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Embedded Systems                                  
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Petri Nets

REVIEW
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Computing changes of markings
 „Firing“ transitions t generate new markings on each of 

the places p according to the following rules:

When a transition t fires from a marking M, w(p, t) tokens are deleted from the incoming places
of t (i.e. from places p  t ), and w(t, p) tokens are added to the outgoing places of t (i.e. to 

places p  t  ), and a new marking M' is produced

REVIEW
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Activated transitions
 Transition t is „activated“ 

iff

Activated transitions can „take place“ or „fire“,
but don‘t have to.
The order in which activated transitions fire is not fixed
(it is non-deterministic).

REVIEW
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Boundedness
 A place is called k-safe or k-bounded if it contains in the initial 

marking m0 and in all other reachable from there markings at most k 
tokens.

 A net is bounded if each place is bounded.

 Boundedness: the number of tokens in any place cannot grow 
indefinitely

 Application: places represent buffers and registers (check 
there is no overflow)

 A Petri net is inherently bounded if and only if all its reachability 
graphs (i.e. reachability graphs with all possible starting states) all 
have a finite number of states.

REVIEW
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• A transition T is live if in any marking there exists a firing sequence such 
that T becomes enabled

• An entire net is live if all its transitions are live

• Important for checking deadlock

Live
?

YESNO

Liveness REVIEW



- 7 -CS - ES

Liveness (more precisely)

 A transition t is dead at M if no marking M‘ is reachable 
from M such that t can fire in M‘.

 A transition t is live at M if there is no marking M‘ 
reachable from M where t is dead.

 A marking is live if all transitions are live.
 A P/T net is live if the initial marking is live.

Observations:
 A live net is deadlock-free.
 No transition is live if the net is not deadlock-free.
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Deadlock

 A dead marking (deadlock) is a marking where no transition can fire.
 A Petri net is deadlock-free if no dead marking is reachable.

REVIEW
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Shorthand for changes of markings
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Matrix N describing all changes of markings

Def.: Matrix N (incidence matrix )of net N is a mapping

N: P T  Z (integers)

such that  t T:  N(p,t)=t(p)

Component in column t and row p indicates the change of 
the marking of place p if transition t takes place.
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Incidence matrix
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Example: N =

s
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State equation REVIEW



- 14 -CS - ES

State equation

reachability graph

REVIEW
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Computation of Invariants

We are interested in subsets R of places whose number
of labels remain invariant under fireing of transitions:

• e.g. the number of trains commuting between
Amsterdam and Paris (Cologne and Paris) remains 
constant

Important for correctness proofs

REVIEW
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Place - invariants

For any transition tj  T we are looking for sets R  P of 
places for which the accumulated marking is constant:

0)( 
Rp

j pt

Example:

Standardized technique for proving properties of system 
models

tj

REVIEW
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Characteristic Vector
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Condition for place invariants

Accumulated marking constant for all transitions if

0
.........
01





Rn

R

ct

ct

Equivalent to  NT cR = 0 where NT is the transposed of N

0)()()(  


pcptctpt
R

Pp
jRj

Rp
j

REVIEW



- 19 -CS - ES

More detailed view of computations

System of linear equations.

Solution vectors must consist of zeros and ones.

Different techniques for solving equation system (Gauss 
elimination, tools e.g. Matlab, …) 
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Application to Thalys example

NT cR = 0, with NT=
p p p p p p p p p p p p p

 00000001111111, Rc

REVIEW
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Solution vectors for Thalys example

We proved that:
• the number of trains serving 

Amsterdam, Cologne and 
Paris remains constant.

• the number of train drivers 
remains constant.

