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Model-based Software Development

� Model is software specification.

� Hardware/Software codesign.
� Prototyping.
� Formal verification.

� Automated & integrated 
development tools:development tools:
� Simulation.
� Documentation.
� Automatic code generation.

� Automated & integrated verification and test methods
� Model checking
� Static system analysis
� Synthesis of test suites
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Model-based Software Development

Esterel Scade Suite
– SCADE language
– SyncCharts/SSM

SCADE programs
(~Esterel/Lustre) C Code

Binary Code

Generator Compiler

Compiler

– SyncCharts/SSM

– aiT WCET Analyzer
– StackAnalyzer

SymTA/S
– System-level 

Schedulability Analysis
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Embedded Systems 

� Typically, embedded systems are reactive systems:

„A reactive system is one which is in continual 
interaction with is environment and executes at 
a pace determined by that environment“ 
[Bergé, 1995][Bergé, 1995]

Behavior depends on input and current state.

� automata model appropriate
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Finite Automata

� Non-deterministic finite automaton (NFA):
M = (Σ, Q, ∆, q0, F) where
� Σ: finite alphabet
� Q: finite set of states

� q0 ∈ Q: initial state

� F ⊆ Q: final states� F ⊆ Q: final states

�

� M is called a deterministic finite automaton, if ∆ is a 
partial function 

QQ ×∪Σ×⊆∆ }){( ε

QQ →Σ×:δ



7

Mealy Automata

� Mealy automata are finite-state machines that act as 
transducers, or translators, taking a string on an input alphabet 
and producing a string of equal length on an output alphabet.

� A machine in state qj, after reading symbol sigma σk writes 
symbol λk; the output symbol depends on the state just reached 
and the corresponding input symbol. 

� A Mealy automaton is a six-tuple 
M =(Q, Σ, Γ, δ, λ, q ) whereME=(Q, Σ, Γ, δ, λ, q0) where
� Q is a finite set of states

� Σ is a finite input alphabet

� Γ is a finite output alphabet

� δ: Q × Σ -> Q is the transition function

� λ: Q × Σ -> Γ is the output function

� q0 is the initial state
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Moore Automata

� Moore automata are finite-state machines that act as 
transducers, or translators, taking a string on an input alphabet 
and producing a string of equal length on an output alphabet.

� Symbols are output after the transition to a new state is 
completed; output symbol depends only on the state just 
reached.

� A Moore automaton is a six-tuple 
M =(Q, Σ, Γ, δ, λ, q ) whereMO=(Q, Σ, Γ, δ, λ, q0) where
� Q is a finite set of states

� Σ is a finite input alphabet

� Γ is a finite output alphabet

� δ: Q × Σ -> Q is the transition function

� λ: Q -> Γ is the output function

� q0 is the initial state
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Simple State Transition Diagram

� Used to represent a finite automaton

� Nodes: states

� q0 has special entry mark

� Final states are doubly circled

� An edge from p to q is labelled by a if

� Example: integer and real constants:

∆∈),,( qap

� Example: integer and real constants:

� Problem: all combinations of states have to be represented
explicitly, leading to exponential blow-up.
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SyncCharts

� Visual formalism for describing states and transitions of a 
system in a modular fashion.

� Extension of state-transition diagrams (Mealy/Moore automata):
� Hierarchy
� Modularity
� Parallelism

� Is fully deterministic.

� Tailored to control-oriented applications (drivers, protocols).

� Implements sychronous principle.
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Synchroneous Programming

� Program typically implements an automaton:
� state: valuations of memory

� transition: reaction, possibly involving many computations

� Synchronous paradigm: 
� Reactions are considered atomic, ie they take no time. � Reactions are considered atomic, ie they take no time. 

(Computational steps execute like combinatorial circuits.)

� Synchronous broadcast: instantaneous communication, ie each
automaton in the system considers the outputs of others as being
part of its own inputs.



12

Synchronous Programming

� Important requirement: guaranteeing deterministic behavior.

� Time is divided into discrete ticks (also called cycles, steps, 
instants).

� Simple implementation: sampling / cyclic executive:
<Initialize Memory>
Foreach period do

<Read Inputs>
<Compute Outputs>

� Verification of timing behavior: prove that the worst-case 
execution time (WCET) of any reaction fits between two iterations 
of the cyclic executive.

� Implicit assumption: presence of a global clock. This makes 
application in distributed environments difficult.

<Compute Outputs>
<Update Memory>
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Overview

� StateCharts:
� First, and probably most popular formal language for the design of

reactive systems.

� Focus on specification and design, not designed as a programming
language.

� Determinism is not ensured.

� No standardized semantics.

� Programming languages for designing reactive systems:
� ESTEREL [Berry]: textual imperative language. 

� LUSTRE [Caspi, Halbwachs]: textual declarative language. Tailored
to data-flow oriented systems (e.g. regulation systems).

� SCADE [Esterel Inc.]. Enhanced LUSTRE, graphical and textual
formalism.

