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Embedded Systems                                  



- 2 -CS - ES

Overview of embedded systems design REVIEW
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REVIEW
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REVIEW
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REVIEW
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Scheduling processes in ES:
Differences in goals

 In classical OS, quality of scheduling is normally 
measured in terms of performance:
 Throughput, reaction times, … in average case

 In ES, the schedules do often have to meet stringent 
quality criteria under all possible execution scenarios:
 A task of an RTOS is usually connected with a deadline. 

Standard operating systems do not deal with deadlines.
• There are hard deadlines which have to be fulfilled under all 

circumstances and
• “soft deadlines” which should be fulfilled if possible

 Scheduling of an RTOS has to be predictable.
 Real-time systems have to be designed for peak load.

Scheduling for meeting deadlines should work for all anticipated 
situations.

REVIEW
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Constraints for real-time tasks

 Three types of constraints for real-time tasks:

 Timing constraints
 Precedence constraints (priority c.)
 Mutual exclusion constraints on shared resources

REVIEW
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REVIEW
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REVIEW
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REVIE
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REVIE
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REVIEW
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REVIEW
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Concurrency vs. Parallism

 Concurrency is central to embedded systems. A computer 
program is said to be concurrent if different parts of the 
program conceptually execute simultaneously. 

 A program is said to be parallel if different parts of the 
program physically execute simultaneously on distinct 
hardware (multi-core, multi-processor or distributed 
systems)

REVIEW
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Petri Nets

REVIEW
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For his nets, Carl Adam Petri has made an attempt to combine 
automata from theoretical CS, insights from physics, and 
pragmatic expertise from engineers:

(but the background explains why things work, why concepts  from
other disciplines, such as logic, have been integrated into Petri nets
so easily, and why foundational research has to continue)

Petri’s nets - complex foundations for 
simple models

• state is distributed, transitions are localised (space is relevant)
• local causality replaces global time (time as a derived concept)

• subsystems interact by explicit communication
(information transport is as relevant as information processing)

engineers can often ignore the background - Petri nets just work!

REVIEW
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 modelling, analysis, verification of distributed systems 
 automation engineering
 business processes 
 modeling of resources
 modeling of synchronization

Application areas REVIEW
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 Conditions
Either met or not met. Conditions represent “local states”. Set of 
conditions describes the potential state space.

 Events
May take place if certain conditions are met. Event represents a state 
transition.

 Flow relation
Relates conditions and events, describes how an event changes the 
local and global state.

 Tokens
Assignments of tokens to conditions specifies a global state.

Conditions, events and the flow relation form
a bipartite graph (graph with two kinds of nodes).

Key Elements REVIEW
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Example 2: 
Synchronization at single track rail segment

„Preconditions“
of x fulfilled

 mutual exclusion: 
there is at most one train using the track rail

x

„Postcondition“
of x fulfilled

REVIEW
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Playing the „token game“: dynamic behavior

x
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Playing the „token game“: dynamic behavior

x
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Playing the „token game“: dynamic behavior

REVIEW
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Conflict for resource „track“:
two trains competing

REVIEW
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A Petri nets is nondeterministic

When multiple transitions are enabled at the same 
time, any one of them may fire. 

If a transition is enabled, it may fire (but it doesn't 
have to).
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Condition/event Petri nets

Def.: N=(C,E,F) is called a net, iff the following holds
1. C and E are disjoint sets
2. F  (C  E)  (E  C); is binary relation, („flow relation“)

Def.: Let N be a net and let x  (C  E).
x := {y | y F x} is called the set of preconditions.
x := {y | x F y} is called the set of postconditions.

Example:

xx x

single token per place

REVIEW
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Basic structural properties: 
Loops and pure nets

Def.: Let (c,e)  C  E.  (c,e) is called a loop iff cFe  eFc.

Def.: Net N=(C,E,F) is called pure, if F does not contain any 
loops.