 00000001111111, Rc
 01000110000002, Rc
 10011000000003, Rc

 00111001100014, Rc s

CR,2

CR,3 CR,1CR,4

REVIEW
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Solution vectors for Thalys example

It follows:
• each place invariant must 

have at least one label at the 
beginning, otherwise “dead”

• at least three labels are 
necessary in the example

s

CR,2

CR,3 CR,1CR,4

REVIEW
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NT cR = 0, with NT= P1 P2 P3 P4 P5 P6
T1
T2
T3
T4
T5

T1 T2T5

T3 T4

P5

P1P4 P3 P2 P6

REVIEW
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P1 P2 P3 P4 P5 P6
T1 1 0 0 -1 -1 0
T2 0 1 0 0 -1 -1
T3 -1 0 1 1 0 0
T4 0 -1 1 0 0 1
T5 0 0 -1 0 1 0
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T1 T2T5

T3 T4

P5

P1P4 P3 P2 P6

Place - invariants



- 29 -CS - ES

Predicate/transition nets

Goal: compact representation of complex systems.
Key changes:

 Tokens are becoming individuals;
 Transitions enabled if functions at incoming edges true;
 Individuals generated by firing transitions defined through functions

Changes can be explained by folding and unfolding C/E nets
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Example: Dining philosophers problem

n>1 philosophers sitting at a 
round table;
n forks,
n plates with spaghetti;
philosophers either thinking
or eating spaghetti
(using left and right fork).

How to model conflict for forks?

How to guarantee avoiding 
starvation?

2 forks 
needed!
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Condition/event net model
of the dining philosophers problem

Let x  {1..3}
tx: x is thinking
ex: x is eating
fx: fork x is available 

Model quite clumsy.

Difficult to extend to 
more philosophers.
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• Tokens individuals

• Edges can be labeled 
with variables and 
functions

Predicate/transition model
of the dining philosophers problem (1)

Let x be one of the philosophers,
let l(x) be the left spoon of x,
let r(x) be the right spoon of x.

f 1
f 2 f 3

p1 p3

p2
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Predicate/transition model
of the dining philosophers problem (1)

f 3

p1

p3

p2 f 3

p1

p3p2

f 2 f 1
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Predicate/transition model
of the dining philosophers problem (2)

• Model can be 
extended to 
arbitrary numbers
of people.

• No change of the 
structure.

f 1
f 2 f 3

p1 p3

p2

f 4

p4
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Time and Petri Nets

 e.g.: Petri nets tell us that ""a new request can be issued 
only after the resource is released” 

 Nothing about time  

 In literature, time has been added to PNs in many different 
ways (notion of temporal constraints for: transitions, places, 
arcs)  TPN
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Timed Petri Nets

 TPN
 Each transition is defined precisely based on connectivity and tokens 

needed for transition
 Given an initial condition, the exact system state at an arbitrary future time 

T can be determined

 Timed Petri Nets becomes a 7-tuple system
 PN = (P,T,F,W,K, M0,)
  = {1, 2,… n} is a finite set of deterministic time delays to corresponding ti

1

2 4

3

5
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Time and Petri Nets (TPN)

 adding (quantitative) time to PNs is to introduce temporal 
constraints on its elements:

 e.g., a transition must fire after 5 msec

5 msec 2 msecDrill downDrill up
5 msec

7 msec

12 msec

14 msec

19 msec

21msec

Drill down

Drill up

moving



- 38 -CS - ES

Production system - Top level petri net
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magazine/depot

drilling machine

gripper

top level

NC axis
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magazine/depot
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NC axis
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Evaluation

 Pros:
 Appropriate for distributed applications,
 Well-known theory for formally proving properties,

 Cons :
 PN problems with modeling timing (extensions in TPN)
 no programming elements, no hierarchy (extensions available)

 Extensions:
 Enormous amounts of efforts on removing limitations.

