
- 1 -CS - ES

Embedded Systems 4

- 2 -CS - ES

What is a requirement ?

 Describes what the system should do but not how to implement it

 IEEE 1012 standard
(IEEE= Institute of Electrical and Electronics Engineers)

 A condition or capability of the system needed by a user to solve a problem
or achieve an objective

 A condition or capability that must be met or possessed by a system… to
satisfy a contract standard, specification, or other formally imposed document

 Ranges from a high-level abstract statement of a service (function, feature)
or of a system constraint to a detailed mathematical functional specification

Source: [SRE09]

REVIEW

- 3 -CS - ES

Examples of functional requirements

 When the Memory receives a READ request it shall
transmit the data at the given address to the controller.

 When the Memory receives a WRITE request it shall
store the data to the given address.

 When the Memory receives a READ request it shall
transmit the data at the given address to the controller
within 55,70ns.

REVIEW

- 4 -CS - ES

Non-functional requirements

 Product requirements
 Requirements which specify that the delivered product must have certain

qualities e.g. execution speed, reliability, etc.
• 8.1 The memory shall have an equal cycle time of 55,70ns. (functional)
• 8.2 The operational voltage of the memory shall be between 4,5V and 5,5V.

 Organisational requirements
 Requirements which are a consequence of organisational policies and

procedures e.g. process standards used, implementation requirements, etc
• 9.3.2 The system development process and deliverable documents shall conform to

the process and deliverables defined in XYZCo-SP-STAN-95.

 External requirements
 Requirements which arise from factors which are external to the system and its

development process e.g. safety, interoperability requirements, legislative
requirements, etc

REVIEW

- 5 -CS - ES

Mealy automaton

 Definition:
M=(I, O, S, s0, , ) is a Mealy automaton iff
 I is a finite, non-empty set (input symbols),
 O is a finite, non-empty set (output symbols),
 S is a finite, non-empty set (states),
 s0 … initial state,
  : S  I  S (transition function),
  : S £ I ! O (output function).

 Example for representation:
Z0 Z1

Z2Z3

c/0

c/3

c/2

c/1

w/0 w/1

w/2w/3

REVIEW

- 6 -CS - ES

StateCharts

 StateCharts = the only unused combination of
„flow“ or „state“ with „diagram“ or „charts“

 Based on classical automata (FSM):
StateCharts = FSMs + Hierarchy + Orthogonality +

Broadcast communication
 Industry standard for modelling automotive applications
 Appear in UML (Unified Modeling Language), Stateflow,

Statemate, …
 Warning: Syntax and Semantics may vary.

 Start with brief review on Finite State Machines.

REVIEW

- 7 -CS - ES

Introducing hierarchy

superstate

substates

FSM will be in exactly
one of the substates of S
if S is active
(either in A or in B or ..)

REVIEW

OR-super-states

- 8 -CS - ES

Default state mechanism

 Filled circle indicates
sub-state entered
whenever super-
state is entered.

 Not a state by itself!
 Allows internal

structure to be
hidden for outside
world

REVIEW

- 9 -CS - ES

History mechanism

 For event m, S enters the state it was in before S was
left (can be A, B, C, D, or E). If S is entered for the very
first time, the default mechanism applies.

- 10 -CS - ES

General form of edge labels

Meaning:
 Transition may be taken, if event occurred in last step and

condition is true
 If transition is taken, then reaction is carried out.

Conditions:
 Refer to values of variables

Actions:
 Can either be assignments for variables or creation of events

Example:
 a & [x = 1023] / overflow; x:=0

event [condition] / action

REVIEW

- 11 -CS - ES

Example

Wattenhofer, ETHZ

- 12 -CS - ES

Concurrency
 Convenient ways of describing concurrency are

required.
 AND-super-states: FSM is in all (immediate) sub-

states of a AND-super-state; Example:

REVIEW

- 13 -CS - ES

Types of states

In StateCharts, states are either

 basic states, or

 AND-super-states, or

 OR-super-states.

REVIEW

- 14 -CS - ES

Edge labels evaluation

 In phase 2, variables a and b are assigned to temporary
variables. In phase 3, these are assigned to a and b. As a
result, variables a and b are swapped.

 In a single phase environment, executing the left state
first would assign the old value of b (=0) to a and b.
Executing the right state first would assign the old value
of a (=1) to a and b. The result would depend on the
execution order.

