i gtgiL3 gL gE gL P
o LWL LW o O L UL o o LWw LW o O uw uw
o O o L 0L 0L oL o o o o L uw
S 8 8 &5 &5 & P P P P oo o 30
888 8888LLLLLLLL | I N A
—e Rl=V,R2=0 -® R1=0,R2=V —4 RL=R2=V 25 A
Power footprint of the logical unit 5]
LT
T H (= TR o LW o LW
- Asymmetric behavior S T oL 8 gt E 8 gk S8t
. , S S g I EIEE8sS S g & KN
_D h 8 8 8 8 &8 5 & &L @ I Lo o uw W
epends on hamming distances 2 838888 LK EE & & E &

——R1=V,R2=0 —®—R1=0,R2=V —&—R1l=R2=V

CS-ES

1

SN

(o]
1

Software Power Estimation

GNU Debugger
Ashling Pathfinder

MIPS Debug Interface

cycle-accurate
MIPS 4KSc
Simulator

o

>

Power Analyzer

- power profile
- execution path analysis

CS-ES . 50-

Energy
Info-File

Energy models

System Integration of IS Power Simulator

4l PathFinder for MIPS v1.2.6 -19/x)

File Run VYiew Watch Configure Group Files Windaws Helo

R=E
S @ e | e v p T =
@& o w s w15 00 MMIM KK >PHPD RO NH T YR
Rddr Line |BP|PC|Source <C:\PROGRAM!
01E10 355 @ 1w workz,| M¥ 7
0lEl4 356 o pperm keyl, U
01E18 357 @ 1w workl,| 11
OlE1C 358 @ pperm keyl, ol
01E20 359 @ 1w work?,
0lEZ4 360 o pperm keyl, R |
01E28 361 o 1w workl,| 10}
01E2C 362 & pperm keyz, 2l
01E30 363 & 1w workz,
01E34 364 o o pperm keyZ, &
01E38 365 @ workl, 4
01E3C 366 @ rm kg |
01E40 367 & work2,
0lE44 368 ¢ erm keyl,
01B48 369 © 1w workl, 1 :
0lE4C 370 o pperm keyl, |
01ES0 371 o 1w work2, I ‘
01ES4 372 © pperm keyl, T
NIRER 272 & Trr rravlr 1
'@ $JMPs32_akscLlE | I an opcode breakpoir
23011 23050 23090 23130 23170 23210 23250 23290 23330]

Bereit [hom [4
Huge number of parameters, which have to be
CS-ES characterized = automated characterization - 51-

Automated Characterization

IS - Data
o Dependency
Description
Testcases

Testbench Generator

cost factorT ¢ test bench

Prototype Chip tos
bef?(;h ost factor
v < Flow Control — Analysis & Evaluation
s
Measurement Equipment GQ‘O"‘\E profile
S—
Energy
DB
»Testbench Generator

= Creates all needed testbenches for a complete characterization

»Analysis and evaluation unit
= Signal preparation and parameter extraction

=Flow controller
= All steps are controlled by the central flow controller - GUI

CS-ES

- 52-

Automated Processor Characterization

CS-ES

[* RESTRICTED VERSION WITH!

L25L RUN COMPLETE. 0 WARNINGIS), 0 ERROR(S)

0800H BYTE CODE SIZE LIMIT; USED: D1ASH EVTE (20%)*

C:\wo wisrctestbench_gene: \Program F
“C251_ADD_24" HEXFILE (", fHEX/C251_ADD_24.HEX") HEX
MCS 51251 OBIECT TO HEX FILE CONVERTER V1,36
|COPYRIGHT KEIL ELEKTRONIK GmbH 2000 - 2004

|GENERATING INTEL HEX FILE: ../HEX/CZS1_ADD_24.HEX

Use case:

— 8051 based secure s

smart card platform
— ARM7TDMI

¥

Compiler Linker Card
Communcation Communication
Compiler Linker Interface
Interface Communcation Device

v

Compiler Linker

Y

Communcation
Device

Executable

testbenches

IC Chip__

Current

Trigger

Compiler Optimization Techniques

» Reducing memory accesses
= Control Flow Transformations
= Special Data Structures