 Remark:
 A FSM can be represented by a subclass of Petri nets, where 

each transition has exactly one incoming edge and one outgoing 
edge.
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Summary

Petri nets: focus on causal dependencies
 Condition/event nets

• Single token per place
 Place/transition nets

• Multiple tokens per place
 Predicate/transition nets

• Tokens become individuals
• Dining philosophers used as an example

 Extensions required to get around limitations
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SDL - Specification and Description Language
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SDL - Specification and Description Language

 Used here as a (prominent) example of a model of 
computation based on asynchronous message passing 
communication.

  appropriate also for distributed systems

 Language designed for specification of distributed systems.
 Dates back to early 70s,

 Formal semantics defined in the late 80s,

 Defined by ITU (International Telecommunication Union): Z.100 
recommendation in 1980
Updates in 1984, 1988, 1992, 1996 and 1999

 Another acronym SDL (“System Design Languages”)
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SDL - Specification and Description Language

 Provides textual (tool processing) and graphical formats (user 
interaction)

 Ability to be used as a wide spectrum language from requirements 
to implementation

 Just like StateCharts, it is based on the CFSM (Communicating  
FSM) model of computation; each FSM is called a process. 

 With SDL the protocol behaviour is completely specified by 
communicating FSM.

 The formal basis of SDL enables the use of code generation tool 
chains, which allows an automated implementation of the 
specification. 
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SDL - Specification and Description Language

 However, it uses message passing instead of shared memory for 
communications

 SDL supports operations on data

 object oriented description of components.
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Structuring SDL designs

SDL systems can be structured in various means:

 A system consists of a number of blocks connected by channels, 
each block may contain a substructure of blocks or it may contain 
process sets connected by signals.

 Processes execute concurrently with other processes and 
communicate by exchanging signals; or by remote procedure 
calls. 
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Specifying behaviour

1. The behaviour of a process is described as an extended FSM: 
When started, a process executes its start transition and enters 
the first state. (triggered by signals)

2. In transitions, a process may execute actions. 

3. E.g.: Actions can assign values to variable attributes of a 
process, branch on values of expression, call procedures, create 
new processes, send signal to other processes.
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SDL-representation of FSMs/processes

output

input

state
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Communication among SDL-FSMs

 Communication between FSMs (or “processes“) is based 
on message-passing, assuming a potentially 
indefinitely large FIFO-queue.

Each process fetches 
next entry from FIFO,
 checks if input enables 

transition,
 if yes: transition takes 

place,
 if no: input is ignored 

(exception: SAVE-
mechanism).
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Determinate?

 Let tokens be arriving at FIFO at the same time:
Order in which they are stored, is unknown:

All orders are legal: simulators can show different 
behaviors for the same input, all of which are correct. 
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Operations on data

 Variables can be declared locally for processes.
 Their type can be predefined or defined in SDL itself.
 SDL supports abstract data types (ADTs). Examples:
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Process interaction diagrams

 Interaction between processes can be described in 
process interaction diagrams (special case of block 
diagrams).

 In addition to processes, these diagrams contain 
channels and declarations of local signals. 

 Example:

,

B
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Designation of recipients

1. Through process 
identifiers:
Example: OFFSPRING 
represents identifiers of 
processes generated 
dynamically.

2. Explicitly:
By including the 
channel name.

3. Implicitly:
If signal names imply 
channel names (B 
Sw1)

Counter
Via Sw1

Counter
TO OFFSPRING
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Hierarchy in SDL

 Process interaction diagrams can be included in blocks. 
The root block is called system.

Processes cannot contain other processes, unlike in StateCharts.
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Hierarchy of a SDL specification
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Timers

 Timers can be declared locally. Elapsed timers put signal 
into queue (not necessarily processed immediately).

 RESET removes timer (also from FIFO-queue).
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SDL application

The semantics of SDL defines the state space of the 
specification. This state space can be used for various 
analyses and transformation techniques, e.g.:

 state space exploration, simulation
 checking the SDL-specification for deadlocks/lifelocks
 deriving test cases automatically 
 code generation for an executable prototype or end system
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Summary

 MoC: finite state machine components
+ non-blocking message passing communication

 Representation of processes

 Communication & block diagrams

 Timers and other language elements

 Excellent for distributed applications (e.g., Integrated Services 
Digital Network (ISDN))

 Commercial tools available from SINTEF, Telelogic, Cinderella 
(//www.cinderella.dk)


