Embedded Systems

CS-ES

. . REVIEW
What Is a requirement ?

» Describes what the system should do but not how to implement it

= |EEE 1012 standard
(IEEE= Institute of Electrical and Electronics Engineers)

= A condition or capability of the system needed by a user to solve a problem
or achieve an objective

= A condition or capability that must be met or possessed by a system... to
satisfy a contract standard, specification, or other formally imposed document

Solution Space

User Space
NEEDS—

= Ranges from a high-level abstract statement of a service (function, feature)
or of a system constraint to a detailed mathematical functional specification

CS-ES

—| Requirements
Source: [SRE09]

- 2.

Examples of functional requirements REVIEW

* When the Memory receives a READ request it shall
transmit the data at the given address to the controller.

* When the Memory receives a WRITE request it shall
store the data to the given address.

* When the Memory receives a READ request it shall
transmit the data at the given address to the controller
within 55,70ns.

CS-ES . 3.

. . REVIEW
Non-functional requirements

= Product requirements
= Requirements which specify that the delivered product must have certain
gualities e.g. execution speed, reliability, etc.
» 8.1 The memory shall have an equal cycle time of 55,70ns. (functional)
» 8.2 The operational voltage of the memory shall be between 4,5V and 5,5V.

= Qrganisational requirements

= Requirements which are a consequence of organisational policies and
procedures e.g. process standards used, implementation requirements, etc

* 9.3.2 The system development process and deliverable documents shall conform to
the process and deliverables defined in XYZCo-SP-STAN-95.

= External requirements

= Requirements which arise from factors which are external to the system and its
development process e.g. safety, interoperability requirements, legislative
requirements, etc

CS-ES . 4-

Mealy automaton REVIEW

= Definition:
M=(l, O, S, s,, 0, A) Is a Mealy automaton iff
» | is a finite, non-empty set (input symbols),
= O is a finite, non-empty set (output symbols),
S is a finite, non-empty set (states),
S --- Initial state,
0 : S x| = S (transition function),
A .S £1!0 (output function).

. w/0 w/l
= Example for representation: <ﬂ

c/3 c/l

S

StateCharts REVIEW

StateCharts = the only unused combination of
Jlow" or ,state* with ,diagram® or ,charts*

Based on classical automata (FSM):
StateCharts = FSMs + Hierarchy + Orthogonality +
Broadcast communication

Industry standard for modelling automotive applications

Appear in UML (Unified Modeling Language), Stateflow,
Statemate, ...

Warning: Syntax and Semantics may vary.

Start with brief review on Finite State Machines.

CS-ES . 6-

Introducing hierarchy REVIEW

FSM will be in exactly
one of the substates of S
If S iIs active

l OR-super-states (eitherin Aorin B or..)
S

f
P e superstate

(WEAe)"(c) o) ~(¢)
\ *\\\\\ \:\\ \
Rk RN
substates

CS-ES 7.

Default state mechanism REVIEW

S

.

= Filled circle indicates T
sub-state entered ° 5 e h ° | o j e
whenever super- ™~ /
state Is entered. K'&é

= Not a state by itself!

= Allows internal i |

7
-

structure to be 4 N

hidden for outside ,
OO 00020

world

CS-ES . 8-

History mechanism

S
.
f
8, (W=)
\é

* For event m, S enters the state it was in before S was
left (can be A, B, C, D, or E). If S is entered for the very
first time, the default mechanism applies.

.

CS-ES . 9.

General form of edge labels REVIEW

‘ event [condition] / action ‘
Meaning:

= Transition may be taken, if event occurred in last step and
condition is true
= |f transition is taken, then reaction is carried out.

Conditions:
= Refer to values of variables

Actions:
= Can either be assignments for variables or creation of events

Example:
= a&[x=1023]/ overflow; x:=0

CS-ES - 10-

Example

.\.O elal O [c] /a2 O

s
e: i
at: i
az. T
a ' fins
> time
e: Iy
aft. i
az. ?
: true
c— | — false

Wattenhofer, ETHZ

CS-ES

- 11 -

Concurrency REVIEW

= Convenient ways of describing concurrency are
required.

