Embedded Systems

14

BF - ES

Overview of embedded systems design

Scheduling

- Support for multi-tasking/multi-threading several tasks to run on shared resources
- Task ~ process sequential program
- Resources: processor(s) + memory, disks, buses, communication channels, etc.
- Scheduler assigns shared resources to tasks for durations of time
- Most important resource(s) processor(s)
- Scheduling mostly concerned with processor(s)
 - Online scheduling decisions taken when input becomes available
 - Offline schedule computed with complete input known
- Other shared resources with exclusive access complicate scheduling task

BF - ES

Point of departure: Scheduling general IT systems

- In general IT systems, not much is known about the set of tasks a priori
 - The set of tasks to be scheduled is dynamic:
 - new tasks may be inserted into the running system,
 - executed tasks may disappear.
 - Tasks are activated with unknown activation patterns.
 - The power of schedulers thus is inherently limited by lack of knowledge

 only online scheduling is possible

Scheduling processes in ES:

The difference in process charaterization

- Most ES are "closed shops"
 - Task set of the system is known
 - at least part of their activation patterns is known
 - periodic activation in, e.g., signal processing
 - maximum activation frequencies of asynchronous events determinable from environment dynamics, minimal inter-arrival times
 - Possible to determine bounds on their execution time (WCET)
 - if they are well-built
 - if we invest enough analysis effort
- Much better prospects for guaranteeing response times and for delivering *high-quality* schedules!

Scheduling – Time

- Time aspect of the controlled plant/environment
- Embedded real-time systems have deadlines for their reactions, dictated by their environment
 - hard deadline: must be met, otherwise system is faulty, examples: airbag, ABS,
 - soft deadline: missing it decreases value of the result, examples: video transmission
- Difference between

speed > being fast on the average - and

punctuality being always on time

Example: DB trains

Scheduling processes in ES: Differences in goals

- In classical OS, quality of scheduling is normally measured in terms of performance:
 - Throughput, reaction times, ... in the average case
- In ES, the schedules do often have to meet stringent quality criteria under all possible execution scenarios:
 - A task of an RTOS is usually connected with <u>a deadline</u>.
 Standard operating systems do not deal with deadlines.
 - Scheduling of an RTOS has to be predictable.
 - Real-time systems have to be designed for peak load.
 Scheduling for meeting deadlines should work for all anticipated situations.

Constraints for real-time tasks

Three types of constraints for real-time tasks:

- Timing constraints
- Precedence constraints
- Mutual exclusion constraints on shared resources
- Typical timing constraints: Deadlines on tasks
 - Hard: Not meeting the deadline can cause catastrophic consequences on the system
 - Soft: Missing the deadline decreases performance of the system, but does not prevent correct behavior

Timing constraints and schedule properties

- Timing parameters of a real-time task J_i:
 - Arrival time a_i: time at which task becomes ready for execution
 - Computation time C_i: time necessary to the processor for executing the task without interruption
 - Deadline d_i: time before which a task should complete
 - Start time s_i: time at which a tasks starts its execution
 - Finishing time f_i: time at which task finishes its execution
 - Lateness L_i: L_i = f_i d_i, delay of task completion with respect to deadline
 - Exceeding time E_i: E_i = max(0, L_i)
 - Slack time X_i: X_i = d_i a_i C_i, maximum time a task can be delayed on its activation to complete within its deadline

Timing parameters

- Additional timing related parameters of a real-time task J_i:
 - Criticality: parameter related to the consequences of missing the deadline
 - Value v_i: relative importance of the task with respect to other tasks in the system
 - Regularity of activation:
 - Periodic tasks: Infinite sequence of identical activities (instances, jobs) that are regularly activated at a constant rate, here abbreviated by τ_i

= job in task instance

• <u>A-periodic tasks</u>: Tasks which are not recurring or which do not have regular activations, here abbreviated by J_i

Timing constraints of periodic tasks

- Phase Φ_i : activation time of first periodic instance
- Period T_i: time difference between two consecutive activations
- Relative deadline D_i: time after activation time of an instance at which it should be complete

Scheduling - Basic definitions

Given a set of tasks $\{J_{1,} J_{2, ...,} J_{n}\}$. What do we require from a schedule?

- Every processor is assigned to at most one task at any time.
- Every task is assigned to at most one processor at any time.
- All the scheduling constraints are satisfied.

Def.: A (single-processor) schedule is a function $\sigma : \mathbb{R}^+ \to \mathbb{N}$ such that 8 t 2 \mathbb{R}^+ 9 t₁ < t₂ 2 \mathbb{R}^+ . t 2 [t₁, t₂) and 8 t' 2 [t₁, t₂) $\sigma(t) = \sigma(t')$.

In other words: σ is an integer step function and $\sigma(t) = k$, with k > 0, means that task J_k is executed at time t, while $\sigma(t) = 0$ means that the CPU is idle.

