
- 1 -CS - ES

Embedded Systems

- 2 -CS - ES

Codesign Definition and Key Concepts

 Codesign
 The meeting of system-level objectives by exploiting the

trade-offs between hardware and software in a system
through their concurrent design

 Key concepts
 Concurrent: hardware and software developed at the same

time on parallel paths
 Integrated: interaction between hardware and software

development to produce design meeting performance
criteria and functional specs

REVIEW

- 3 -CS - ES

HW/SW Cosimulation

Typical Codesign Process

System
Description
(Functional)

HW/SW
Partitioning

Software
Synthesis

Interface
Synthesis

Hardware
Synthesis

System
Integration

Concurrent processes
Programming languages

Unified representation
(Data/control flow)

Instruction set level
HW/SW evaluation

SW HW

FSM-
directed graphs

Another
HW/SW
partition

REVIEW

- 4 -CS - ES

Main Tasks of the Codesign Problem

 Specification of the system
 Hardware/Software Partitioning

 Architectural assumptions - type of processor, interface style
between hardware and software, etc.

 Partitioning objectives - maximize speedup, latency
requirements, minimize size, cost, etc.

 Partitioning strategies - high level partitioning by hand,
automated partitioning using various techniques, etc.

 Scheduling
 Operation scheduling in hardware
 Instruction scheduling in compilers
 Process scheduling in operating systems

 Modeling/Simulation of the hardware/software system
during the design process

REVIEW

- 5 -CS - ES

Issues in Partitioning

 Specification abstraction level
 Granularity
 System-component allocation
 Metrics and estimations
 Partitioning algorithms
 Objective and closeness functions
 Partitioning algorithms
 Flow of control and designer interaction

REVIEW

- 6 -CS - ES

Partitioning Methods

 Exact methods
 Integer Linear Programming (ILP)
 …

 Heuristic methods
 Constructive methods

• Random mapping
• Hierarchical clustering

 Iterative methods
• Kernighan-Lin Algorithm
• Simulated Annealing
• …

REVIEW

- 7 -CS - ES

Example: Hierarchical Clustering REVIEW

- 8 -CS - ES

Iterative Partitioning Algorithms

 The computation time in an iterative algorithm is
spent evaluating large numbers of partitions

 Iterative algorithms differ from one another primarily
in the ways in which they modify the partition and in
which they accept or reject bad modifications

 The goal is to find global minimum while performing
as little computation as possible

A
B

C
A, B - Local minima
C - Global minimum

- 9 -CS - ES

And
more …

MSc THESIS, Roel Meeuws, 2007, Delft

- 10 -CS - ES

 Architecture Synthesis

 HW/SW Codesign

 Power Aware Computing

• (mobile) PA Embedded Systems

• Power Aware Computing - Introduction

• Power Optimization

• Power Estimation

- 11 -CS - ES

Processing units

Need for efficiency (power + energy):

“Power is considered as the most important constraint in
embedded systems“
[in: L. Eggermont (ed): Embedded Systems Roadmap 2002, STW]

Energy consumption by IT is the key concern
of green computing initiatives (embedded
computing leading the way)

Why worry about
energy and power?

http://www.esa.int/images/earth,4.jpg

- 12 -CS - ES

Motivation (1)

– Rapidly growing market for portable devices
– Requirements: light weight, long battery life, high performance,

security
– Moore‘s law
– Battery technology can‘t keep up with that pace

- 13 -CS - ES

Power and energy are related to each other

 dtPE

t

P

E

In many cases, faster execution also means less energy,
but the opposite may be true if power has to be increased
to allow faster execution.

E'

- 14 -CS - ES

Low Power vs. Low Energy Consumption

 Minimizing power consumption important for
• the design of the power supply
• the design of voltage regulators
• the dimensioning of interconnect
• short term cooling

 Minimizing energy consumption important due to
• restricted availability of energy (mobile systems)

– limited battery capacities (only slowly improving)
– very high costs of energy (solar panels, in space)
– RF-powered devices

• cooling
– high costs
– limited space

• dependability
• long lifetimes, low temperatures

- 15 -CS - ES

Design Constraints (1)
- Battery-powered vs. RF-powered devices

– Battery-powered devices
Requirement: long lifetime (ENERGY opt.)
• avoidance of intervals of high discharge current
• reduction of average load current
• allow the battery to recover (power idle states)

– RF-powered devices

Requirement: no reset and stable communication
(POWER opt.)