Three phases:
1.Effect of external changes on events and
conditions is evaluated

2.The set of transitions to be made in the
current step and right hand sides of
assignments are computed

3.Transitions become effective, variables
obtain new values

REVIEW

- 15 -CS - ES

The super-step time model (2)
 Two-dimensional time:

 Assumption: Computation time is neglegible compared to dynamics of
the environment.

REVIEW

• A super-step is a sequence of steps.

• A super-step terminates when the status of the
system is stable.

• During a super-step the time does not proceed
and thus external changes are not considered.

After a super-step, physical time restarts
running

computation of the statechart is
resumed when
• external changes enable

transitions in the statechart
• Timeout events enable transitions

of the statechart

- 16 -CS - ES

Another point of view

Wattenhofer, ETHZ

- 17 -CS - ES

Charakteristica

Complex

Client spezific

Reactive

Use case – logistic system

- 18 -CS - ES

Different approaches to earn money with
software

 Write software. Burn CD. Box it. Sell to everyone.

 Leave customer alone
 (he has to adapt his problem!).

 Customers need solutions to their problems

 individual, working solutions ! flexibility !

 Software REUSE

- 19 -CS - ES

IDEA

- 20 -CS - ES

Modeling domains

 Geometry domain(MODSIM)
 Topology (elements, parametrisation)
 Movements (animation, Interfcaces)

 Control domain (STATEMATE)
 Communication protocols (to central computer)
 Scheduling of the transport orders

 Different tools Cosimulation

- 21 -CS - ES

Example- High rack warehouse

Software under development

- 22 -CS - ES

What do we find ?

- 23 -CS - ES Transport unitCarrier device
(Pallet,container,...)

Goods

+
optional (secondary)

Carrier/container

+

... Something to store + handle

Transport unit types

Instance
of

Dimensions
• Carrier type
• Etc.

User-defined !

- 24 -CS - ES

Models and meta-models

Transport unit types

„handled by“
associations

Transport unit type

• type name
• gross dimensions
• net dimensions
• load carrier

Transport device type
• type name

„handled by“
association

• restrictions

Transport device
types

Concrete transport devices

Meta-Model
level:

Types and
Associations

(user defined)

Model level:

Things &
relations

present in
facility

(operational
data)

Meta-Meta-
Model level:

Domain
knowledge

(stable)

Concrete transport units
(incl. load info)

- 25 -CS - ES

Storage visualization

 Generic software
module (=reuse!)

 Visualization of storage
 Different planes
 Location status

 Operations on locations
 Lock/unlock
 Data maintenance
 Content
 Transport job

- 26 -CS - ES

Benefits

 Customer
 Change topology model, etc. (himself)

• Add/remove locations, routes, types, transport
facilities

 Analyst/project planning
 Initial goods flow and storage modeling
 Can use the language he knows

 Programmer
 Generic storage allocation algorithm
 Generic storage visualization
 Generic transport routing & optimization
 Generic goods flow & picking planning
 „plugins“ for different warehouse types

“generic” = software reuse

- 27 -CS - ES

Environment simulation
Virtual warehouse

WAMAS
Warehouse mgmt &

control

Physical warehouse
Virtual warehouse
Simulation model

behavior model
Controller

model
Spatial domain

PLC

Mechanic components

WAMAS
Warehouse mgmt &

control

behavior model
Controller

model
Spatial domain

PLC

Mechanic components

 early, in-house tests
 cuts costs (on-site stays
 earlier, longer tests

possible
 faster movements
 quick (re-)arrangement for

test situations
 visualization: better overloo
 Training

- 28 -CS - ES

WATIS2

Environment simulation

- 29 -CS - ES

Results

Table 1 then shows an estimated reuse factor greater than 90 % in each case.
Experience has shown that, with the use of the existing WATIS component library, a complete warehouse
model can be configured in 1-3 days, depending on size and complexity.

Conveyors take approximately twice as long to model as racks and cranes.

- 30 -CS - ES

Results

Table 2 shows a collected phase
duration metrics for nine automatic
logistic software projects. Tests of
projects B, C, D have been supported
by WATIS models, projects U to Z
had no environment simulation
support. Whereas most of the latter
typically show on-site time around 50
% of the total project duration, all of
the WATIS supported projects
are well below 30 %, apparently due to
better software maturity
in the on-site phases.

