Embedded Systems

O’H‘l’

...........

CS-ES

é'l f)
:

1¢ ﬁ

Overview of embedded systems design REVIEW

application knowledge

HW-components hardware—-design —| hardware
|
! T v
—=[specification _| implementation: hw/sw codesign realization
- task concurrency management
’F = high-level transformations A
- design space exploration
standard software - hardware/software partitioning —| software
(RTOS, ..) - compilation, scheduling
1 (from all phases) |’
y (romaliphases) y y
validation; evaluation (performance, energy consumption, safety, ..)

CS-ES 0.

Scheduling REVIEW

Support for multi-tasking/multi-threading — several tasks to
run on shared resources

Task ~ process — sequential program

Resources: processor(s) + memory, disks, buses,
communication channels, etc.

Scheduler assigns shared resources to tasks for durations
of time

Most important resource(s) — processor(s)

Scheduling — mostly concerned with processor(s)
= Online — scheduling decisions taken when input becomes available
= Offline — schedule computed with complete input known

Other shared resources with exclusive access complicate
scheduling task

CS-ES . 3.

Point of departure: REVIEW
Scheduling general IT systems

* |n general IT systems, not much is known about the set of
tasks a priori
= The set of tasks to be scheduled is dynamic:
* new tasks may be inserted into the running system,
+ executed tasks may disappear.
+ Tasks are activated with unknown activation patterns.

= The power of schedulers thus is inherently limited by lack of knowledge
—only online scheduling is possible

CS-ES . 4-

Scheduling processes in ES:
The difference in process charaterization

REVIEW

* Most ES are “closed shops”
= Task set of the system is known
= atleast part of their activation patterns is known
* periodic activation in, e.g., signal processing

« maximum activation frequencies of asynchronous events

determinable from environment dynamics,
minimal inter-arrival times

= Possible to determine bounds on their execution time (WCET)
« if they are well-built
+ if we invest enough analysis effort
= Much better prospects for guaranteeing response times and
for delivering high-quality schedules!

CS-ES . 5.

Scheduling processes in ES: REVIEW
Differences in goals

* |n classical OS, guality of scheduling is normally
measured in terms of performance:
* Throughput, reaction times, ... in average case

* |n ES, the schedules do often have to meet stringent
guality criteria under all possible execution scenarios:

» Atask of an RTOS is usually connected with a deadline.,
Standard operating systems do not deal with deadlines.

 There are hard deadlines which have to be fulfilled under all
circumstances and

» “soft deadlines” which should be fulfilled if possible
» Scheduling of an RTOS has to be predictable.

» Real-time systems have to be designed for peak load.
Scheduling for meeting deadlines should work for all anticipated
situations.

CS-ES . 6-

Constraints for real-time tasks REVIEW

» Three types of constraints for real-time tasks:

= Timing constraints
= Precedence constraints (priority c.)
= Mutual exclusion constraints on shared resources

CS-ES 7.

REVIE\
Model-based Software Development

= Model is software specification.

» Hardware/Software codesign. [| } o) =
» Prototyping. 1] B

» Formal verification. 2l ===

» Automated & integrated - | ——
development tools: -—1 |
= Simulation.
= Documentation.
= Automatic code generation.

» Automated & integrated verification and test methods
= Model checking

= Static system analysis
= Synthesis of test suites

SRR ®

()b a

Esterel Scade Suite
— SCADE language

— SyncCharts/SSM

REVIE
Model-based Software Development

Generator

SCADE programs | compiler
(~Esterel/Lustre)

C CodeJ

/;mpiler

Binary CodeJ

—aiT WCET Analyzer
— StackAnalyzer

SymTA/S
- System-level
Schedulability Analysis

SyncCharts RV

= Visual formalism for describing states and transitions of a
system in a modular fashion.

= Extension of state-transition diagrams (Mealy/Moore automz:
= Hierarchy
= Modularity
= Parallelism

= s fully deterministic.
= Tailored to control-oriented applications (drivers, protocols).

= Implements sychronous principle.

yERS;
| ﬁ! 4

Synchronous Programming REVIEW

= Important requirement: guaranteeing deterministic behavior.