* AND-super-states: FSM is in all (immediate) sub-
states of a AND-super-state; Example:

answering—machine

on

4 line—monitoring key—monitoring (excl. on/off) R

T
|
|
ring | key pressed
ot [o | o [o
| -
|
|
|
|
|
|

(caller)

ﬁ hangup i done

- /

CS-ES - 12 -

Types of states REVIEW

In StateCharts, states are either

= pasic states, or
= AND-super-states, or

= OR-super-states.

CS-ES . 13-

Edge labels evaluation REVIEW

Three phases:
1.Effect of external changes on events and
conditions is evaluated

swap

fa:=1; b:=0 2.The set of transitions to be made in the
current step and right hand sides of
assignments are computed

3.Transitions become effective, variables

e/b:=a obtain new values

efa:=b

* |n phase 2, variables a and b are assigned to temporary
variables. In phase 3, these are assigned to a and b. As a
result, variables a and b are swapped.

* |n a single phase environment, executing the left state
first would assign the old value of b (=0) to a and b.
Executing the right state first would assign the old value
of a (=1) to a and b. The result would depend on the

execution order.
CS-ES - 14 -

The super-step time model (2) REVIEW

computation of the statechart is

n el I I . resumed when
TWO dlmenSIOnaI tlme' « external changes enable
‘ transitions in the statechart ®
.)) » Timeout events enable transitions ®
No. of discrete After a super—sterpu,npnt;zzlcal time restarts of the statechart e
computation : v
P discrete activity ceases, -
S rogress of physical ® e -
f. o9 lo:to pitysee @ Continuous phase:
ihe-Sasagen ® Phys. time advances,
e no discrete steps
10+ ® . Asuper-stepis a sequence of steps.
[
* A super-step terminates when the status of the
b system is stable.
®
@ - During a super-step the time does not proceed
5 ° and thus external changes are not considered.
fI\ A discretely perceptible event (threshold, elapse of clock)
occurs, starting discrete activity
0

Physical time -
= Assumption: Computation time is neglegible compared to dynamics of

the environment.

CS-ES - 15-

Another point of view

external events-,

state { L stable L stable
transitions I 4 state 1 T_. A state ot
| _/ ~—o

-’
o

o

transport of intérnal events step

Wattenhofer, ETHZ

CS-ES

- 16 -

Use case — logistic system

Charakteristica

+Complex
+Client spezific

+Reactive

WAMAS - A |WAMAS - P/A WAMAS—P

Different approaches to earn money with
software

= Write software. Burn CD. Box it. Sell to everyone.

roblem!).

= Customers need solutions to their problems

= individual, working solutions ! flexibility !

= Software REUSE

CS-ES

- 18 -

IDEA

éSystcm's
- = Control Computer System Femm———— , | iUser Interface
?:_ = P ——— - - -- - 1 pd = - y ™~} ‘.i__ - e e
s : S 1 S Tt -
i L -J\'r_ T el '
1 [y 1
Ui R I !
Control Computer Conltrol Process J 1
2| :
2 [
I Operatio \J:s! g / Datahasc '
[| |
m . C)
, S Control Protocel
Physical Logistic _Vmua] Sy:item . =, ; '
System nvironment Simulation 8 5 L]
Model S 2 l'- - - = =g - '
‘ : 3 B - o a M e e e e e ==y g 1
Construction ~ \"_.“Mode.'l'ng g = 11 = 1
_____ 2T = 2 -
! Logistic Site i : PLC _')
| __ _Layour _ _ _, : !
:]
2 1
Figure 1. Environment simulation for software ; o :
- - 5 - - — - - — .I
testing g =3 Sensors Actors I I
g :] Controls : L
= Mechanical Layer L 3

Figure 2. Control architecture of automatic lo-
gistic systems

CS-ES - 19 -

e & W G5 N GR W U WD A W GP N AR O B O B e e w W

Modeling domains

= Geometry domain(=>MODSIM)
» Topology (elements, parametrisation)
= Movements (animation, Interfcaces)