- A schedule is <u>feasible</u>, if all tasks can be completed according to a set of specified constraints.
- A set of tasks is schedulable if there exists at least one feasible schedule.
- Schedulability test RECHTER BEF-ES
 Schedulability test RECHTER BEF-ES

Scheduling Algorithms

Classes of scheduling algorithms:

- Preemptive, non-preemptive
 - Task may be interrupted or always runs to completion
- Off-line / on-line
 - Schedule works on actual and incomplete or on complete information
- Optimal / heuristic solutions must be optimal or sub-optimal are determined by using heuristics to reduce effort
- One processor / multi-processor
- We start with single-processor scheduling.

Example

• Non-preemptive schedule of three tasks J_1 , J_2 , and J_3 :

Example

• Preemptive schedule of three tasks J_1 , J_2 , and J_3 :

Scheduling non-periodic tasks

- Given:
 - A set of a-periodic tasks {J₁, ..., J_n} with
 - arrival times a_i, deadlines d_i, computation times C_i
 - precedence constraints
 - resource constraints
 - Class of scheduling algorithm:
 - Preemptive, non-preemptive
 - Off-line / on-line
 - Optimal / heuristic
 - One processor / multi-processor
 - ...
 - Cost function:
 - Minimize maximum lateness (soft RT)
 - Minimize maximum number of late tasks (feasibility! hard RT)
- Find:

Optimal / good schedule according to given cost function

BF - ES

A-periodic scheduling

- Not all combinations of constraints, class of algorithm, cost functions can be solved efficiently.
- If there is some information on restrictions wrt. class of problem instances, then this information should be used!
- Begin with simpler classes of problem instances, then more complex cases.

Case 1: Aperiodic tasks with synchronous release

- A set of (a-periodic) tasks $\{J_1, ..., J_n\}$ with
 - arrival times a_i = 0 8 1 · i · n, i.e. "synchronous" arrival times
 - deadlines d_i,
 - computation times C_i
 - <u>no precedence constraints</u>, no resource constraints, i.e. "independent tasks"
- non-preemptive
- single processor
- Optimal
- Find schedule which minimizes maximum lateness (variant: find feasible solution)

Preemption

• Lemma:

If arrival times are synchronous, then preemption does not help, i.e. if there is a preemptive schedule with maximum lateness L_{max} , then there is also a non-preemptive schedule with maximum lateness at

EDD – Earliest Due Date

EDD: execute the tasks in order of non-decreasing deadlines

• Example 1:

EDD

• Example 2:

	J_1	J_2	J_3	J_4	J_5
C _i	1	2	1	4	2
d _i	2	5	4	8	6

EDD (3)

Theorem (Jackson '55):

Given a set of n independent tasks with synchronous arrival times, any algorithm that executes the tasks in order of non-decreasing deadlines is optimal with respect to minimizing the maximum lateness.

$$L'_{max} = (max \left\{ f_a' - d_a, f_b' - d_b \right\}$$

$$a_i^b \qquad f_a' - d_a \leqslant f_a' - d_b$$

$$f_b' - d_b \leqslant f_b - d_b$$

$$L'_{max} \leqslant L_{max}$$

$$a_i^b \qquad q_i^b$$

EDD

- Complexity of EDD scheduling:
 - Sorting n tasks by increasing deadlines
) O(n log n)
- Test of Schedulability:

If the conditions of the EDD algorithm are fulfilled, schedulability can be checked in the following way:

- Sort task wrt. non-decreasing deadline. Let w.l.o.g. J₁, ..., J_n be the sorted list.
- Check whether in an EDD schedule $f_i \cdot d_i = 1, ..., n$.
- Since $f_i = \sum_{k=1}^{i} C_k$, we have to check 8 i = 1, ..., n $\sum_{k=1}^{i} C_k \cdot d_i$
- Since EDD is optimal, non-schedulability by EDD implies nonschedulability in general.

Optimality Proofs for Scheduling Algorithms

Claim: Scheduling algorithm A is optimal

- Feasibility: If exists a feasible schedule S by some scheduling alg. Then: there exists a feasible schedule S_A as obtained by A
- Optimality: If exists a schedule S optimal w.r.t property Q by some scheduling alg.

Then: there exists a schedule S_A as obtained by A with property no worse than Q.

- Proof technique:
- Transform schedule S into a schedule S_A
 - Preserving feasibility
 - Not impairing property Q
- Show this for each transformation step:
 - Select a task/slice of a task in S violating the criterion of A
 - Move it to a position satisfying this criterion

Case 2: aperiodic tasks with asynchronous release

- A set of (a-periodic) tasks {J₁, ..., J_n} with
 - arbitrary arrival times a_i
 - deadlines d_i,
 - computation times C_i
 - no precedence constraints, no resource constraints, i.e.
 "independent tasks"
- preemptive
- Single processor
- Optimal
- Find schedule which <u>minimizes maximum lateness</u> (variant: find feasible solution)

EDF – Earliest Deadline First

- At every instant execute the task with the earliest absolute deadline among all the ready tasks.
- Remark:
 - 1. If a new task arrives with an earlier deadline than the running task, the running task is immediately preempted.
 - 2. Here we assume that the time needed for context switches is negligible we'll later see that this is unrealistic.