= Time is divided into discrete ticks (also called cycles, steps,
instants).

= Simple implementation: sampling / cyclic executive:

<Initialize Memory>
Foreach period do
<Read Inputs>
<Compute Outputs>
<Update Memory>

= Verification of timing behavior: prove that the worst-case
execution time (WCET) of any reaction fits between two iteratior
of the cyclic executive.

= Implicit assumption: presence of a global clock. This makes
application in distributed environments difficult.

il

Overview

= StateCharts:

REVIEW

First, and probably most popular formal language for the design of
reactive systems.

Focus on specification and design, not designed as a programming
language.

Determinism is not ensured.

No standardized semantics.

= Programming languages for designing reactive systems:

) q

ESTEREL [Berry]: textual imperative language.

LUSTRE [Caspi, Halbwachs]: textual declarative language. Tailored
to data-flow oriented systems (e.q. regulation systems).

SCADE [Esterel Inc.]. Enhanced LUSTRE, graphical and textual
formalism.

SyncCharts / SSM: Graphical formalism corresponding to ESTEREL.
@

¢ -
aviee

Concurrency vs. Parallism REVIEW

= Concurrency is central to embedded systems. A computer
program is said to be concurrent if different parts of the
program conceptually execute simultaneously.

= A program is said to be parallel if different parts of the
program physically execute simultaneously on distinct

hardware (multi-core, multi-processor or distributed
systems)

CS-ES - 14 -

REVIEW

Petri Nets

CS-ES - 15-

, . REVIEW
Petri’s nets - complex foundations for

simple models

For his nets, Carl Adam Petri has made an attempt to combine
automata from theoretical CS, insights from physics, and
pragmatic expertise from engineers:

o state is distributed, transitions are localised (space is relevant)
 local causality replaces global time (time as a derived concept)

e subsystems interact by explicit communication
(information transport is as relevant as information processing)

engineers can often ignore the background - Petri nets just work!
(but the background explains why things work, why concepts from

other disciplines, such as logic, have been integrated into Petri nets
so easily, and why foundational research has to continue)

CS-ES - 16-

Application areas REVIEW

= modelling, analysis, verification of distributed systems
= automation engineering

* pusiness processes
= modeling of resources
= modeling of synchronization

CS-ES - 17 -

Key Elements REVIEW

= Conditions
Either met or not met. Conditions represent “local states”. Set of

conditions describes the potential state space.

= Events
May take place if certain conditions are met. Event represents a state

transition.

= Flow relation
Relates conditions and events, describes how an event changes the

local and global state.

= Tokens
Assignments of tokens to conditions specifies a global state.

Conditions, events and the flow relation form
a bipartite graph (graph with two kinds of nodes).

CS-ES . 18-

Example 2: REVIEW
Synchronization at single track rail segment

= mutual exclusion:

there is at most one train using the track rail »Postcondition®

/I of x fulfilled

/

train entering track /train leaving track
from the left ! to the right

Preconditions" train wanting \E{ train goj'(g y

RO to go_right to theeright
of x fulfilled (A@—> X e@%— "‘*O\v

~
~
~
~
S o
= > @

(_} track available
—O—_F 2 O

train going
to the left
<——single-laned=——-

CS-ES - 19-

Playing the ,token game“: dynamic behavior

train wanting
to go right

train going
to the right

ﬂq:j*

track available

’Loe(ip

-

Ve

CS-ES

train going
to the left

O—

(=

- 20 -

Playing the ,token game“: dynamic behavior

train wanting
to go right

train going
to the right

foq;i"

track available

’Loe(ip

-

Ve

CS-ES

train going
to the left

O—

(=

- 21 -

Playing the ,token game“: dynamic behavior

REVIEW

train wanting train going
to go right to the right

track available

foqj/f'@\v

’Loe(job O~

< Ve

train going
to the left

CS-ES - 22 -

Confllc_t for resource ,track®: REVIEW
two trains competing

train wanting train going
to go right to the right

A N

@ track available

oG- R e

train going
to the left

CS-ES - 23 -

A Petri nets IS nondeterministic

When multiple transitions are enabled at the same
time, any one of them may fire.