= Control domain (=> STATEMATE)

= Communication protocols (to central computer)
» Scheduling of the transport orders

= Different tools=>Cosimulation

CS-ES

- 20 -

Example- High rack warehouse

Software under development

Leitsystem 1 o
y |~ .@@
=Sa
i 11 | RBGI 1 L | REG? 1 1 | VZS L~ 3
- - 1
LR || m LR || m LR || m
komm| | 7 § konm| | & § konm| | g
S ® E & S e w@%
STATEMATE STATEMATE STATEMATE
Modell RBG Modell RBG Modell VZS g
Signale Signale Signale @f
o
~ T -
. v ~a \\ . ?
\I : \\\ \\ \\ 'l *‘&0\
‘. //,(///////\/~/////X/\\
[§ - o N
B T 77 777777777 F 77 X
N A 7.7 0 L L A A A A A A & A & & 2
) 1
/////I‘////////////
VA VA EE WA eed o
. o
L LS LSS LS Lager «BQQ‘
M ODSIV Modell
-

CS-ES

- 21 -

What do we find ?

. Something to store + handle

=4

Goods

+
optional (secondary)

Carrier/container

Carrier device
CS-ES (Pallet,container,...)

o= !j

| 2

Transport unit types

Dimensions

« Carrier type

e Etc.
User-defined !
Instance

Transport updt

Models and meta-models

Meta-Meta- Transport device type ,handled by* Transport unit type
Model level: - type name association « type name
_ e restrictions e gross dimensions
Domain * net dimensions
knowledge — y * load carrier
(stable) *

P, Transport device |
eta-Moae R types
level: !

Types and
Associations

,handled by*

associations

(user defined) Transport upit types

Concrete transport

Model level: - - Concrete transport units

_ (incl. load info)
Things &

relations

present in .
facility: < _
(operationga&‘ =, | € X 5

Storage visualization

El WHO56 Lagerspiegel Komplettes Regal x|

= Generic software E"'B"::';"S‘eslz'l
mOdUIe (:reuse!) I-(r:)mmplatz Schnellerfassung l Vorlges I

= Visualization of storage RIRRERERRREE EpEseeis : FNmL.d:

= Different planes Rega o
= Operations on locations m
= Lock/unlock

Regal 1

= Data maintenance

= Content .

* Transport job = pBi Scriiszen |
CS-ES |Arﬂke||ﬁ]_[g|666 | [2] [coooo] [=] I

Benefits

= Customer

= Change topology model, etc. (himself)
« Add/remove locations, routes, types, transport
facilities
= Analyst/project planning
* |nitial goods flow and storage modeling
= Can use the language he knows

* Programmer
= Generic storage allocation algorithm
» Generic storage visualization
= Generic transport routing & optimization
» Generic goods flow & picking planning
= . plugins® for different warehouse types

“generic” = software reuse
CS-ES

- 26 -

Environment simulation " early, in-house tests

Virtual warehouse " Cuts costs (on-site stays
= earlier, longer tests
possible

= faster movements

WAMAS WAMAS - qwck_(re-)_arrangement for
Warehouse mgmt & Warehouse mgmt & test situations
cqptrol] = visualization: better overloo
= Training
= o—
PLC PLC L I___L1LLypl Controller
ydel behavior model
Mechanic componen Mechanic components | |_ain | | Y Spatial domain
model

Virtual warehouse

Physical warehouse Simulation model

CS-ES . o7

CS

WATIS?

