
- 1 -BF - ES

Embedded Systems 14

- 2 -BF - ES

Overview of embedded systems design

- 3 -BF - ES

Scheduling

� Support for multi-tasking/multi-threading – several tasks to

run on shared resources

� Task ~ process – sequential program

� Resources: processor(s) + memory, disks, buses,

communication channels, etc.

� Scheduler assigns shared resources to tasks for durations

of time

� Most important resource(s) – processor(s)

� Scheduling – mostly concerned with processor(s)

� Online – scheduling decisions taken when input becomes available

� Offline – schedule computed with complete input known

� Other shared resources with exclusive access complicate

scheduling task

- 4 -BF - ES

Point of departure:

Scheduling general IT systems

� In general IT systems, not much is known about the set of

tasks a priori

� The set of tasks to be scheduled is dynamic:

• new tasks may be inserted into the running system,

• executed tasks may disappear.

• Tasks are activated with unknown activation patterns.

� The power of schedulers thus is inherently limited by lack of knowledge

– only online scheduling is possible

- 5 -BF - ES

Scheduling processes in ES:

The difference in process charaterization

� Most ES are “closed shops”
� Task set of the system is known

� at least part of their activation patterns is known

• periodic activation in, e.g., signal processing

• maximum activation frequencies of asynchronous events
determinable from environment dynamics,
minimal inter-arrival times

� Possible to determine bounds on their execution time (WCET)

• if they are well-built

• if we invest enough analysis effort

� Much better prospects for guaranteeing response times and
for delivering high-quality schedules!

- 6 -BF - ES

Scheduling – Time

� Time – aspect of the controlled plant/environment

� Embedded real-time systems have deadlines for their

reactions, dictated by their environment

� hard deadline: must be met, otherwise system is faulty,

examples: airbag, ABS,

� soft deadline: missing it decreases value of the result,

examples: video transmission

� Difference between

� speed – being fast on the average - and

� punctuality – being always on time

Example: DB trains

- 7 -BF - ES

Scheduling processes in ES:

Differences in goals

� In classical OS, quality of scheduling is normally measured in

terms of performance:

� Throughput, reaction times, < in the average case

� In ES, the schedules do often have to meet stringent quality

criteria under all possible execution scenarios:

� A task of an RTOS is usually connected with a deadline.

Standard operating systems do not deal with deadlines.

� Scheduling of an RTOS has to be predictable.

� Real-time systems have to be designed for peak load.

Scheduling for meeting deadlines should work for all anticipated

situations.

- 8 -BF - ES

Constraints for real-time tasks

� Three types of constraints for real-time tasks:

� Timing constraints

� Precedence constraints

� Mutual exclusion constraints on shared resources

� Typical timing constraints: Deadlines on tasks

� Hard: Not meeting the deadline can cause catastrophic

consequences on the system

� Soft: Missing the deadline decreases performance of the

system, but does not prevent correct behavior

- 9 -BF - ES

Timing constraints and schedule properties

� Timing parameters of a real-time task Ji:
� Arrival time ai: time at which task becomes ready for execution

� Computation time Ci: time necessary to the processor for
executing the task without interruption

� Deadline di: time before which a task should complete

� Start time si: time at which a tasks starts its execution

� Finishing time fi: time at which task finishes its execution

� Lateness Li: Li = fi – di, delay of task completion with respect to
deadline

� Exceeding time Ei: Ei = max(0, Li)

� Slack time Xi: Xi = di – ai – Ci, maximum time a task can be
delayed on its activation to complete within its deadline

Ji
ai si fi di

Ci

0

- 10 -BF - ES

Timing parameters

� Additional timing related parameters of a real-time task Ji:

� Criticality: parameter related to the consequences of missing

the deadline

� Value vi: relative importance of the task with respect to other

tasks in the system

� Regularity of activation:

• Periodic tasks: Infinite sequence of identical activities

(instances, jobs) that are regularly activated at a constant

rate, here abbreviated by τi
• A-periodic tasks: Tasks which are not recurring or which do

not have regular activations, here abbreviated by Ji

- 11 -BF - ES

Timing constraints of periodic tasks

� Phase Φi: activation time of first periodic instance

� Period Ti: time difference between two consecutive

activations

� Relative deadline Di: time after activation time of an

instance at which it should be complete

τi
Φi

Ci

Ti

Di

Φi+(k-1)Ti

Instance kInstance 1

0

- 12 -BF - ES

Scheduling - Basic definitions

Given a set of tasks {J1, J2, <, Jn}.