If a transition Is enabled, it may fire (but it doesn't
have to).

CS-ES - o4

Condition/event Petri nets REVIEW

single token per place

Def.. N=(C,E,F) is called a net, iff the following holds
1. C and E are disjoint sets
2. Fc(C xE)u (E xC); is binary relation, (,flow relation)

Def.: Let be anetandletx € (C U E).

N
{y |y F x} is called the set of preconditions.
{y | X F y} is called the set of postconditions.

Example:

train wanting train going
to go right to the right
X

‘\5@\‘,
@ track available

o o R e

train going
to the left

CS-ES - 25-

Basic structural properties: REVIEW
Loops and pure nets

Def.. Let (c,e) € C x E. (c,e) is called a loop iff cFe A eFc.

O— =0

Def.. Net N=(C,E,F) is called pure, if F does not contain any
loops.

CS-ES - 26 -

Simple nets REVIEW

. Def.: A net is called simple if no two nodes nl1 and n2
have the same pre-set and post-set.

. Example (not simple):

Sumpre

CS-ES - 27 -

More complex example (1) REVIEW

Amsterdam

Thalys trains between
Cologne, Amsterdam,
Brussels and Paris. Ostend

The Hague Schiphol

Rotterdam

Antwer
P Brussels

National Airport

Cologne

Liege

Aachen

Wions Charleroi

Charles de Gaulle Airport 2 TGV

Mame-la-Vallée
Disneyland® Resort Paris

Paris

[http://www.thalys.com/be/en]
CS-ES - 28 -

Example Thalys REVlEW Amsterdam Cologne
trains:) '\ ; :‘\

more complex -2 Lo 3| B

Thalys trains between Cologne, \Gil_}) I_.

Amsterdam, Brussels and Paris.
Synchronization at Brussels and @ Connectmg

Paris |/. Brussels

+)

Disconnecting

& ‘I‘ 3k

Places 3 and10: trains waiting in Aand C '
Transitions 9 and 2: trains driving from A and C to r‘ i@ I_.
ELEES S Gare du Nord
T1: connecting the two trains |/' I—c

Paris
Break for driver P13 | ‘
'_I 8 7 .’1

T5 synchronization with trians at Gare du Nord are de Lyon

CS-ES - 29 -

Regllfs,yc scenarios need more general REVIEW
definitions

. More than one token per condition, capacities of places
= weights of edges
. state space of Petri nets may become infinite!

k=1 k=2
accepted

pl p4
/ \ Storage p3 \
produc /3\ 5 accep

o0 » |13 t4 consume
send \-/
k=5
p2 p5
'dle@ ready

k=1 k=2

Producer Consumers

CS-ES - 30 -

Place/transition nets REVIEW

multiple tokens per place

Def.: (P, T, F, K, W, M,) is called a place/transition net (P/T net) iff
1. N=(P,T,F)is anet with places p € P and transitionst € T
2. K:P — (N {»}) {0} denotes the capacity of places
(o symbolizes infinite capacity)
3. W:F —(N, \{0}) denotes the weight of graph edges

4. My P > Ny U{m} represents the initial marking of places

W (Segment of some net)

S DX
oot 2O 03\; D s
27 T O [Kkee
W= 1

CS-ES - 31-

Example REVIEW

2

P ={p1, p2, p3}

T = {t1, t2}

F={(p1, 11), (p2, t2), (p3, 1), (11, p2), (12, p1), (t2, p3)}

W = {(p1, t1) > 2, (p2, t2) > 1, (p3, t1) > 1, (t1, p2) > 1,
(t2, p1) > 2, (t2, p3) > 1}

= m0=(20,1)

/TN

pl p2 p3

CS-ES - 32 -

Reachability el REVIEW

reachability graph

CS-ES - 33 -

Reachability

5 &) 5N

O

_ Is there a sequence of
Marking transition firings such
M that M — M'?

CS-ES NO

Marking
Ml

- 34 -

REVIEW
From conditions to resources (1)

» c/e-systems model the flow of information, at a fundamental level
(true/false)

= there are natural application areas for which the flow/transport of
resources and the number of available resources is important (data
flow, document-/workflow, production lines, communication
networks, ..)