• avoidance of energy consumption exceeding the
budget available from the field and internal
capacities

- 16 -CS - ES

Hybrid
E-Drive

Petrol

PQ35/A5 (2003):
VW Golf (5. Gen.), VW Jetta (5. Gen.),

Škoda en.), Seat Leon (2. Gen.),
Seat Toledo (3. Gen.), Audi A3 (2. Gen.), …

LCD

Diesel Texas Instruments
TI C5000

Da Vinci

Application
1

Algorithm 1

Application
2

Algorithm 2

Battery

OMAP
(Open Mobile
Application
Platform)

SUV
OLED

LINUX
MS

WINDOWS

Young driver

Old driver
Race
driver

Automatic
gearbox

Manual
gearbox

Responsible for
the consumption
(fuel/energy) after

production

ARM

NEFZ “There’s a great deal that software can contribute to
making a system manage power more effectively.”

Richard Wirt
Intel Senior Fellow,

General Manager, Software
and Systems Group

WLAN

CAR ES

platform

- 17 -CS - ES

Power Aware Computing

 Power aware computing

 Low power design

 Mobile devices
 high performance
 small
 less power consumption

 Temperature Aware Computing (in general
purpose processors)

System

Power-saving Potential

Algorithm / Behaviour

Architecture

Circuit / Logic

Physical Design

Technology

Design Level

- 18 -CS - ES

Power/Energy Optimization Levels
 HW level

• Low power design (transistors, gates, clock gating, …)

 Machine code optimization
• Operand switching
• Instruction reordering: minimize circuit state overhead
• Instruction replacing: use low power instructions

 Source level optimization
• Algorithmic transformations: simplify computation by reducing quality

of service
• Loop optimization

 HW-System level Power Optimization
• Data Representation (bus encoding)
• Memory Design Optimization (access, architecture, partitioning)

 System Level
• Dynamic Power Management
• Dynamic voltage scaling / dynamic frequency scaling
• Remote processing

- 19 -CS - ES

Introduction

- 20 -CS - ES

Introduction

Power Leakage...
Power Switching...

PowerCircuit Short ...

LK

SW

SC

LKSWSC

P
P
P

PPPP 

Minimize Ileak by:
 Reducing operating

voltage
 Fewer leaking

transistors

Ileak

Iswitch
ISC

- 21 -CS - ES

Introduction

Power consumption of CMOS
circuits (ignoring leakage):

frequency clock
voltagesupply

ecapacitanc load
activity switching

with

:
:
:

:

2

f
V
C

fVCP

dd

L

ddL





 

) than
voltage threshhold

 with

ddt

t

tdd

dd
L

VV
V

VV
VCk






(
:

2

Delay for CMOS circuits:

Decreasing Vdd reduces P quadratically,
while the run-time of algorithms is only linearly increased

- 22 -CS - ES

Switching Power Minimization

 Supply Voltage Scaling
 VDD versus delay
 Compensation of delay overhead
 ... Reduces circuit speed and throughput
 Different voltage domains on a chip (Unified power

format UPF)

 Switched Capacitance Optimization

SWLeff ECC *

- 23 -CS - ES

 Accellera defined the Unified Power Format (UPF) to fit
requirements

 IEEE standardization as project 1801

 UPF supplement common HDLs

 UPF extends the functional spezification with low power
intent

 UPF is spezified in a seperate file

Unified Power Format (UPF)

- 24 -CS - ES

UPF by example

 45nm TSMC library
 4 Domains, 2 Hierarchies

 Top Level – 1.0v constant
 Secondary level SUB0

• 0.99v switched constant
 Secondary level SUB1

• 0.89v constant
 Secondary level SUB2

• 0.89v constant

Diagram from Andrew

Domain1
constant

ISO

VDD GND

PM ctrl
logic

- 25 -CS - ES

Diagram from Andrew

Domain1
constant

UPF – domain creation

create_power_domain top -include_scope
create_power_domain SUB0 -elements {u0}
create_power_domain SUB1 -elements {u1}
create_power_domain SUB2 -elements {u2}