Environment simulation

| | | B
i
Erase set to delete,
iitipcio + xwd > stmrun,xwd
Simulation Execution: RBG

e View Go Heverd Analyze dAcizZens Displays Opiens Hely

| |
Hessages

field in a union: $TS01.U.TS.GB1:=A1~IST_BELEG

{E2833) Cannot evaluate expression; refers to a non-current

field in a union: $TS01.U.TS.GB1:=A1"IST_BELEG

[C_LAM, 0K1/A_BEGZY SRS RS, (o
[Time: 00:01:47.499.999.999 = 107.5 clock units (2} Step: 2788 e
= Panel:TEST (2]
TYP 2P0SI..,- ----------------- -.-----; --------- P =
= m"m —(m ¥
G0 |— 2x|[C o ED -
Controls Setup Explosions
TA: TA_SOLL.NR LAH X IO ﬁﬂ 5§| @F
rononoan|] i =1 |
TSz
I]DI] A0 i = = —
55: 071 Hessages
ISTPOS | EI | D Go ahea

=] xterm o

BZQ: IPDS{(Z.X.Y»=(5.5.10) GB=(0,0) BZ=0x 4 0 0 0 0 O

BZQ: IPOS{Z.X.Y»={5.7.10) GB=(0,.0) BZ=0x 4 0 0 0 0 O

TSQ: NR=2 LAM=1 LB=1 ZP0S{(Z.X.Y.GB1.GB2>=(5,10,10.0,.0) LS/LF=2-/0
TARQ: NR=2 LAM=1 LB=7 ZP0S{Z2.X.Y.GB1.GB2»=¢(5,10,.10,0,0) LS/LF=0-0
TSQ: NR=2 LAM=0 LB=0 ZP0S{(Z.X.¥Y.GB1,.GB2)>=(0,0.0,0,0) LS/LF=0/0
TAQ: NR=2 LAM=1 LB=7 ZP0OS(Z.X.Y.GB1.GB2>=(5,10.10,0.0) LS/LF=0-/0
TARQ: NR=1 LAM=1 LB=7 ZP0S{(Z.X.Y.GB1,.GB2}=(5.10,.10,0.0) LS/LF=0-0
TSQ: NR=1 LAM=0 LB=0 ZPOS{(Z.X.¥.GB1,GB2)=(0.0,.0,0,.0) LS/LF=0/0
TAQ: NR=1 LAM=1 LB=1 ZP0OS(Z.X.Y.,GB1.GB2>=(3,10.10.0,0) LS/LF=4/0
TSA: NR=1 LAM=1 LB=1 ZP0OS{(Z,.X.¥.GB1,.GB2»=(3.10,10.0,.0} LSALF=0-0
TSQ: NR=1 LAM=1 LB=1 ZP0OS{(Z.X.Y.GB1.GB2)=(3.10,.10.0.0) LS/LF=4-0
TSQ: NR=1 LAM=1 LB=1 ZP0S{(Z.X.Y.GB1.GB2>=(3,.10.10,.0,.0) LS/LF=1-/0
BZQ: IPOSK(Z.X.Y»=(5.9.10) GB=(0.0) BZ=0x 4 0 0 0 O
BZQ: IPDS{Z.X.Y>»=(5.7.10) GB=(0.0) BZ=0x 4 0 0 0 O
EZQ: IP0OS{Z,.X.¥?=(5,5.10) GB={0.0) BZ2=0x 4 0 0 0 O

(=Jele]

Results

[

I

Application Model

U

Components

Group || Plant | Conveyors | Racks/Cranes | Protocol || reused | extensions
Type Configuration C-code MODSIM+
manual | __gencrated STATEMATE
Project T
A 120 500 13000 150 || 10000 10
B 80 0 12500 150 || 10000 0
C 50 0 60000 150 || 10000 80
D 50 400 6500 150 || 10000 150
E || 20 50 0 150 || 10000 20

Table 1. Model construction efforts and estimated reuse factor (approximate num

configuration lines)

Table 1 then shows an estimated reuse factor greater than 90 % in each case.
Experience has shown that, with the use of the existing WATIS component library, a complete warehouse
model can be configured in 1-3 days, depending on size and complexity.

Conveyors take approximately twice as long to model as racks and cranes.

CS-ES

- 29.