REVIEW
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Simple nets

 Def.: A net is called simple if no two nodes n1 and n2 
have the same pre-set and post-set.

 Example (not simple):

REVIEW
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More complex example (1)

Thalys trains between 
Cologne, Amsterdam, 
Brussels and Paris.

[http://www.thalys.com/be/en]

REVIEW
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s

Example Thalys 
trains:
more complex

 Thalys trains between Cologne, 
Amsterdam, Brussels and Paris.

 Synchronization at Brussels and 
Paris

 Places 3 and10: trains waiting in A and C

 Transitions 9 and 2: trains driving from A and C to 
Brussels

 T1: connecting the two trains

 Break for driver P13

 T5 synchronization with trians at Gare du Nord 

REVIEW
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Realistic scenarios need more general 
definitions

 More than one token per condition, capacities of places
 weights of edges
 state space of Petri nets may become infinite!

ready
p1

t1
produce

idle

send

p2

t2

k=1

k=1

k=5

Storage p3

3 2 t3 t4

p4

p5

k=2

k=2

accept

accepted

consume

ready

Producer Consumers

REVIEW
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Place/transition nets

Def.: (P, T, F, K, W, M0) is called a place/transition net (P/T net) iff
1. N=(P,T,F) is a net with places p  P and transitions t  T
2. K: P  (N0  {}) \{0} denotes the capacity of places

( symbolizes infinite capacity)
3. W: F (N0 \{0}) denotes the weight of graph edges
4. M0: P  N0 {} represents the initial marking of places

W

M0

(Segment of some net)

defaults:
K = 
W = 1

multiple tokens per place

REVIEW
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Example

 P = {p1, p2, p3}
 T = {t1, t2}
 F = {(p1, t1), (p2, t2), (p3, t1), (t1, p2), (t2, p1), (t2, p3)}
 W = {(p1, t1)  2, (p2, t2)  1, (p3, t1)  1, (t1, p2)  1,

(t2, p1)  2, (t2, p3)  1}
 m0 = (2, 0, 1)

p1      p2        p3

REVIEW
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Reachability

reachability graph

m0 = (2, 0, 0)

p1      p2        p3

REVIEW
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Marking 
M

Marking 
M'

NO

Is there a sequence of 
transition firings such 

that M        M'?

Reachability



- 35 -CS - ES

From conditions to resources (1) 

 c/e-systems model the flow of information, at a fundamental level 
(true/false)

 there are natural application areas for which the flow/transport of 
resources and the number of available resources is important (data 
flow, document-/workflow, production lines, communication 
networks, ..)

 place/transition-nets are a suitable generalisation of c/e-systems:
 state elements represent places where resources (tokens) can 

be stored
 transition elements represent local transitions or transport of 

resources

REVIEW
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From conditions to resources (2) 

 a transition is enabled if and only if
 sufficient resources are available on all its input places
 sufficient capacities are available on all its output places

 a transition occurrence 
 consumes one token from each input place and 
 produces one token on each output place

REVIEW
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Computing changes of markings
 „Firing“ transitions t generate new markings on each of 

the places p according to the following rules:

When a transition t fires from a marking M, w(p, t) tokens are deleted from the incoming places
of t (i.e. from places p  t ), and w(t, p) tokens are added to the outgoing places of t (i.e. to 

places p  t  ), and a new marking M' is produced
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Activated transitions
 Transition t is „activated“ 

iff

Activated transitions can „take place“ or „fire“,
but don‘t have to.
The order in which activated transitions fire is not fixed
(it is non-deterministic).
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Boundedness
 A place is called k-safe or k-bounded if it contains in the initial 

marking m0 and in all other reachable from there markings at most k 
tokens.

 A net is bounded if each place is bounded.