UPF Commands

u0 u1 u2

- 26 -CS - ES

UPF – supply network creation

#Supply net creation for domain top
create_supply_net VDD -domain top
create_supply_net VDD_SUB1 -domain top
create_supply_net VDD_SUB2 -domain top
create_supply_net GND -domain top

#Supply net creation for domain SUB0
create_supply_net VDD -domain SUB0 -reuse
create_supply_net VDD_SUB0_SW -domain SUB0
create_supply_net GND -domain SUB0 -reuse

#Supply net creation for domain SUB1
create_supply_net VDD_SUB1 -domain SUB1 -reuse
create_supply_net GND -domain SUB1 -reuse

#Supply net creation for domain SUB2
create_supply_net VDD_SUB2 -domain SUB2 -reuse
create_supply_net GND -domain SUB2 -reuse

Diagram from Andrew

Domain1
constant

UPF Commands

- 27 -CS - ES

Power Management: Source & Flow

 The traditional Synthesis flow
 Is augmented with Power

 Power source files are part of the
design source.

 Combined with the RTL, the power
files are used to describe the intent
of the designer.

 This collection of source files is the
input to several tools, e.g.,
simulation, synthesis, STA, test,
formal verification, power
consistency checking.

 The details of the “What” (IP
developers  low power) and the
“How” (System Integraters) are often
produced by different parties.
 Design refinement

Power Source
File(s)

Power Source
File(s)

Power Source
File(s)

S
im

ul
at

io
n,

 L
og

ic
al

 E
qu

iv
al

en
ce

 C
he

ck
in

g,
 …

Verilog
(Netlist)

Synthesis

Verilog
(Netlist)

P&R

HDL/
RTL

- 28 -CS - ES

Voltage domains

NOP





-

-

NOP

1

2
3

4

Vdd=3.3 V

Vdd=5,0 V

converter

- 29 -CS - ES

RTL Optimization

- 30 -CS - ES

RLT Power Optimisation

 Dynamic Power Management (DPM)
 Shut down the blocks which are not in use during some particular clock

cycles
 Approaches:

• Pre-computation
Selectively pre-compute the circuit output value before
they are required Identify small and efficient predictor functions

• Operand-Isolation
Identify redudant computation of datapath components and
isolate them. Can be implemented in HDL

• Clock-Gating
• …

- 31 -CS - ES

Clock Gating

 Stop the clock to registers which are not in use

 Activity-driven clock gating
 Clock gating should not be applied to high switching activity

registers, choice is based on threshold

- 32 -CS - ES

Clock tree

- 33 -CS - ES

Software Power Estimation/Optimization

- 34 -CS - ES

“Software” Power Dissipation

 Memory System

 For portable computers: 10% - 25%

 Reading/writing memory
• High capacitive data, address lines

 Cache
• Avoid Cache Misses -> memory access expensive
• Smaller
• Shorter and less capacitive data, address lines
• Higher performance and more energy efficient

- 35 -CS - ES

“Software” Power Dissipation

 Busses

 High capacitance components

 Multiple busses
• Address
• Instruction
• Data

 Switching activity determined by software
• Instruction bus: sequence of op-codes
• Address bus: sequence of data and instruction accesses

- 36 -CS - ES

“Software” Power Dissipation

 Data Paths

 ALU (Arithmetic Logic Unit)

 FPU (Floating Point Unit)

 Pipelining, Parallelism
• More stages active
• Multiple execution units

 Energy to evaluate expression
• Shift left vs. multiply by 2

- 37 -CS - ES

“Software” Power Dissipation

 Other sources

 Control logic

 Clock distribution

 Each instruction cycle -> energy consumption

 Less cycles -> less energy
• Make programs fast!

- 38 -CS - ES

Generic Energy Model

 The overall energy consumption is split into 4
parameters
 Ei instruction dependent energy dissipation

• Independent on source and target operands and operand values
• Estimation based on base cost and CSO (Tiwari et all.)