Results

Phase Duration (days) Table 2 shows a collected phase
In-House On-Site duration metrics for nine automatic
2 logistic software projects. Tests of
g - § projects B, C, D have been supported
5 || 22 w S| 5 by WATIS models, projects U to Z
L S o = < o, . . .
ol g§a 2 'g % = had no environment simulation
A || &+ O = =| @ support. Whereas most of the latter
U 11| 76 4| 35| 34 typically show on-site time around 50
\" 32| 35| 63 18 | 404 % of the total project duration, all of
W 94 | 59| 32| 42| 175 the WATIS supported projects
X 142 | 47| 56 | 53] 212 are well below 30 %, apparently due to
Y 35 8 | 76| 143 | 118 || 4 better software maturity
Z 133] 21| 35| 42| 11]2 in the on-site phases.
B 210§ 44 | 103 10| 69 | 4
C 1731 94| 39| 36| 69 |f 41
D 311102 11| 42 124 19

Table 2. Phase durations and on-site tim
logistic software development projects

CS-ES - 30 -

Use Case 2 - Hybrid Power Management

System

= Heterogeneous closed loop consisting of two
different domain specific models

= Electronic control unit (ECU)
* Modelled with Matlab Stateflow
* High abstraction level
» Stateflow eases readability

= Vehicle electrical system
* Modelled with VHDL-AMS
» Detailed design with high accuracy

= Cosimulation demo of automotive domain

= Demand for a Co-simulation framework

CS-ES

- 31-

Demo Presentation

» The Hybrid Power Management
demo CoSi_hybrid_system can be
found in the “Project Browser” tab
by selecting “User Projects” and

expanding the “testbenches” folder.

= Microcontroller
= Electronic control unit
= Matlab Stateflow

= Vehicle electrical system

= Hierarchical component containing
battery, generator,...

= VHDL-AMS

CS-ES

sy stem rchi signe
Fls Edt Project Srusan Took Help

tor D=

|0 =

TR

> rldas el s ialn

[e

& Tl limeer 20 SR ECLE |

5 Loar oo
st
- LB o5 brbexLortan
|- I th_mhice_seiricd_syse

- IBwehck susten
8 vehick _saten fast
@

Fropertios

Herre [

Inet: Casi_bybrid_system
Deseription

Lol of posrer management
aystem of htrid lecir
eekacles, wlich codans bl
Iathab Stateflow and VHDL -
AMS compunents

ottt Propertn [Giermia]

s

chicle_clechical_msem

§94 9999 54

Fvan_rntage LY
fwen_sutage_HY Ly
Lbat_din L
Lbat_oig_HY
DD _EUI_mete Inam_un
St eur_gereratn I202_dg

g
E: g
Th3 Bib 408

e A b

Cosimulation demo

I -
Sl

i
i

-

Specifying timing in spec. languages

4 types of timing specs required [Burns, 1990]:
» Measure elapsed time
Check, how much time has elapsed since last call
= Means for delaying processes (e.g., wait in VHDL)
= Possibility to specify timeouts
We would like to be in a certain state only a certain
maximum amount of time.
» Methods for specifying deadlines
With current languages not available or specified in
separate control file.

< StateCharts comprises a mechanism for specifying
timeouts. Other types of timing specs are not
supported.

CS-ES - 33-

Concurrency vs. Parallism

= Concurrency is central to embedded systems. A computer
program is said to be concurrent if different parts of the
program conceptually execute simultaneously.

= A program is said to be parallel if different parts of the
program physically execute simultaneously on distinct

hardware (multi-core, multi-processor or distributed
systems)

CS-ES - 34 -

Petri Nets

CS-ES

- 35-

Petri nets
Introduced in 1962 by Carl Adam Petri in his PhD thesis.

Different “Types” of Petri nets known

= Condition/event nets

= Place/transition nets

= Predicate/transition nets
= Hierachical Petri nets,

= Timed Petri nets

CS-ES - 36 -

Mathematics %6013,

E study interesting, g o7
S consistent structures g
S
(ab]
=
Computer Science =ngineering
pu e build practicable,
= . useful structures
-
(«b]
£
g)_ Physics
> predict & measure

“real world” structures

Idealised pragmatic

Claus Reinke, Computing Lab, UKC
CS-ES g - g? -

Simple models of complex worlds

In models of existing systems, automata imply an approximation.