� SyncCharts / SSM: Graphical formalism corresponding to ESTEREL.
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SyncCharts

� States (circles and rectangles):
� can be named

� two types:
� simple state (circle)

� macrostate (rounded rectangle): contain a 
hierarchy of other states

� are optionally labelled*: /<effect>

� Transitions (arrows):

Cnt2

off1 off0

T

T/C

off on

FDIV

� Transitions (arrows):
� are labelled*: <trigger>/<effect>

� All components are optional.

� three types:
� strong abort

� weak abort

� normal termination

� can have priorities (-> determinism) *Triggers and effects are signals, 
or combinations of signals using 
boolean operations or, and and 
not.

C0/C C0

on1 /B1

T/C0 T

on0 /B1

signal C0

1

2
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States & State Transition Graphs

� Special states:
� Initial state:            (alternative notation:                    )
� Terminal state:

� State Transition Graph: connected labeled 
graph made of states connected by 
transitions, with an initial state.

� Two types of states:

S

Cnt2

C0/C

off1

C0 T/C0

off0

T

I S

� Two types of states:
� Simple state: just carries a label.
� Macrostate: contains at least one state 

transition graph.

� At each instant there is one and only one active state.
� An active state waits for the satisfaction of the trigger of one of 

its outgoing transitions, at an instant strictly posterior to its 
entering (activation).

on1 /B1 on0 /B1

signal C0
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State and Transition Labels

� Signals are characterized by their presence status (+,-, ⊥).
� Valued signal: signals conveys a value of a given type.
� Pure signal: no value conveyed.

� tick: implicit signal present at every instant.
� A trigger is satisfied � associated signal is present.
� Transition labels:

� When the trigger is satisfied, the transition is said to be enabled.
� The transition is immediately taken and emits the associated signals.� The transition is immediately taken and emits the associated signals.
� The firing of a transition is fully deterministic and takes no time.

� Node labels:
� Signal emission depends on transition type (strong/weak abort)
� Signals are emitted when…

…entering …in …exiting

Weak abort Yes Yes Yes

Strong abort Yes Yes No
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Example: Strong vs. Weak Abort

TFF - WA

T

T/C

off on

/OFF /ON

TFF - SA

T

T/C

off on

/OFF /ON

Instant Input TFF-SA Output TFF-WA Output

1

2 T

3

4 T

5

6 T

7 T

8 T

9
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Example: Strong vs. Weak Abort

TFF - WA

T

T/C

off on

/OFF /ON

TFF - SA

T

T/C

off on

/OFF /ON

Instant Input TFF-SA Output TFF-WA Output

1 OFF

2 T ON

3 ON

4 T C, OFF

5 OFF

6 T ON

7 T C,OFF

8 T ON

9 ON
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Example: Strong vs. Weak Abort

TFF - WA

T

T/C

off on

/OFF /ON

TFF - SA

T

T/C

off on

/OFF /ON

Instant Input TFF-SA Output TFF-WA Output

1 OFF OFF

2 T ON OFF,ON

3 ON ON

4 T C, OFF ON,C,OFF

5 OFF OFF

6 T ON OFF,ON

7 T C,OFF ON,C,OFF

8 T ON OFF,ON

9 ON ON
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Concurrency

� A macrostate can contain a parallel
composition of separate concurrent
STGs. Graphical notation: dashed
separation line.

� STGs are coupled by shared signals.

� A local signal is declared by the
keyword signal and its scope is the
containing macrostate.

Cnt2

C0/C

off1

C0

on1 /B1

T/C0

off0

T

on0 /B1

signal C0

� A set of (concurrent) active states is
called a configuration.

� Notation:
� Active state                         Taken transition               Emitted signal 

� S+: presence of signal S        S-: absence of signal S

S
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Example Reaction
Cnt2

C0/C

off1

C0

on1 /B1

T/C0

off0

T

on0 /B0

signal C0

Cnt2

C0/C

off1

C0

on1 /B1

T/C0

off0

T

on0 /B0

signal C0

Cnt2

C0/C

off1

C0

on1 /B1

T/C0

off0

T

on0 /B0

signal C0

T- T+

T+

Cnt2

C0/C

off1

C0

on1 /B1

T/C0

off0

T

on0 /B0

signal C0

Cnt2

C0/C

off1

C0

on1 /B1

T/C0

off0

T

on0 /B0

signal C0

Cnt2

C0/C

off1

C0

on1 /B1

T/C0

off0

T

on0 /B0

signal C0

T+ T+
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Concurrency and Normal Termination

� When each concurrent STG in a macrostate reaches a final 
state, then the macrostate is immediately exited by its normal 
termination transition.

WaitAandB

ABO

wA

A

dA

wB

B

dB

/O

done
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Concurrency and Abort

R+ B+

WaitAandB

wA wB

ABO

R

ABRO

WaitAandB

wA wB

ABO

R

ABRO

A

dA

B

dB

/O

done

A

dA

B

dB

/O

done
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Transitions

� A strong abort prevents any execution in the 
preempted state.