 Ed data dependent energy dissipation
• Energy consumption of each instruction depends on operands and operand values
• Hamming distance and hamming weight

 Ec energy dissipation of the cache system
• Cash hit / miss

 EP memories and peripherals
• Power state models

 Huge number of parameters, which have to be
characterized





totaln

n
pcditotal nEnEnEnEE

0
)]()()()([

- 39 -CS - ES

Concept

F E M A W

MMDU AMDU WMDU

I-Cache

Adder Multiplier

Logic Unit Shifter

Internal Busses

Register File
D-Cache

External
System

Ecycle= Einstr + Edata + Ecaches + Eexternal

- 40 -CS - ES

Instruction-level power modeling

 BC … Base Costs
 CSO … Circuit State Overhead
 IIC … Inter Instruction Costs
 #CC … Number of clock cycles
 N … Number of instructions
 i … average current

CC

IICCSOBC
i

N

j

N

j

N

j
jjjj

#
1

1

1 1
1,  





 
 



- 41 -CS - ES

Instruction Path Characterization

Basecosts:

10: loop:
20: add t0, t1, t2
30: add t0, t1, t2
40: add t0, t1, t2
50: ...
2000: b loop
2010: nop

• Independent to the previous state
• Excludes pipeline stalls, cache

misses, bus switching, …

• Instruction sequence for characterization
• Repeat the same instruction in a

loop
• Should be long enough to amortize

the loop overhead (jump statement
at the end of the loop)

• But, short enough not to cause
cache misses

• Calculate the average power and
energy

• By measuring the current,
supply voltage and # of
execution cycles per instruction

- 42 -CS - ES

Instruction Path Characterization

Circuit State Overhead:

10: loop:
20: add t0, t1, t2
30: or t0, t1, t2
40: add t0, t1, t2
50: or t0, t1, t2
60: ...
2000: b loop
2010: nop

• Associated “power”cost
• Instruction bus as the op-code

switches
• Switching of control lines
• Mode changes within the ALU
• Switching of data lines to

reroute signals between ALU
and register file

• Pair-wise characterization
• Large space

- 43 -CS - ES

Instruction Path Energy Dissipation
 Considers only instruction flow in pipeline

 Base Costs (BC)
 Circuit State Overhead (CSO)

BCAND BCADD BCADD BCSW BCOR

CSO CSO CSO

AND … ADD … SW …ADD … OR…

 





k

n

k
i kkinstrkinstrCSOiBCE

1

0
)],1[],[()(

- 44 -CS - ES

Instruction-level power modeling

 Inter Instruction Costs

 Instruction/data cache misses
 Exceptions
 In general: pipeline stallings
 Characterization: Define Assembly programs which cause such

costs

- 45 -CS - ES

Instruction Path Characterization

 Measurement Setup
 High precision ampere meter
 Measurement of the average current

 BC, CSO calculation

i

istallstallijnopnopiii

N
BCNBCNCBT

jiBC


 ,,,),(









  
 

MDU IUn

k

n

k
knopj kiBCkiBCBCSCjiiCS

1 1
21,21),(),(

2
1),,(

- 46 -CS - ES

Instruction Path Energy Dissipation

 Basecosts
 Nearly constant
 Fast characterization possible

 Circuit State Overhead
 Strong variation
 High characterization effort

First
instruction

Second
instruction

Overhead compared to BCnop

- 47 -CS - ES

Data Path Energy Dissipation

Register
File

Read

Adder

Logic
Unit

Shifter

Memory
Unit

Data
Cache

Load
Aligner

Register
File

Write

E-Stage M-Stage A-Stage W-Stage

- 48 -CS - ES

Data Path Energy Dissipation

 Considers only data flow

 Data path model consists of functional units
 Adder, Multiplier, Logic Unit, Shifter
 Macro models for power estimation

10: add t0, t1, t2

20: add t3, t4, t5

30: add t0, t1, t2

40: add t3, t4, t5

t1 = t2 = 0

t1 = t2 = 0

t4, t5 = variable

t4, t5 = variable

- 49 -CS - ES

Data Path Energy Dissipation

0

5

10

15

20

25

30

35

40

45

0

00
00

00
FF

00
00

FF
00

00
00

FF
FF

00
FF

00
00

00
FF

00
FF

00
FF

FF
00

00
FF

FF
FF

FF
00

00
00

FF
00

00
FF

FF
00

FF
00

FF
00

FF
FF

FF
FF

00
00

FF
FF

00
FF

FF
FF

FF
00

FF
FF

FF
FF

R1 = V, R2 = 0 R1 = 0, R2 = V R1 = R2 = V

Power footprint of the adder
- Symmetric behavior
- Depends on hamming distances
- same behavior for add, sub, ... with

regard to the arithmetic function

0

5

10

15

20

25

30

0

00
00

00
FF

00
00

FF
00

00
00

FF
FF

00
FF

00
00

00
FF

00
FF

00
FF

FF
00

00
FF

FF
FF

FF
00

00
00

FF
00

00
FF

FF
00

FF
00

FF
00

FF
FF

FF
FF

00
00

FF
FF

00
FF

FF
FF

FF
00

FF
FF

FF
FF

R1 = V, R2 = 0 R1 = 0, R2 = V R1 = R2 = V

Power footprint of the logical unit
- Asymmetric behavior
- Depends on hamming distances