(simpler, but applicable only if their assumptions hold)

In designs of new systems, automata involve over-specification!
(engineers have to implement the assumptions!)

Models can be unrealistic if they are too simple, and
simplifying designs are harder to realise!

CS-ES - 38-

Petri’s nets - complex foundations for
simple models

For his nets, Carl Adam Petri has made an attempt to combine
automata from theoretical CS, insights from physics, and
pragmatic expertise from engineers:

o state is distributed, transitions are localised (space is relevant)
 local causality replaces global time (time as a derived concept)

e subsystems interact by explicit communication
(information transport is as relevant as information processing)

engineers can often ignore the background - Petri nets just work!
(but the background explains why things work, why concepts from

other disciplines, such as logic, have been integrated into Petri nets
so easily, and why foundational research has to continue)

CS-ES - 39-

Application areas

= modelling, analysis, verification of distributed systems
= automation engineering

* pusiness processes
= modeling of resources
= modeling of synchronization

CS-ES

- 40 -

Key Elements

= Conditions
Either met or not met. Conditions represent “local states”. Set of

conditions describes the potential state space.

= Events
May take place if certain conditions are met. Event represents a state

transition.

= Flow relation
Relates conditions and events, describes how an event changes the

local and global state.

= Tokens
Assignments of tokens to conditions specifies a global state.

Conditions, events and the flow relation form
a bipartite graph (graph with two kinds of nodes).

CS-ES - 4] -

Example 2:
Synchronization at single track rail segment

= mutual exclusion:

there is at most one train using the track rail »Postcondition®

/I of x fulfilled

/

train entering track /train leaving track
from the left ! to the right

Preconditions" train wanting \E{ train go/ir(g y

RO to go_right to theeright
of x fulfilled f@—> X e@%— "‘*O\v

~
~
~
~
S o
= > @

(_} track available
—O—_F 2 O

train going
to the left
<——single-laned=——-

CS-ES

Playing the ,token game“: dynamic behavior

train wanting
to go right

train going
to the right

ﬂq:j*

track available

’Loe(ip

-

Ve

CS-ES

train going
to the left

O—

(=

- 43 -

Playing the ,token game“: dynamic behavior

train wanting
to go right

train going
to the right

foq;i"

track available

’Loe(ip

-

Ve

CS-ES

train going
to the left

O—

(=

- 44 -

Playing the ,token game“: dynamic behavior

train wanting train going

to go right to the right

’Loe(j

-

trai

e

-—-.&

track available

P

Ve

n going

to the left

CS-ES

©&—,

(=

- 45 -

Conflict for resource ,track”:
two trains competing

train wanting train going
to go right to the right

A N

@ track available

oG- R e

train going
to the left

CS-ES - 46 -

Condition/event Petril nets

single token per place

Def.. N=(C,E,F) is called a net, iff the following holds
1. C and E are disjoint sets
2. Fc(C xE)u (E xC); is binary relation, (,flow relation)

Def.: Let be anetandletx € (C U E).

N
{y |y F x} is called the set of preconditions.
{y | X F y} is called the set of postconditions.

Example:

train wanting train going
to go right to the right
X

‘\5@\‘,
@ track available

o o R e

train going
to the left

CS-ES - 47 -

Basic structural properties:
Loops and pure nets

Def.. Let (c,e) € C x E. (c,e) is called a loop iff cFe A eFc.

O— =0

Def.. Net N=(C,E,F) is called pure, if F does not contain any
loops.

CS-ES - 48 -

Simple nets

. Def.: A net is called simple if no two nodes nl1 and n2
have the same pre-set and post-set.

. Example (not simple):

Sqmpre

CS-ES - 49 -

Properties of C/E

Def.:

. Marking M’ is reachable from marking M, iff there
exists sequence of firing steps transforming M into M’
(Not.: MPM’)

. A C/E net is cyclic, iff any two markings are
reachable from each other.