� For any state
� every outgoing transition has a different priority

� any strong abort transition has priority over any weak abort� any strong abort transition has priority over any weak abort
transition

� any weak abort transition has priority over a normal 
termination transition

� There are no inter-level transitions.
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SyncCharts: Advanced Constructs

� Immediate transition
� Syntax: #<trigger>/<effect>

� The trigger may be satisfied as soon as the state is entered: 
An active state waits for the satisfaction of the trigger of one 
of its outgoing transitions, at an instant strictly posterior to 
its entering, or immediately in case of an immediate 
transition.

S1 S2
#a/U

� Count delays for transitions
� Syntax: <factor><trigger>/<effect>

� <factor> is the natural number of instants a transition must 
be active before it is executed. These active instants need 
not be consecutive, but the source state (S1) must be active 
all the time.

S1 S2
3a/U
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Suspension

� A suspension is associated with a trigger. If the trigger is 
satisfied the reaction is suspended in the target state: the 
execution of the preempted state is frozen.

� Notation:           ,or: 

� Note: aborts take priority over suspensions.

T S T

Cnt2

C0/C

off1

C0

on1 /B1

T/C0

off0

T

on0 /B1

signal C0

inhib

reset
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Run Modules

� Macrostates are states that have their own behavior (also called 
processes). They can be abstracted as modules, similarly to procedures 
in programming languages.

� Modules are instantiated by using run modules (corresponding to 
procedure calls).

� A signal interface renaming has to be defined for run modules.

Module M with interface … used as a run module 

m

I/O

Module M with interface
input I;
output O;

… used as a run module 
with the following signal 
binding:
signal S1 / I;
signal S2 / O;

main module

m1@m @

signal S1,S2;
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Conditional Connector

� Introduction of conditional pseudostate 

� Concise representation of scenarios where a common trigger is 
shared by several outgoing transitions.

� All departing transitions are immediate.

� One departing “default” transition without condition must be 
present.

C

T1

T1ΛT2

T2

T1

T2
C

T2
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History Connector

� Directly attached to macrostates

� Only incoming transitions can connect

� The previous state of the macrostate is restored when it is 
entered through a history connector.

Stopwatch

H*

sleep

Counter

S
S
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Example: Watchdog

inhib

Counter

C2C2

B2’

C1/C2

B1’

C1 C0/C1

B0’

C0set

Watchdog

IsON

C2C2 C1/C2 C1

signal C1,C2

C0/C1 C0

B0B2 B1

Alarm

reset
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Example: Watchdog

inhib

Counter

C2C2

B2’

C1/C2

B1’

C1 C0/C1

B0’

C0set

Watchdog

IsON

C2C2 C1/C2 C1

signal C1,C2

C0/C1 C0

B0B2 B1

Alarm

reset
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Example: Watchdog

inhib

Counter

C2C2

B2’

C1/C2

B1’

C1 C0/C1

B0’

C0set

Watchdog

IsON

C0+ C2C2 C1/C2 C1

signal C1,C2

C0/C1 C0

B0B2 B1

Alarm

reset

C0+
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Example: Watchdog

inhib

Counter

C2C2

B2’

C1/C2

B1’

C1 C0/C1

B0’

C0set

Watchdog

IsON

set+ C2C2 C1/C2 C1

signal C1,C2

C0/C1 C0

B0B2 B1

Alarm

reset

set+
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Example: Watchdog

inhib

Counter

C2C2

B2’

C1/C2

B1’

C1 C0/C1

B0’

C0set

Watchdog

IsON

C0+ C2C2 C1/C2 C1

signal C1,C2

C0/C1 C0

B0B2 B1

Alarm

reset

C0+
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Example: Watchdog

inhib

Counter

C2C2

B2’

C1/C2

B1’

C1 C0/C1

B0’

C0set

Watchdog

IsON

C0+ C2C2 C1/C2 C1

signal C1,C2

C0/C1 C0

B0B2 B1

Alarm

reset

C0+
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Example: Watchdog

inhib

Counter

C2C2

B2’

C1/C2

B1’

C1 C0/C1

B0’

C0set

Watchdog

IsON

C0+ C2C2 C1/C2 C1

signal C1,C2

C0/C1 C0

B0B2 B1

Alarm

reset

C0+
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Example: Watchdog

inhib

Counter

C2C2

B2’

C1/C2 C1 C0/C1

B0’

C0set

Watchdog

IsON

C0+

B1’

C2C2 C1/C2 C1

signal C1,C2

C0/C1 C0

B0B2 B1

Alarm

reset

C0+
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Example: Watchdog

inhib

Counter

C2C2

B2’

C1/C2

B1’

C1 C0/C1

B0’

C0set

Watchdog

IsON

C0+ C2C2 C1/C2 C1

signal C1,C2

C0/C1 C0

B0B2 B1

Alarm

reset

C0+
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Example: Watchdog

inhib+
inhib

Counter

C2C2

B2’