 Boundedness: the number of tokens in any place cannot grow 
indefinitely

 Application: places represent buffers and registers (check 
there is no overflow)

 A Petri net is inherently bounded if and only if all its reachability 
graphs (i.e. reachability graphs with all possible starting states) all 
have a finite number of states.
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• A transition T is live if in any marking there exists a firing sequence such 
that T becomes enabled

• An entire net is live if all its transitions are live

• Important for checking deadlock

Live
?

YESNO

Liveness
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Deadlock

 A dead marking (deadlock) is a marking where no transition can fire.
 A Petri net is deadlock-free if no dead marking is reachable.
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Shorthand for changes of markings
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Matrix N describing all changes of markings

Def.: Matrix N (incidence matrix )of net N is a mapping

N: P T  Z (integers)

such that  t T:  N(p,t)=t(p)

Component in column t and row p indicates the change of 
the marking of place p if transition t takes place.


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Incidence matrix












otherwise,0

  to from ),,(
   to from ),,(

:, ptarcptW
tparcptW

N tp

incidence matrix  N of a pure (no elementary loops) 
place/transition-net:

t

pX

Contribution
of t on p
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Example: N =

s
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State equation
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State equation

reachability graph
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Computation of Invariants

We are interested in subsets R of places whose number
of labels remain invariant under fireing of transitions:

• e.g. the number of trains commuting between
Amsterdam and Paris (Cologne and Paris) remains 
constant

Important for correctness proofs
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P1

P1 + P2 = 2

P2

Computation of Invariants
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Place - invariants

For any transition tj  T we are looking for sets R  P of 
places for which the accumulated marking is constant:

0)( 
Rp

j pt

Example:

Standardized technique for proving properties of system 
models

tj
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Characteristic Vector









Rp 

Rp
pcR  if 0

if1
)(Let:

0)()()(  


pcptctpt
R

Pp
jRj

Rp
j

0)( 
Rp

j pt

Scalar product



- 52 -CS - ES

Condition for place invariants

Accumulated marking constant for all transitions if

0
.........
01





Rn

R

ct

ct

Equivalent to  NT cR = 0 where NT is the transposed of N

0)()()(  


pcptctpt
R

Pp
jRj

Rp
j
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More detailed view of computations

System of linear equations.

Solution vectors must consist of zeros and ones.

Different techniques for solving equation system (Gauss 
elimination, tools e.g. Matlab, …) 
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Application to Thalys example

NT cR = 0, with NT=
p p p p p p p p p p p p p

 00000001111111, Rc
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Interpretation of the 1st invariant

Characteristic vector describes 
places for Cologne train.
We proved that: the number of 
trains along the path remains 
constant.

 00000001111111, Rc

s

CR,1
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Application to Thalys example

NT cR = 0, with NT=
p p p p p p p p p p p p p

,1,0,0),1,0,0,1,1(1,0,0,0,12, Rc
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Interpretation of the 2nd invariant

We proved that:
None of the Amsterdam trains  
gets lost.

,1,0,0),1,0,0,1,1(1,0,0,0,12, Rc

s

CR,2
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Application to Thalys example

NT cR = 0, with NT=
p p p p p p p p p p p p p

 01000110000002, Rc
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Solution vectors for Thalys example

We proved that:
• the number of trains serving 

Amsterdam, Cologne and 
Paris remains constant.

• the number of train drivers 
remains constant.

 00000001111111, Rc
 01000110000002, Rc
 10011000000003, Rc

 00111001100014, Rc s

CR,2

CR,3 CR,1CR,4
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Solution vectors for Thalys example

It follows:
• each place invariant must 

have at least one label at the 
beginning, otherwise “dead”

• at least three labels are 
necessary in the example

s

CR,2

CR,3 CR,1CR,4
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Place Invariants – Animation

http://www.informatik.uni-
hamburg.de/TGI/PetriNets/introductions/aalst/tr
afficlight2_PI.swf
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NT cR = 0, with NT= P1 P2 P3 P4 P5 P6
T1
T2
T3
T4
T5

T1 T2T5

T3 T4

P5

P1P4 P3 P2 P6