= Optimized utilization of registers and cache to avoid external
memory access

= Low power code generation
= Usage of low energy instructions, e.g., Shift left vs. multiply by 2
» |nstruction scheduling for lower switching activity,
MULT .. after MULT...
= Alternative register assignments
» Operand Sharing / Swapping (reduction of CSO)

CS-ES - 54 -

Compiler Optimizations
Optimization Techniques (2)

= Quality of Result / Service
= Quality depends on available energy
= Data Types (e.g. float instead of double)
» Lower quality of multimedia data

= High-Level Code Transformations
Loop Fission

Loop Fusion

Loop Tiling

Loop Unrolling

CS-ES

- 55-

Loop Fission

= Split a loop into independent loops
= Achieve temporal locality
= When the instruction cache is small

Fori=1TONDO
A[i] = Al[i] + B[i-1]
B[i] = C[i-1] * X + C
C[i] = 1/BJi]

D[i] = sqrt(C[i])

ENDFOR

=

Forib=0TO N-1 DO
B[ib+1] = C[ib] * X + C
C[ib+1] = 1/B[ib+1]

ENDFOR

Forib =0 TO N-1 DO
Alib+1] = Afib+1] + BJib]

Forib=0TO N-1 DO
D[ib+1] = sqrt(C[ib+1])

| = N+1

Loop Fusion

= Merge two loops to reduce the memory accesses

= BJi] is reused

» |nstruction cache should be large enough to have both
function fand g

Fori=1TON DO Fori=1TONDO
B[] = f(A[l]) ‘ B[] = f(A[l])

Fori=1TON DO C[i] = g(BIi])
CIi] = g(B[i]) ENDFOR

CS-ES

Loop Tiling

= |Improve register/cache locality
= Split a loop nest into tiles (blocks)

for 1 =1 ton for tJ = 1 to n step 64
for J =1 to n for t1 = 1 to n step 64
a[i,j] = b[j.,1]; t> for 1 = t1 to min(ti+63,n)
for J = tjJ to min(tj+63,m)

alr.31 = b[y,1];

CS-ES . 58-

Loop unrolling

= for (j=0; j<=n; j++)
" pll=-..;

CS-ES

£

for (j=0; j<=n; j+=2)
{
pll= .. ;
p[j+1]= ...

factor = 2
Better locality for access to p.
Less branches per execution of the loop.

More opportunities for optimizations.

Tradeoff between code size and
improvement.
Extreme case: completely unrolled loop (no

branch).
- 59 -

Parallel loads and memory bank assignement

CS

Egequentlally

By Lee and Tiwari

Formulated as a graph-partitioning problem

Solved by simulated annealing

Cost function

« # of execution cycles required to accomplish all of
the memory transfers indicated by the graph

Graph

* Vertex: variable

 Edge: there exists an ALU operation requiring two
variables as arguments

« After partition

If an edge crosses partition, possible to compact two

memory transfers into a dual-load operation

If not, two memory operations are performed

- 60 -

Parallel loads and memory bank assignement

e Example code e Corresponding access graph ~ RAMA RAM B
ADD R, « a,e

ADD R, <« e,b
ADD Ry « a,b
ADD R, « b,d
ADD Ry « a,cC
ADD R, « c,d

e Total cost
o e(ae)=2
e All others =1
o Total=7

reg. reg.

l

CS-ES el

Roundup - MIPS Energy Optimization

= Software Optimization by Instruction Reordering
* Only inter-block optimization
= Depends on algorithm and base block size
» Optimization result between 0-15%
= Sometimes pipeline stall can be avoided: up to 25%

= Conclusions Energy Optimization
» Effects at instruction-level 5%-10% (literature)

= Source-level transformations necessary

= Power-aware programming
= Total profile/energy effected by memory system and periphery

CS-ES - 62-