C1/C2

B1’

C1 C0/C1

B0’

C0set

Watchdog

IsON

inhib+

C0+

C2C2 C1/C2 C1

signal C1,C2

C0/C1 C0

B0B2 B1

Alarm

reset
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Example: Watchdog

inhib+
inhib

Counter

C2C2

B2’

C1/C2

B1’

C1 C0/C1

B0’

C0set

Watchdog

IsON

inhib+ C2C2 C1/C2 C1

signal C1,C2

C0/C1 C0

B0B2 B1

Alarm

reset
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Example: Watchdog

inhib+
inhib

Counter

C2C2

B2’

C1/C2

B1’

C1 C0/C1

B0’

C0set

Watchdog

IsON

inhib+

C0+

C2C2 C1/C2 C1

signal C1,C2

C0/C1 C0

B0B2 B1

Alarm

reset
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Example: Watchdog

inhib

Counter

C2C2

B2’

C1/C2

B1’

C1 C0/C1

B0’

C0set

Watchdog

IsON

C0+ C2C2 C1/C2 C1

signal C1,C2

C0/C1 C0

B0B2 B1

Alarm

reset

C0+
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Example: Watchdog

inhib

Counter

C2C2

B2’

C1/C2

B1’

C1 C0/C1

B0’

C0set

Watchdog

IsON

C0+ C2C2 C1/C2 C1

signal C1,C2

C0/C1 C0

B0B2 B1

Alarm

reset

C0+
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Example: Watchdog

inhib

Counter

C2C2

B2’

C1/C2

B1’

C1 C0/C1

B0’

C0set

Watchdog

IsON

reset+ C2C2 C1/C2 C1

signal C1,C2

C0/C1 C0

B0B2 B1

Alarm

reset

reset+
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Example: Watchdog

inhib

Counter

C2C2

B2’

C1/C2

B1’

C1 C0/C1

B0’

C0set

Watchdog

IsON

set+ C2C2 C1/C2 C1

signal C1,C2

C0/C1 C0

B0B2 B1

Alarm

reset

set+
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Example: Watchdog

inhib

Counter

C2C2

B2’

C1/C2

B1’

C1 C0/C1

B0’

C0set

Watchdog

IsON

C0+ C2C2 C1/C2 C1

signal C1,C2

C0/C1 C0

B0B2 B1

Alarm

reset

C0+
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Example: Watchdog

inhib

Counter

C2C2

B2’

C1/C2

B1’

C1 C0/C1

B0’

C0set

Watchdog

IsON

reset+ C2C2 C1/C2 C1

signal C1,C2

C0/C1 C0

B0B2 B1

Alarm

reset

reset+

inhib+

C0+



48

Computing a Reaction – Definitions

� Each SSM can be represented by unique macrostate, called Top, which 
designates the root of the state containment hierarchy.

� A state-transition graph (STG) G is a tuple G = (S, ini) where S is a 
non-empty set of reactive cells, and ini is the initial reactive cell.

� A reactive cell is a tuple C=(B,R,S) such that its body B is a state 
(simple state or macrostate) and R the set of all its outgoing 
transitions. The status S of a reactive cell is either IDLE or ACTIVE.transitions. The status S of a reactive cell is either IDLE or ACTIVE.

� A macrostate M is a quadruple M=(G,I,O,L) composed from a non-
empty set G of STGs, and three possibly empty sets of signals: input 
signals (I), output signals (O), local signals (L). 

� A transition has a destination and a label. The destination is a reactive 
cell, the label is composed of three optional fields: a type, a trigger, an 
effect. A transition is denoted as a quadruple R=<type, trigger, effect, 
targetID>. Feasible types are sA (strong abort), wA (weak abort), nT
(normal termination).



49

Illustration

WaitAandB

ABO
A macrostate
made of 1 STG.

Initial reactive cell: 
Body is macrostate, 
1 transition

STG made of 2 
reactive cells.

Reactive cell 
whose body is 
simple state. Macrostate made 

/O

done

WaitAandB

wA

A

dA

wB

B

dB

simple state. Macrostate made 
of 2 STGs.

STG made of 2 
reactive cells.

Initial reactive cell: 
Body is simple 
state, 1 transition
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Detailed Example � Macrostate ABO=TOP:
� MABO.G = {ABO.g}
� MABO.I={A,B}
� MABO.O={O}
� MABO.L= Ø

� State-Transition Graph ABO.g:
� ABO.g.S = {RCWaitAandB,RCdone}
� ABO.g.ini = RCWaitAandB

� Reactive cell RCWaitAandB

� Body: Macrostate MWaitAandB

� RC .out={<nT,,O,RC >}

WaitAandB

wA

A

wB

B

ABO

� RCWaitAandB.out={<nT,,O,RCdone>}

� Macrostate MWaitAandB:
� MWaitAandB.G={WaitAandB.g1,

WaitAandB.g2}
� MWaitAandB.I={A,B}
� MWaitAandB.O= Ø
� MWaitAandB.L= Ø

� Reactive cell RCdone:
� Body: Simple state Sdone
� RCdone.out= Ø

dA dB

/O

done
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Detailed Example
� State-Transition Graph WaitAandB.g1