What do we require from a schedule?

� Every processor is assigned to at most one task at any time.

� Every task is assigned to at most one processor at any time.

� All the scheduling constraints are satisfied.

Def.: A (single-processor) schedule is a function σ : R+ → N such that

8 t 2 R+ 9 t1 < t2 2 R
+ . t 2 [t1, t2) and 8 t’ 2 [t1, t2) σ(t) = σ(t’).

In other words: σ is an integer step function and σ(t) = k, with k > 0, means that

task Jk is executed at time t, while σ(t) = 0 means that the CPU is idle.

� A schedule is feasible, if all tasks can be completed according to a set of

specified constraints.

� A set of tasks is schedulable if there exists at least one feasible schedule.

� Schedulability test

- 13 -BF - ES

Scheduling Algorithms

� Classes of scheduling algorithms:
� Preemptive, non-preemptive

• Task may be interrupted or always runs to completion

� Off-line / on-line

• Schedule works on actual and incomplete or on complete information

� Optimal / heuristic – solutions must be optimal or sub-optimal are determined
by using heuristics to reduce effort

� One processor / multi-processor

� We start with single-processor scheduling.

- 14 -BF - ES

Example

� Non-preemptive schedule of three tasks J1, J2, and J3:

J1 J2 J3

1

2

3

σ(t)

t1 t2 t3 t4

t

- 15 -BF - ES

Example

� Preemptive schedule of three tasks J1, J2, and J3:

J1

J2

J3

1

2

3

σ(t)

t

- 16 -BF - ES

Scheduling non-periodic tasks

- 17 -BF - ES

A-periodic scheduling

� Given:
� A set of a-periodic tasks {J1, <, Jn} with

• arrival times ai, deadlines di, computation times Ci

• precedence constraints

• resource constraints

� Class of scheduling algorithm:

• Preemptive, non-preemptive

• Off-line / on-line

• Optimal / heuristic

• One processor / multi-processor

• <

� Cost function:

• Minimize maximum lateness (soft RT)

• Minimize maximum number of late tasks (feasibility! – hard RT)

� Find:
Optimal / good schedule according to given cost function

Ji
ai si fi di

Ci

0

- 18 -BF - ES

A-periodic scheduling

� Not all combinations of constraints, class of algorithm,

cost functions can be solved efficiently.

� If there is some information on restrictions wrt. class of

problem instances, then this information should be used!

� Begin with simpler classes of problem instances, then

more complex cases.

- 19 -BF - ES

Case 1: Aperiodic tasks with synchronous release

� A set of (a-periodic) tasks {J1, <, Jn} with

� arrival times ai = 0 8 1 · i · n, i.e. “synchronous” arrival times

� deadlines di,

� computation times Ci

� no precedence constraints, no resource constraints, i.e. “independent

tasks”

� non-preemptive

� single processor

� Optimal

� Find schedule which minimizes maximum lateness (variant:

find feasible solution)

- 20 -BF - ES

Preemption

� Lemma:

If arrival times are synchronous, then preemption does not help, i.e. if

there is a preemptive schedule with maximum lateness Lmax, then

there is also a non-preemptive schedule with maximum lateness at

most Lmax.

- 21 -BF - ES

EDD – Earliest Due Date

EDD: execute the tasks in order of non-decreasing deadlines

� Example 1:

J1 J2 J3 J4 J5

Ci 1 1 1 3 2

di 3 10 7 8 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t

- 22 -BF - ES

EDD

� Example 2:

J1 J2 J3 J4 J5

Ci 1 2 1 4 2

di 2 5 4 8 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t

- 23 -BF - ES

EDD (3)

� Theorem (Jackson ’55):

Given a set of n independent tasks with synchronous arrival times,

any algorithm that executes the tasks in order of non-decreasing

deadlines is optimal with respect to minimizing the maximum

lateness.