- 50 -CS - ES

Software Power Estimation

MIPS Debug Interface

GNU Debugger
Ashling Pathfinder

cycle-accurate
MIPS 4KSc
Simulator

Energy models

Config
File

Energy
Info-File

Power Analyzer

- power profile
- execution path analysis

- 51 -CS - ES

System Integration of IS Power Simulator

Huge number of parameters, which have to be
characterized  automated characterization

- 52 -CS - ES

Automated Characterization

Testbench Generator
 Creates all needed testbenches for a complete characterization

Analysis and evaluation unit
 Signal preparation and parameter extraction

Flow controller
 All steps are controlled by the central flow controller - GUI

- 53 -CS - ES

Automated Processor Characterization
• Use case:

– 8051 based secure s
smart card platform

– ARM7TDMI

- 54 -CS - ES

Compiler Optimization Techniques

 Reducing memory accesses
 Control Flow Transformations
 Special Data Structures
 Optimized utilization of registers and cache to avoid external

memory access

 Low power code generation
 Usage of low energy instructions, e.g., Shift left vs. multiply by 2
 Instruction scheduling for lower switching activity,

MULT .. after MULT…
 Alternative register assignments
 Operand Sharing / Swapping (reduction of CSO)

- 55 -CS - ES

Compiler Optimizations
Optimization Techniques (2)

 Quality of Result / Service
 Quality depends on available energy
 Data Types (e.g. float instead of double)
 Lower quality of multimedia data

 High-Level Code Transformations
 Loop Fission
 Loop Fusion
 Loop Tiling
 Loop Unrolling

- 56 -CS - ES

Loop Fission

 Split a loop into independent loops
 Achieve temporal locality
 When the instruction cache is small

- 57 -CS - ES

Loop Fusion

 Merge two loops to reduce the memory accesses
 B[i] is reused
 Instruction cache should be large enough to have both

function f and g

- 58 -CS - ES

Loop Tiling

 Improve register/cache locality
 Split a loop nest into tiles (blocks)

for i = 1 to n
for j = 1 to n

a[i,j] = b[j,i];

for tj = 1 to n step 64
for ti = 1 to n step 64

for i = ti to min(ti+63,n)
for j = tj to min(tj+63,m)

a[i,j] = b[j,i];

- 59 -CS - ES

Loop unrolling

 for (j=0; j<=n; j++)
 p[j]= ... ;

for (j=0; j<=n; j+=2)
{

p[j]= ... ;
p[j+1]= ...

}

factor = 2
Better locality for access to p.
Less branches per execution of the loop.

More opportunities for optimizations.

Tradeoff between code size and
improvement.
Extreme case: completely unrolled loop (no
branch).

- 60 -CS - ES

Parallel loads and memory bank assignement
• By Lee and Tiwari
• Formulated as a graph-partitioning problem
• Solved by simulated annealing
• Cost function

• # of execution cycles required to accomplish all of
the memory transfers indicated by the graph

• Graph
• Vertex: variable
• Edge: there exists an ALU operation requiring two

variables as arguments
• After partition

• If an edge crosses partition, possible to compact two
memory transfers into a dual-load operation

• If not, two memory operations are performed
sequentially

- 61 -CS - ES

Parallel loads and memory bank assignement

- 62 -CS - ES

Roundup - MIPS Energy Optimization

 Software Optimization by Instruction Reordering
 Only inter-block optimization
 Depends on algorithm and base block size
 Optimization result between 0-15%
 Sometimes pipeline stall can be avoided: up to 25%

 Conclusions Energy Optimization
 Effects at instruction-level 5%-10% (literature)
 Source-level transformations necessary
 Power-aware programming
 Total profile/energy effected by memory system and periphery