� WaitAandB.g1.S={RCwA,RCdA}
� WaitAandB.g1.ini=RCwA

� State-Transition Graph WaitAandB.g2
� WaitAandB.g2.S={RCwB,RCdB}
� WaitAandB.g2.ini=RCwB

� Reactive cell RCwA

� Body: simple state SwA
� RCwA.out = {<sA,A,,dA>}

Reactive cell RC

WaitAandB

wA

A

wB

B

ABO

wA

� Reactive cell RCdA

� Body: simple state SdA
� RCdA.out = Ø

� Reactive cell RCwB

� Body: simple state SwB
� RCwB.out = {<sA,B,,dB>}

� Reactive cell RCdB

� Body: simple state SdB
� RCdB.out = Ø

dA dB

/O

done



52

Configurations

� A configuration is a maximal set of states (macrostates or 
simple states) the system could be in simultaneously. (Note 
that formally status is associated with reactive cells.)

� Let T be the top macrostate associated with an SSM. A legal 
configuration C for T must satisfy the following rules:

1. T in C

2. If a macrostate M is in C, then C must also contain for each STG G 2. If a macrostate M is in C, then C must also contain for each STG G 
directly contained in M exactly one state directly contained in G.

3. C is maximal and contains only states satisfying rules 1 and 2.

� A stable configuration is a legal configuration that the SSM can 
reach after a sequence of reactions. Only the stable 
configurations are of interest for the user.
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Example

� Legal configurations:

� {ABRO,ABO,done}

� {ABRO,ABO,WaitAandB,wA,wB}

� {ABRO,ABO,WaitAandB,wA,dB}

� {ABRO,ABO,WaitAandB,dA,wB}

� {ABRO,ABO,WaitAandB,dA,dB}

WaitAandB

wA wB

ABO

R

ABRO

A

dA

B

dB

/O

done

� Stable configurations:

� all legal configurations except 
{ABRO,ABO,WaitAandB,dA,dB}
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Computing a reaction

� Computing a reaction is done by concurrent threads which 
suspend their execution when a trigger cannot be evaluated and 
can resume when new signal statuses are broadcast.

� Reactions are computed as a sequence of microsteps, all 
executed during the same instant but in the order that respects 
causality.

� A transition is taken (ie a microstep is executed) only when its 
trigger is surely satisfied (no possibility of backtracking).

� Termination codes of components (reactive cell, STG, � Termination codes of components (reactive cell, STG, 
macrostate, simple state):
� DONE: execution has been terminated, but can go on in same 

instant
� PAUSE: nothing left to do until next instant
� DEAD: nothing left to do at the current instant and in the future 

(final state); component is candidate to join a normal termination.
� Partial order: DEAD < PAUSE 
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Concurrency and Weak Abort

R+ B+

WaitAandB

wA wB

ABO

R

ABRO

WaitAandB

wA wB

ABO

R

ABRO

A

dA

B

dB

/O

done

Microstep 1

A B

dB

/O

done

dA
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Concurrency and Weak Abort

WaitAandB

wA wB

ABO

R

ABRO

R+ B+

WaitAandB

wA wB

ABO

R

ABRO

Microstep 2

A B

dB

/O

done

dA

A

dA

B

dB

/O

done
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Concurrency and Weak Abort

R+ B+

WaitAandB

wA wB

ABO

R

ABRO

R+ B+

WaitAandB

wA wB

ABO

R

ABRO

A

dA

B

dB

/O

done

Microstep 3

A

dA

B

dB

/O

done
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Computing the reaction of an SSM

� Reaction of an SSM. Given a stable configuration, a reaction is 
computed by:

1. Read input signals (presence status of all input signals is known)

2. Set all output signals to the unknown presence status (⊥)
3. Compute reaction of the top macrostate:

react(T) 
/* yields emitted signals and the next stable configuration *//* yields emitted signals and the next stable configuration */
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State Reaction

� Reaction of macrostate M:

1. Set all local signals to ⊥
2. For each STG g directly contained in M.G do in parallel

� Compute reaction of STG g and store the termination code in c(g): 
c(g) = react(g)

3. When all parallel executions are done

� Compute C=maximum of c(g) for all STGs g in M� Compute C=maximum of c(g) for all STGs g in M

4. Return C

� Reaction of a simple state S

1. If S is a final state return DEAD.

2. If an effect is associated with S, then emit all signals of the effect.

3. return PAUSE
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State Transition Graph Reaction

� Reaction of a STG g
1. If there is no current state in g then set current to the initial 

reactive cell: g.current = g.ini;

2. Compute the reaction of the reactive cell C=(M,t) whose body M 
is the current state (M=g.current): 
r = react(C)

3. If r =DONE then G.current = C.nextState; goto 2.

4. return r /* here r cannot be DONE */4. return r /* here r cannot be DONE */

� Comments:
� When entering a macrostate the current state of each STG is 

undefined. If the STG is already active, the current state is the 
(unique) currently active state.