EDF - Example

	J ₁	J_2	J ₃	J ₄	J_5
a _i	0	0	2	3	6
C _i	1	2	2	2	2
d _i	2	5	4	10	9

EDF

• Theorem (Horn '74):

Given a set of n independent tasks with **arbitrary arrival times**, any algorithm that at every instant executes the task with the **earliest absolute deadline** among all the ready tasks is optimal with respect to minimizing the maximum lateness.

Non-preemptive version

- Changed problem:
 - A set of (a-periodic) tasks {J₁, ..., J_n} with
 - arbitrary arrival times a_i
 - deadlines d_i,
 - computation times C_i
 - no precedence constraints, no resource constraints, i.e.
 "independent tasks"
 - Non-preemptive instead of preemptive scheduling!
 - Single processor
 - Optimal
 - Find schedule which minimizes maximum lateness (variant: find feasible solution)

Example		J ₁	J ₂	
	a _i	0	1	
	C _i	4	2	
	d _i	7	5	

Example

- Observation:
 - In the optimal schedule the processor remains idle in intervall [0,1) although task J₁ is ready to execute.
- If arrival times are not known a-priori, then no on-line algorithm is able to decide whether to stay idle at time 0 or to execute J₁.
- Theorem (Jeffay et al. '91): EDF is an optimal non-idle scheduling algorithm also in a non-preemptive task model.

Non-preemptive scheduling: better schedules through the introduction of idle times

- Assumptions:
 - Arrival times known a priori.
 - Non-preemptive scheduling
 - "Idle schedules" are allowed.
- Goal:
 - Find feasible schedule
- Problem is NP-hard.
- Possible approaches:
 - Heuristics
 - Branch-and-bound

Bratley's algorithm

- Bratley's algorithm
 - Finds feasible schedule by branch-and-bound, if there exists one
 - Schedule derived from appropriate permutation of tasks J₁, ..., J_n
 - Starts with empty task list
 - Branches: Selection of next task (one not scheduled so far)
 - Bound:
 - Feasible schedule found at current path -> search path successful
 - There is some task not yet scheduled whose addition causes a missed deadline -> search path is blind alley

Bratley's algorithm

• Example:

	J_1	J_2	J_3	J_4
a _i	4	1	1	0
C _i	2	1	2	2
d _i	7	5	6	(4)

Bratley's algorithm

- Due to exponential worst-case complexity only applicable as off-line algorithm.
- Resulting schedule stored in task activation list.
- At runtime: dispatcher simply extracts next task from activation list.

Case 3: Scheduling with precedence constraints

- Non-preemptive scheduling with non-synchronous arrival times, deadlines and precedence constraints is NP-hard.
- Here:
 - Restrictions:
 - Consider synchronous arrival times (all tasks arrive at 0)
 - Allow preemption.
 - 2 different algorithms:
 - Latest deadline "first" (LDF)
 - Modified EDF
- Precedences define a partial order
- Scheduling determines a compatible total order
- Method: Topological sorting

Example

	J_1	J ₂	J_3	J_4	J_5	J_6
a _i	0	0	0	0	0	0
C _i	1	1	1	1	1	1
d _i	2	5	4	3	5	6

Example

• One of the following algorithms is optimal. Which one?

Algorithm 1:

- Among all sources in the precedence graph select the task T with earliest deadline. Schedule T first.
- 2. Remove T from G.
- 3. Repeat.

Algorithm 2:

- Among all sinks in the precedence graph select the task T with latest deadline. Schedule T last.
- 2. Remove T from G.
- 3. Repeat.

Example (continued)

• Algorithm 1:

	J_1	J ₂	J_3	J ₄	J ₅	J_6
a _i	0	0	0	0	0	0
C _i	1	1	1	1	1	1
d _i	2	5	4	3	5	6

Example (continued)

• Algorithm 2:

	J ₁	J ₂	J_3	J_4	J_5	J_6
a _i	0	0	0	0	0	0
C _i	1	1	1	1	1	1
d _i	2	5	4	3	5	6

Example (continued)

- Algorithm 1 is **not** optimal.
- Algorithm 1 is the generalization of EDF to the case with precedence conditions.
- Is Algorithm 2 optimal?
- Algorithm 2 is called Latest Deadline First (LDF).
- Theorem (Lawler 73):

LDF is optimal wrt. maximum lateness.

Proof of optimality

LDF

- LDF is optimal.
- LDF may be applied only as off-line algorithm.
- Complexity of LDF:
 - O(|E|) for repeatedly computing the current set Γ of tasks with no successors in the precedence graph G = (V, E).
 - O(log n) for inserting tasks into the ordered set Γ (ordering wrt. d_i).
 - Overall cost: O(n * max(|E|,log n))