� Remark: Minimizing maximum lateness includes finding a feasible

schedule, if it exists. The reverse is not necessarily true.

- 24 -BF - ES

- 25 -BF - ES

EDD

� Complexity of EDD scheduling:

� Sorting n tasks by increasing deadlines

) O(n log n)

� Test of Schedulability:
If the conditions of the EDD algorithm are fulfilled, schedulability can
be checked in the following way:

� Sort task wrt. non-decreasing deadline.
Let w.l.o.g. J1, <, Jn be the sorted list.

� Check whether in an EDD schedule fi · di 8 i = 1, <, n.

� Since fi = ∑k=1
i Ck, we have to check

8 i = 1, 4, n ∑∑∑∑k=1
i Ck · di

� Since EDD is optimal, non-schedulability by EDD implies non-
schedulability in general.

- 26 -BF - ES

Optimality Proofs for Scheduling Algorithms

Claim: Scheduling algorithm A is optimal

� Feasibilty: If exists a feasible schedule S by some scheduling alg.

Then: there exists a feasible schedule SA as obtained by A

� Optimality: If exists a schedule S optimal w.r.t property Q by some

scheduling alg.

Then: there exists a schedule SA as obtained by A with property no worse than Q.

� Proof technique:

� Transform schedule S into a schedule SA
� Preserving feasibility

� Not impairing property Q

� Show this for each transformation step:

� Select a task/slice of a task in S violating the criterion of A

� Move it to a position satisfying this criterion

- 27 -BF - ES

Case 2: aperiodic tasks with asynchronous release

� A set of (a-periodic) tasks {J1, <, Jn} with

� arbitrary arrival times ai

� deadlines di,

� computation times Ci

� no precedence constraints, no resource constraints, i.e.

“independent tasks”

� preemptive

� Single processor

� Optimal

� Find schedule which minimizes maximum lateness

(variant: find feasible solution)

- 28 -BF - ES

EDF – Earliest Deadline First

� At every instant execute the task with the earliest

absolute deadline among all the ready tasks.

� Remark:

1. If a new task arrives with an earlier deadline than the running

task, the running task is immediately preempted.

2. Here we assume that the time needed for context switches is

negligible – we’ll later see that this is unrealistic.

- 29 -BF - ES

EDF - Example
J1 J2 J3 J4 J5

ai 0 0 2 3 6

Ci 1 2 2 2 2

di 2 5 4 10 9

J3

J4

J5

J2

J1

0 1 2 3 4 5 6 7 8 9 10

- 30 -BF - ES

EDF

� Theorem (Horn ’74):

Given a set of n independent tasks with arbitrary arrival times,

any algorithm that at every instant executes the task with the

earliest absolute deadline among all the ready tasks is optimal

with respect to minimizing the maximum lateness.

- 31 -BF - ES

Non-preemptive version

� Changed problem:

� A set of (a-periodic) tasks {J1, <, Jn} with

• arbitrary arrival times ai

• deadlines di,

• computation times Ci

• no precedence constraints, no resource constraints, i.e.

“independent tasks”

� Non-preemptive instead of preemptive scheduling!

� Single processor

� Optimal

� Find schedule which minimizes maximum lateness (variant: find

feasible solution)

- 32 -BF - ES

� Non-preemptive EDF schedule:

� Optimal schedule:

Example J1 J2

ai 0 1

Ci 4 2

di 7 5

J1

J2
0 1 2 3 4 5 6 7 8 9 10

J1

J2
0 1 2 3 4 5 6 7 8 9 10

- 33 -BF - ES

Example

� Observation:

� In the optimal schedule the processor remains idle in intervall

[0,1) although task J1 is ready to execute.

� If arrival times are not known a-priori, then no on-line

algorithm is able to decide whether to stay idle at time 0

or to execute J1.