� Reactions of all STGs from a macrostate are computed in parallel 
(fork).
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Reactive Cell Reaction

� Reaction of a reactive cell C:
1. if (!firstInstant) Strong abort test:

� If a strong abort transition is enabled then take this transition

2. Execute the body of the reactive cell
� If it is a macrostate M, then recursive call: B = react(M)

� If it is a simple state S, then terminal call: B = react(S)

3. if (!firstInstant) Weak abort test: 
� /* Note: body has completed execution. */� /* Note: body has completed execution. */

� If a weak abort transition is enabled then take this transition

4. Normal termination test:
� If (B == DEAD) then take normal termination transition

5. End of reaction:
� Set C.status=ACTIVE

� return PAUSE
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Reactive Cell Reaction

� The triggers are not tested at the first instant when the reactive 
cell is activated (strong/weak abort test).

� If the presence status of a triggering signal is unknown, the 
execution is suspended till another concurrent execution thread 
will fix the status of the tested signal.

� Taking a transition t (strong/weak abort, or normal termination) 
means:
� Recursively “kill” the body of the reactive cell C:� Recursively “kill” the body of the reactive cell C:

� set k.status=IDLE for all transitively contained reactive cells k 

� reset G.current for all transitively contained STGs G

� Execute the effect associated with t and set 
C.nextstate = t.target;

� Set C.status = IDLE;

� return DONE;



Naming Confusion

� Scade Suite: model based development IDE
� Graphical modelling language

�Control part: SyncCharts (SSM)

� Data flow part: SCADE graphical syntax

� Textual representation: SCADE textual language. Semantics 
comprise
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� constructive semantics of ESTEREL

� data flow semantics of LUSTRE
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� Programs are structured into nodes: 
� Node: subprogram defining its output parameters as functions of its input 

parameters.
� Definition given by unordered set of equations (→ declarative language)

� Based on synchronous data-flow model:
� Functional: no side effects. 
� All nodes work simultaneously, ie at the same speed.
� No broadcasting of signals;  sequencing and synchronization only from 

data dependences.

LUSTRE

data dependences.
� Each variable takes a value at every cycle of the program.

� Basis of SCADE.

� Example:

At any cycle n:
sn = 2*(xn+yn)

x
y

2
s+ *

node Counter (init, incr: int; reset: bool)
returns (count:int);

let
count = init -> if reset then init

else pre(count)+incr;
tel
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Required Properties

� Causality: The output at any instant t may only depend upon 
input received before or at t.

� Bounded memory: There must be a finite bound such that, at 
each instant the number of past input values necessary to 
produce a new output value remains smaller than that bound.

� Efficient code generation.

� Execution time predictability: no unbounded loops, no recursion.
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Flows and Clocks

� Any variable and expression denotes a flow, ie a pair made (x, bx) of
� a possibly infinite sequence x of values of a given type

� a clock bx, representing a sequence of times.

� x is defined at instant i iff bx(i) = true.
� A flow takes its n-th value in the n-th time of its clock.
� Input variables are defined at every instant: their clock is called the 

basic clock.
� Example: Let x run on the basic clock C, y on a slower clock. This � Example: Let x run on the basic clock C, y on a slower clock. This 

gives the following time scales:

Basic time-scale 1 2 3 4 5 6 7 8

bx t t t t t t t t

x time-scale 1 2 3 4 5 6 7 8

by t f t f t f t f

y time-scale 1 2 3 4
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Types, Equations, Assertions

� Variables are declared with their type:
� Basic types: boolean, integer, real.

� Type constructor tuple.
� Semantics is Cartesian product.

� Abstract types via import.

� Equations:
� Variables are defined via equations, e.g. X=E with variable X and

expression E. expression E. 

� Substitution principle: X can be substituted to E anywhere in the program
and vice versa.

� Definition principle: The behavior of X must be completely specified by this
equation.

� Assertions: 
� Assertions assert(E): E must hold during execution.

� Used to optimize code generation, for simulation and for verification.
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Variables and Expressions

� Operators only operate on operands sharing the same clock.

� As variables and expressions are streams, operators also produce 
streams. Example: With x = (0,1,2,3,4,...) and y = (2,4,6,8,10,...): 
x+y=(2,5,8,11,14,...)

� Expressions are build from variables, constants and operators. 

� Three types of operators:

� Data operators:� Data operators:

� arithmetic, boolean and relational expressions

� conditional expressions: if E then X else Y

� Imported operators:

� functions imported from host language

� Temporal (sequence) operators.
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Temporal Operators

� 'previous' operator pre:

� (pre(E))0 = ⊥ (undefined, also denoted nil)
� (pre(E))n = En-1

� 'followed by' operator ->
� (E->F)0 = E0

� (E->F)n = Fn

� (Down-)Sampling: when � (Down-)Sampling: when 
� Let E be an expression and B a boolean expression with the same 

clock: (E when B) is the sequence of values of E when B is true. 