- 31 -CS - ES

Use Case 2 - Hybrid Power Management
System

 Heterogeneous closed loop consisting of two
different domain specific models

 Electronic control unit (ECU)
• Modelled with Matlab Stateflow
• High abstraction level
• Stateflow eases readability

 Vehicle electrical system
• Modelled with VHDL-AMS
• Detailed design with high accuracy

 Cosimulation demo of automotive domain

 Demand for a Co-simulation framework

VHDL - AMS

Stateflow

- 32 -CS - ES

Demo Presentation

 The Hybrid Power Management
demo CoSi_hybrid_system can be
found in the “Project Browser” tab
by selecting “User Projects” and
expanding the “testbenches” folder.

 Microcontroller
 Electronic control unit
 Matlab Stateflow

 Vehicle electrical system
 Hierarchical component containing

battery, generator,…
 VHDL-AMS

Cosimulation demo

Vehicle electrical system

Microcontroller

- 33 -CS - ES

Specifying timing in spec. languages

4 types of timing specs required [Burns, 1990]:
 Measure elapsed time

Check, how much time has elapsed since last call
 Means for delaying processes (e.g., wait in VHDL)
 Possibility to specify timeouts

We would like to be in a certain state only a certain
maximum amount of time.

 Methods for specifying deadlines
With current languages not available or specified in
separate control file.

 StateCharts comprises a mechanism for specifying
timeouts. Other types of timing specs are not
supported.

- 34 -CS - ES

Concurrency vs. Parallism

 Concurrency is central to embedded systems. A computer
program is said to be concurrent if different parts of the
program conceptually execute simultaneously.

 A program is said to be parallel if different parts of the
program physically execute simultaneously on distinct
hardware (multi-core, multi-processor or distributed
systems)

- 35 -CS - ES

Petri Nets

- 36 -CS - ES

Petri nets
Introduced in 1962 by Carl Adam Petri in his PhD thesis.

Different “Types” of Petri nets known

 Condition/event nets
 Place/transition nets
 Predicate/transition nets
 Hierachical Petri nets,
 Timed Petri nets
 …

- 37 -CS - ES

Mathematics
study interesting,

consistent structures

Physics
predict & measure

“real world” structures

Engineering
build practicable,
useful structures

Computer Science
??

th
eo

re
tic

al
ex

pe
ri

m
en

ta
l

idealised pragmatic
Claus Reinke, Computing Lab, UKC

- 38 -CS - ES

Models can be unrealistic if they are too simple, and
simplifying designs are harder to realise!

Simple models of complex worlds

in models of existing systems, automata imply an approximation.

(simpler, but applicable only if their assumptions hold)

in designs of new systems, automata involve over-specification!
(engineers have to implement the assumptions!)

- 39 -CS - ES

For his nets, Carl Adam Petri has made an attempt to combine
automata from theoretical CS, insights from physics, and
pragmatic expertise from engineers:

(but the background explains why things work, why concepts from
other disciplines, such as logic, have been integrated into Petri nets
so easily, and why foundational research has to continue)

Petri’s nets - complex foundations for
simple models

• state is distributed, transitions are localised (space is relevant)
• local causality replaces global time (time as a derived concept)

• subsystems interact by explicit communication
(information transport is as relevant as information processing)

engineers can often ignore the background - Petri nets just work!

- 40 -CS - ES

 modelling, analysis, verification of distributed systems
 automation engineering
 business processes
 modeling of resources
 modeling of synchronization

Application areas

- 41 -CS - ES

 Conditions
Either met or not met. Conditions represent “local states”. Set of
conditions describes the potential state space.

 Events
May take place if certain conditions are met. Event represents a state
transition.

 Flow relation
Relates conditions and events, describes how an event changes the
local and global state.

 Tokens
Assignments of tokens to conditions specifies a global state.

Conditions, events and the flow relation form
a bipartite graph (graph with two kinds of nodes).