= place/transition-nets are a suitable generalisation of c/e-systems:
= gstate elements represent places where resources (tokens) can
be stored
= transition elements represent local transitions or transport of
resources

CS-ES . 35.

REVIEW
From conditions to resources (2)

= atransition is enabled if and only if
= sufficient resources are available on all its input places
= sufficient capacities are available on all its output places

= a transition occurrence
= consumes one token from each input place and
= produces one token on each output place

CS-ES - 36 -

Computing changes of markings

= Firing” transitions t generate new markings on each of
the places p according to the following rules:

M(p)—W(p;t), ifpe *t\ ¢
ifpe ¢\ *t
iftpe *tn¢°
otherwise

N 2
e

When a transition t fires from a marking M, w(p, t) tokens are deleted from the incoming places
of t (i.e. from places p € °t), and w(t, p) tokens are added to the outgoing places of t (i.e. to

places p € t*), and a new marking M' is produced
CS-ES - 37-

Activated transitions
= Transition t is ,activated”

iff
(Vpe *t:M(p) =W(p,t)) N(Npet®:M(p)+W(t,p) <K(p))
DN DY

O O

Activated transitions can ,take place” or ,fire®,

but don‘t have to.

The order in which activated transitions fire Is not fixed
(it Is non-deterministic).

CS-ES - 38-

Boundedness

= A place is called k-safe or k-bounded if it contains in the initial
marking my and in all other reachable from there markings at most k
tokens.

= Anetis bounded if each place is bounded.

» Boundedness: the number of tokens in any place cannot grow
indefinitely

= Application: places represent buffers and registers (check
there is no overflow)

= A Petri net is inherently bounded if and only if all its reachability
graphs (i.e. reachability graphs with all possible starting states) all
have a finite number of states.

CS-ES - 39-

Liveness

A transition T is live if in any marking there exists a firing sequence such
that T becomes enabled

An entire net is live If all its transitions are live

Important for checking deadlock

NO YES

CS-ES . 40-

Deadlock

» A dead marking (deadlock) is a marking where no transition can fire.
= A Petri netis deadlock-free if no dead marking is reachable.

7

CS-ES - 4] -

Shorthand for changes of markings

M(p)—W(p,t), ifpe *t\1*
Firing M (p) = M(p)+W(t,p), ifpe 1*\ *
transition: P)= M(p)—W(p,t)+W(t,p), ifpe *tn¢*°
M(p) otherwise
W (p,t)if pe't\t®
et 1(p):<+W(t’ p)|fpet\.t o
—W(p,t)+W(t,p)if pet’ 't
0
= vp € P: M'(p) = M(p)+_t(p)
= M = M+t +: vector add

CS-ES e

Matrix N describing all changes of markings

—W (p,t)if pe't\t’
+W (t, p)if pet’\'t
—W(p,t)+W(t, p)if pet’n’t
0

t(p) =1

Def.: Matrix N (incidence matrix)of net N is a mapping

N: P xT — Z (integers)

such that V t €T: N(p,t)=t(p)

Component in column t and row p indicates the change of
the marking of place p if transition t takes place.

CS-ES . 43-

Incidence matrix

Incidence matrix N of a pure (no elementary loops)
place/transition-net:

(—W (t, p), arc from p tot
N .=<+W(t, p), arcfromtto p
0, otherwise

e () N

t

Contribution
oftonp

CS-ES

Example: N =

9

AR
£

sterd

B i

CS-ES

RO

Pro

Pu

o
.