� Upsampling/Interpolation/Projection: current
� Let E be an expression and B a boolean expression defining the 

clock of E: Then current E has the same clock as B; and (current 
E) is the sequence of values of E at the last time when B was true. 
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Example

B false true false true false false true true

X x1 x2 x3 x4 x5 x6 x7 x8

Y = X when BY = X when B

Z = current Y
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Example

B false true false true false false true true

X x1 x2 x3 x4 x5 x6 x7 x8

Y = X when B x x x xY = X when B x2 x4 x7 x8

Z = current Y

Note: `gaps´ are not filled.
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Example

B false true false true false false true true

X x1 x2 x3 x4 x5 x6 x7 x8

Y = X when B x x x xY = X when B x2 x4 x7 x8

Z = current Y ⊥ x2 x2 x4 x4 x4 x7 x8
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Clock Rules

� Let a clock environment ω be a function from identifiers to clocks.

� Let clk(E,ω) be the clock of the expression E in the environment 
ω.

� For an equation X=E holds ω(X)=clk(E,ω) .

� Let ⊥ be the undefined clock and Τ the erroneous clock. Then

)''(' ckckckckckck =∨Τ=∨=⊥⇔≤

� Let ∪ denote the least upper bound operator.

� Constants: For any constant k, clk(k,ω)=true (the basic clock).

� Variables: For any identifier X, clk(X, ω)= ω(X) .

� Synchronous operators: 

)''(' ckckckckckck =∨Τ=∨=⊥⇔≤

U
n

i
in EclkEEEopclk

1
,2,1 ),()),...,((

=

= ϖϖ
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Clock Rules

� Downsampling: The operands of the when operator must be on 
the same clock: clk(E)=clk(ck) � clk(E when ck,ω)=ck .

� Upsampling: Let ck be the clock of E, ck ≠ true: 
clk(current(E),ω)=clk(ck)=clk(clk(E)) .

� Clock of a node instance: clock of its effective inputs.

� Initialization problem: current(X when C) exists but is undefined 
(⊥) until C becomes true for the first time.(⊥) until C becomes true for the first time.

� Solution: activation conditions

� Not an operator, rather a macro.

� y = CONDACT(OP, C, X, dflt) equivalent to
Y = if C then current(OP(X when C))

else (dflt -> pre(Y))
� Provided by SCADE (not part of LUSTRE).
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Example
C true true false false true false true

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

n=(0->pre(n)+1)

e = (1->not pre(e))

n when e

node Counter (init, incr: int; reset: bool)
returns (count:int);

let
count = init -> if reset then init

else pre(count)+incr;
tel

current(n when e)

Counter((1,1,false) when C)

Counter(1,1,false) when C
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C true true false false true false true

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

n=(0->pre(n)+1) 0 1 2 3 4 5 6

e = (1->not pre(e))

n when e

Example

node Counter (init, incr: int; reset: bool)
returns (count:int);

let
count = init -> if reset then init

else pre(count)+incr;
tel

current(n when e)

Counter((1,1,false) when C)

Counter(1,1,false) when C
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C true true false false true false true

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

n=(0->pre(n)+1) 0 1 2 3 4 5 6

e = (1->not pre(e)) 1 0 1 0 1 0 1

n when e

Example

node Counter (init, incr: int; reset: bool)
returns (count:int);

let
count = init -> if reset then init

else pre(count)+incr;
tel

current(n when e)

Counter((1,1,false) when C)

Counter(1,1,false) when C
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C true true false false true false true

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

n=(0->pre(n)+1) 0 1 2 3 4 5 6

e = (1->not pre(e)) 1 0 1 0 1 0 1

n when e 0 2 4 6

Example

node Counter (init, incr: int; reset: bool)
returns (count:int);

let
count = init -> if reset then init

else pre(count)+incr;
tel

current(n when e)

Counter((1,1,false) when C)

Counter(1,1,false) when C
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C true true false false true false true

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

n=(0->pre(n)+1) 0 1 2 3 4 5 6

e = (1->not pre(e)) 1 0 1 0 1 0 1

n when e 0 2 4 6

Example

node Counter (init, incr: int; reset: bool)
returns (count:int);

let
count = init -> if reset then init

else pre(count)+incr;
tel

current(n when e) 0 0 2 2 4 4 6

Counter((1,1,false) when C)

Counter(1,1,false) when C
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C true true false false true false true