Key Elements

- 42 -CS - ES

Example 2:
Synchronization at single track rail segment

„Preconditions“
of x fulfilled

 mutual exclusion:
there is at most one train using the track rail

x

„Postcondition“
of x fulfilled

- 43 -CS - ES

Playing the „token game“: dynamic behavior

x

- 44 -CS - ES

Playing the „token game“: dynamic behavior

x

- 45 -CS - ES

Playing the „token game“: dynamic behavior

- 46 -CS - ES

Conflict for resource „track“:
two trains competing

- 47 -CS - ES

Condition/event Petri nets

Def.: N=(C,E,F) is called a net, iff the following holds
1. C and E are disjoint sets
2. F  (C  E)  (E  C); is binary relation, („flow relation“)

Def.: Let N be a net and let x  (C  E).
x := {y | y F x} is called the set of preconditions.
x := {y | x F y} is called the set of postconditions.

Example:

xx x

single token per place

- 48 -CS - ES

Basic structural properties:
Loops and pure nets

Def.: Let (c,e)  C  E. (c,e) is called a loop iff cFe  eFc.

Def.: Net N=(C,E,F) is called pure, if F does not contain any
loops.

- 49 -CS - ES

Simple nets

 Def.: A net is called simple if no two nodes n1 and n2
have the same pre-set and post-set.

 Example (not simple):

- 50 -CS - ES

Properties of C/E

Def.:
 Marking M’ is reachable from marking M, iff there

exists sequence of firing steps transforming M into M’
(Not.: MM’)

 A C/E net is cyclic, iff any two markings are
reachable from each other.

 A C/E net fulfills liveness, iff for each marking M and
for each event e there exists a reachable marking M’
that activates e for firing

- 51 -CS - ES

Basic examples

A B

concurrency

A B

synchronisation

A B

communication

- 52 -CS - ES

More complex example (1)

Thalys trains between
Cologne, Amsterdam,
Brussels and Paris.

[http://www.thalys.com/be/en]

- 53 -CS - ES

s

Example Thalys
trains:
more complex

 Thalys trains between Cologne,
Amsterdam, Brussels and Paris.

 Synchronization at Brussels and
Paris

 Places 3 and10: trains waiting in A and C

 Transitions 9 and 2: trains driving from A and C to
Brussels

 T1: connecting the two trains

 Break for driver P13

 T5 synchronization with trians at Gare du Nord

- 54 -CS - ES

Realistic scenarios need more general
definitions

 More than one token per condition, capacities of places
 weights of edges
 state space of Petri nets may become infinite!

ready
p1

t1
produce

idle

send

p2

t2

k=1

k=1

k=5

Storage p3

3 2 t3 t4

p4

p5

k=2

k=2

accept

accepted

consume

ready

Producer Consumers

- 55 -CS - ES

Place/transition nets

Def.: (P, T, F, K, W, M0) is called a place/transition net (P/T net) iff
1. N=(P,T,F) is a net with places p  P and transitions t  T
2. K: P  (N0  {}) \{0} denotes the capacity of places

( symbolizes infinite capacity)
3. W: F (N0 \{0}) denotes the weight of graph edges
4. M0: P  N0 {} represents the initial marking of places

W

M0

(Segment of some net)

defaults:
K = 
W = 1

multiple tokens per place

- 56 -CS - ES

Example

 P = {p1, p2, p3}
 T = {t1, t2}
 F = {(p1, t1), (p2, t2), (p3, t1), (t1, p2), (t2, p1), (t2, p3)}
 W = {(p1, t1)  2, (p2, t2)  1, (p3, t1)  1, (t1, p2)  1,

(t2, p1)  2, (t2, p3)  1}
 m0 = (2, 0, 1)

p1 p2 p3

- 57 -CS - ES

Reachability

reachability graph

m0 = (2, 0, 0)

p1 p2 p3

- 58 -CS - ES

From conditions to resources (1)

 c/e-systems model the flow of information, at a fundamental level
(true/false)

 there are natural application areas for which the flow/transport of
resources and the number of available resources is important (data
flow, document-/workflow, production lines, communication
networks, www, ..)

 place/transition-nets are a suitable generalisation of c/e-systems:
 state elements represent places where resources (tokens) can

be stored
 transition elements represent local transitions or transport of

resources

- 59 -CS - ES

From conditions to resources (2)

 a transition is enabled if and only if
 sufficient resources are available on all its input places
 sufficient capacities are available on all its output places

 a transition occurrence
 consumes one token from each input place and
 produces one token on each output place

- 60 -CS - ES

Specifications