. A C/E net fulfills liveness, iff for each marking M and
for each event e there exists a reachable marking M’
that activates e for firing

CS-ES . 50-

Basic examples

| AﬁB Ai\ii
concurrency synchronisation communication

CS-ES - 91 -

More complex example (1)

Amsterdam

Thalys trains between
Cologne, Amsterdam,

The Hague Schiphol

Rotterdam
Antwerp

Brussels and Paris. ostend National Airport
rm."..(?:henl Cologno

Brussels
Aachen

Wions Charleroi

Charles de Gaulle Airport 2 TGV

Mame-la-Vallée
Disneyland® Resort Paris

Paris

[http://www.thalys.com/be/en]
CS-ES - 52 -

Exam P le Th a|yS Amsterdam Cologne
trains: / |

more complex -2 Lo \ 3| B

= Thalys trains between Cologne, }\r}) I_.

Amsterdam, Brussels and Paris.
= Synchronization at Brussels and @ Connectmg

Paris |/. Brussels

+)

Disconnecting

|

& W -
= Places 3 and10: trains waiting in A and C ! '
» Transitions 9 and 2: trains driving from A and C to r‘ X@ I_.

ELEES S Gare du Nord
= T1: connecting the two trains |/' I—-

Paris

= Break for driver P13 | ‘
'_I 8 7 .’1

= T5 synchronization with trians at Gare du Nord \56)/
Gare de Lyon

CS-ES - 93 -

Realistic scenarios need more general
definitions

. More than one token per condition, capacities of places

= weights of edges
. state space of Petri nets may become infinite!

k=2
accepted

pl p4
/ \ Storage p3 \
produc /i\ 5 accep

o0 » |13 t4 consume
send v
k=5
p2 p5
'dle@ ready

k=1 k=2

Producer Consumers

CS-ES - 54 -

Place/transition nets

multiple tokens per place

Def.: (P, T, F, K, W, M,) is called a place/transition net (P/T net) iff
1. N=(P,T,F)is anet with places p € P and transitionst € T
2. K:P — (N {»}) {0} denotes the capacity of places
(o symbolizes infinite capacity)
3. W:F —(N, \{0}) denotes the weight of graph edges

4. My P > Ny U{m} represents the initial marking of places

W (Segment of some net)

S DX

oot 2O 03\; D s
oS T e e
@ O W= 1

CS-ES - 55-

Example

2

P = {p1, p2, p3}

T = {t1, t2}

F={(p1, 11), (p2, t2), (p3, 1), (11, p2), (12, p1), (t2, p3)}

W ={(p1,t1) > 2, (p2, t2) > 1, (p3, t1) > 1, (t1, p2) > 1,
(t2, p1) > 2, (12, p3) > 1}

= m0=(20,1)

/TN

pl p2 p3

CS-ES - 56 -

Reachability

CS-ES

pl

reachability graph

- 57 -

From conditions to resources (1)

» c/e-systems model the flow of information, at a fundamental level
(true/false)

» there are natural application areas for which the flow/transport of
resources and the number of available resources is important (data
flow, document-/workflow, production lines, communication
networks, www, ..)

= place/transition-nets are a suitable generalisation of c/e-systems:
= gstate elements represent places where resources (tokens) can
be stored
= transition elements represent local transitions or transport of
resources

CS-ES . 58-

From conditions to resources (2)

a transition is enabled if and only if
= sufficient resources are available on all its input places
= sufficient capacities are available on all its output places

a transition occurrence
= consumes one token from each input place and
= produces one token on each output place

CS-ES

- 59 -

Specifications

HW-components hardware—design hardware
|
g y } v
S , — :
B =] specification _| implementation: hw/sw codesign realization
= - task concurrency management
) ’F = high-level transformations A
C | p— - design space exploration
< standard software - hardware/software partitioning
o |
= (RTOS, ..) - compilation, scheduling software
O
g 1 (from all phases) |’
@ v g V v v
validation; evaluation (performance, energy consumption, safety, ..)
CS-ES - 60 -