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

n=(0->pre(n)+1) 0 1 2 3 4 5 6

e = (1->not pre(e)) 1 0 1 0 1 0 1

n when e 0 2 4 6

Example

node Counter (init, incr: int; reset: bool)
returns (count:int);

let
count = init -> if reset then init

else pre(count)+incr;
tel

current(n when e) 0 0 2 2 4 4 6

Counter((1,1,false) when C) 1 2 3 4

Counter(1,1,false) when C



81

C true true false false true false true

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

n=(0->pre(n)+1) 0 1 2 3 4 5 6

e = (1->not pre(e)) 1 0 1 0 1 0 1

n when e 0 2 4 6

Example

node Counter (init, incr: int; reset: bool)
returns (count:int);

let
count = init -> if reset then init

else pre(count)+incr;
tel

current(n when e) 0 0 2 2 4 4 6

Counter((1,1,false) when C) 1 2 3 4

Counter(1,1,false) when C 1 2 5 7
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Program Structure

� Nodes are LUSTRE subprograms. General structure:
node N ( x1:τ1; x2:τ2; ...; xp:τp )
returns ( y1:θ1; y2:θ2; ...; yp:θq )
var z1:γ1 ; z2:γ2 ; ...; zk:γk

let
z1=E1; ...; zk=Ei ;
y1=Ej; ...; yp=Em ;

teltel

� Node instantiation: if N is the name of a node with above 

signature and if E1,...,Ep are expressions of type τ1,...,τp, then 

N(E1,...,Ep) is an expression of type tuple(θ1,..., θq).
� Conditional and sequence operators are polymorphic and can be 

applied to tuples.
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Arrays and Recursion

� Let n be a constant. Given type τ, τn defines an array with n
entries of type τ.

� Example: x:booln

� The bounds of an array must be known at compile time; the 
compiler transforms an array of n values into n different 
variables.

� X[i] denotes i th element.� X[i] denotes i th element.

� X[i..j] denotes the array made of elements i to j of X. 

� LUSTRE only allows static recursion: the recursion is completely 
unrolled.

� Attention: if the recursion is not bounded the compiler will not 
stop.
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Compilation of LUSTRE Programs

� Static compiler checks:
� Definition checking: any local and output variable must have 
exactly one definition.

� No recursive node calls.

� Clock consistency.

� Absence of uninitialized expressions (yielding ⊥).� Absence of uninitialized expressions (yielding ⊥).
� Absence of cyclic definitions.

� Compilation to 
� single-loop code

� automata code.
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Causality Problems

� LUSTRE only allows acyclic equation systems. 
Note: acyclic equations have a unique solution.

� X=E is acyclic if X does not occur in E unless as subterm of the 
pre operator.

� Examples:

� X = X and pre(X) is cyclic
� X = Y and pre(X) is acyclic� X = Y and pre(X) is acyclic

� Also structural deadlocks which are not true ones are rejected:

� X = if C then Y else Z;
Y = if C then Z else X;

� Improved causality analysis in SCADE.
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Clock Consistency

� Consider the following (illegal) example:
b = true -> not pre b;
y = x + (x when b);

x x0 x1 x2 x3

b 1 0 1 0

x when b x0 x2

x+(x when b) x0 + x0 x1 + x2 x2 + x4 x3 + x6

� The computation of the 2nth value of y needs the 2nth and the nth 
values of x.

� Problem: not possible with bounded memory.

� Consequence: only streams of the same clock can be combined.

� Problem: undecidable whether two boolean expressions denote the 
same flow.
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Clock Consistency (c’ed)

� Thus: two boolean expressions define the same clock iff they 
can be syntactically unified.

� Examples:
x = a when (y>z)
y = b+c
u = d when (b+c>z)
v = e when (z<y)v = e when (z<y)

� x and u share the same clock.

� x and v have different clocks.
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LUSTRE and SCADE

� SCADE: constant blocks:
� delimited by keywords let const and tel;
� Example:

let const PCSt1
C2: [real,int] = [C1,3]
C1: real = 7.2;
imported Cimp: real;

tel;tel;
� Equation blocks delimited by keywords let equa and tel; variable 

blocks by var; global variable blocks by let global and tel; type 
blocks by let type and tel;

� Other additions for syntactic convenience, like “don’t care” 
symbol ‘_’: _,x = [3,4];

� For details see SCADE Language Reference Manual [Esterel 
2006].
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SCADE: The Graphical Language

� See SCADE Technical Manual, Chapter 3: SCADE Language 
Graphic Syntax.

� Arithmetic Operators:

� “+”        “-”                          “*”       intdiv      realdiv       mod  ...

� Example: y=c+d+e
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SCADE: The Graphical Language

� Logial Operators:

� “or”            “xor”           “and”          “not”        ...

� Some Comparison Operators:

� Control Operators:

� if ... then ... else ...
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SCADE: The Graphical Language

� Example:

� y,z=if b then (y1,z1) else (y2,z2)
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SCADE: The Graphical Language

� SSM (SyncCharts) Nodes
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SCADE: The Graphical Language

� Temporal Operators

� Example: o1,o2,o3 = (i1,i2,i3) when c� Example: o1,o2,o3 = (i1,i2,i3) when c