B, |

are de Lyon

Ps |1

- 45 -

State equation

CS-ES

tl

pl

- 46 -

State equation

CS-ES

m0

-

g
2 t4
t3
t4

reachabillity graph

- 47 -

Computation of Invariants

We are interested in subsets R of places whose number
of labels remain invariant under fireing of transitions:

e e.g. the number of trains commuting between
Amsterdam and Paris (Cologne and Paris) remains
constant

Important for correctness proofs

CS-ES . 48-

Computation of Invariants

CS-ES

- 49 -

Place - Invariants

Standardized technique for proving properties of system
models

For any transition i e Tweare looking for sets R < P of
places for which the accumulated marking is constant:

th(p):O

peR

Example:
s 8 20O

O

CS-ES - 50 -

Characteristic Vector

th(p)zo
peR
1if peR

. C —
et Ca(P) iO if p R

= D ti(p)=t;-cp =) t;(p)c (p)=0

peR T peP
Scalar product

CS-ES - 51 -

Condition for place invariants

2 ti(p)=t;-cp = t;(p) c (p)=0

peR peP

Accumulated marking constant for all transitions if
-k = 0

In °9R — O

Equivalentto N" cr =0 where N' is the transposed of N

CS-ES .52

More detailed view of computations

(L (p)-h(p) Yer(p)) (00
()t (py) [Cr(p) | |0

\:[m(pl)_tm(pn)/\eCR(pn)/ \O/

System of linear equations.

Solution vectors must consist of zeros and ones.

Different techniques for solving equation system (Gauss
elimination, tools e.g. Matlab, ...)

CS-ES

- 53-

Application to Thalys example

N cr =0, with NT=

CS-ES

P[P Pa

Bs

Bs

P7 Ps

"p3‘p10

Pi1 P12

P13

Cq, =(1111110000000)

- 54 -

Interpretation of the 1St invariant

= (1 11111000000 O) /AmSterdam 3) Cologne
"1 10 ! i 1

Characteristic vector describes \qr' [%CR)
places for Cologne train. |

+)
We proved that: the number o an g{DCOIQpectmgg‘
trains along the path remains \ﬂ/ | Brusssl
[N

constant.

Paris

Gare de Lyon

CS-ES e

Application to Thalys example

N cr =0, with NT=

Ps Py

Bs

Bs

P7 Ps

_-‘p)_pl()

Pi1 P12

P13

Cr, =(1,0,0,0,1,1,0,0,1,1,1,0,0)

CS-ES

- 56 -

Interpretation of the 2"9 invariant

~(1,0,0,0,1,1,00,1,1,1,0,0) /{reren G oo

/'1 (l(\) !I‘_I @ 3
F‘)@ N
. 4
We proved that: | i -
None of the Amsterdam trains I* Brussels
gets lost. e ARG

£ o

I M N
I/. <%/ o I_. Paris
s IF

Gare de Lyon
CS-ES - 57-

Application to Thalys example

N cr =0, with NT=

Ps Py

Bs

Bs

P7 Ps

"p3‘p10

Pi1 P12

P13

C,,=(0000001100010)

CS-ES

- 58 -

Solution vectors for Thalys example

Cq, =(1111110000000)
C,,=(0000001100010)
C,;=(0000000011001)

Cr,=(0000110011100)

We proved that:

e the number of trains serving
Amsterdam, Cologne and
Paris remains constant.

 the number of train drivers
remains constant.

CS-ES

Amsterdam %\Cologne
A\
;I D X \!I'\! 2 3 ';1
l \‘ \I/I. .
N\ %2 Cr 1
\ g X
(@ 137 onnectingGu)
f I/_'_/J Brussels
[— V1|

Paris

e

a Gare de Lyon

- 59 -

Solution vectors for Thalys example

10 NAmsterdam 3) Cologne

It follows: | WE \

)) g 0 '\ 2 3\

e each place invariant must £/ ¥ &
have at least one label at the Cra Rﬁ, I Cr1
beginning, otherwise “dead” . Q)

1 S onnecting 1
* at least three labels are 1) (3 J\r® | R
necessary in the example ?7—
4 '.
6| 'R
5 6

Gare du Nord

e 2 [*
i

Gare de Lyon
CS-ES - 60 -

Paris

H_

Place Invariants — Animation

http://www.informatik.uni-
hamburg.de/TGIl/PetriNets/introductions/aalst/tr

afficlight2 Pl.swf

CS-ES - 61 -

NT cr = 0, with NT= |p1_[P2 [P3_ P4 |P5 [P6
T — T1

T2
T3
T4

15
CS-ES .