� Theorem (Jeffay et al. ’91): EDF is an optimal non-idle

scheduling algorithm also in a non-preemptive task

model.

- 34 -BF - ES

Non-preemptive scheduling: better schedules through

the introduction of idle times

� Assumptions:
� Arrival times known a priori.

� Non-preemptive scheduling

� “Idle schedules” are allowed.

� Goal:
� Find feasible schedule

� Problem is NP-hard.

� Possible approaches:
� Heuristics

� Branch-and-bound

- 35 -BF - ES

Bratley’s algorithm

� Bratley’s algorithm

� Finds feasible schedule by branch-and-bound, if there exists one

� Schedule derived from appropriate permutation of tasks J1, <, Jn

� Starts with empty task list

� Branches: Selection of next task (one not scheduled so far)

� Bound:

• Feasible schedule found at current path -> search path

successful

• There is some task not yet scheduled whose addition causes

a missed deadline -> search path is blind alley

- 36 -BF - ES

Bratley’s algorithm

� Example:

J1 J2 J3 J4

ai 4 1 1 0

Ci 2 1 2 2

di 7 5 6 4

- 37 -BF - ES

Bratley’s algorithm

� Due to exponential worst-case complexity only

applicable as off-line algorithm.

� Resulting schedule stored in task activation list.

� At runtime: dispatcher simply extracts next task from

activation list.

- 38 -BF - ES

Case 3: Scheduling with precedence constraints

� Non-preemptive scheduling with non-synchronous arrival

times, deadlines and precedence constraints is NP-hard.

� Here:

� Restrictions:

• Consider synchronous arrival times (all tasks arrive at 0)

• Allow preemption.

� 2 different algorithms:

• Latest deadline “first” (LDF)

• Modified EDF

� Precedences define a partial order

� Scheduling determines a compatible total order

� Method: Topological sorting

- 39 -BF - ES

Example

J1 J2 J3 J4 J5 J6

ai 0 0 0 0 0 0

Ci 1 1 1 1 1 1

di 2 5 4 3 5 6

J2 J3

J4 J5 J6

J1

- 40 -BF - ES

Example

� One of the following algorithms is optimal. Which one?

Algorithm 1:

1. Among all sources in the

precedence graph select the

task T with earliest deadline.

Schedule T first.

2. Remove T from G.

3. Repeat.

Algorithm 2:

1. Among all sinks in the

precedence graph select the

task T with latest deadline.

Schedule T last.

2. Remove T from G.

3. Repeat.

- 41 -BF - ES

Example (continued)

� Algorithm 1:

0 1 2 3 4 5 6 7

t

d1 d5d3d4 d2

J2 J3

J4 J5 J6

J1 2

5 4

3 5 6

d6

J1 J2 J3 J4 J5 J6

ai 0 0 0 0 0 0

Ci 1 1 1 1 1 1

di 2 5 4 3 5 6

- 42 -BF - ES

Example (continued)

� Algorithm 2:

J2 J3

J4 J5 J6

J1 2

5 4

3 5 6

0 1 2 3 4 5 6 7

t

d1 d5d3d4 d2 d6

J1 J2 J3 J4 J5 J6

ai 0 0 0 0 0 0

Ci 1 1 1 1 1 1

di 2 5 4 3 5 6

- 43 -BF - ES

Example (continued)

� Algorithm 1 is not optimal.

� Algorithm 1 is the generalization of EDF to the case with

precedence conditions.

� Is Algorithm 2 optimal?

� Algorithm 2 is called Latest Deadline First (LDF).

� Theorem (Lawler 73):

LDF is optimal wrt. maximum lateness.

- 44 -BF - ES

Proof of optimality

- 45 -BF - ES

LDF

� LDF is optimal.

� LDF may be applied only as off-line algorithm.

� Complexity of LDF:

� O(|E|) for repeatedly computing the current set Γ of tasks with no

successors in the precedence graph G = (V, E).

� O(log n) for inserting tasks into the ordered set Γ (ordering wrt. di).

� Overall cost: O(n * max(|E|,log n))

