
- 1 -CS - ES

Embedded Systems

- 2 -CS - ES

Petri Nets

REVIEW

- 3 -CS - ES

Computing changes of markings
 „Firing“ transitions t generate new markings on each of

the places p according to the following rules:

When a transition t fires from a marking M, w(p, t) tokens are deleted from the incoming places
of t (i.e. from places p t), and w(t, p) tokens are added to the outgoing places of t (i.e. to

places p t), and a new marking M' is produced

REVIEW

- 4 -CS - ES

Activated transitions
 Transition t is „activated“

iff

Activated transitions can „take place“ or „fire“,
but don‘t have to.
The order in which activated transitions fire is not fixed
(it is non-deterministic).

REVIEW

- 5 -CS - ES

Boundedness
 A place is called k-safe or k-bounded if it contains in the initial

marking m0 and in all other reachable from there markings at most k
tokens.

 A net is bounded if each place is bounded.

 Boundedness: the number of tokens in any place cannot grow
indefinitely

 Application: places represent buffers and registers (check
there is no overflow)

 A Petri net is inherently bounded if and only if all its reachability
graphs (i.e. reachability graphs with all possible starting states) all
have a finite number of states.

REVIEW

- 6 -CS - ES

• A transition T is live if in any marking there exists a firing sequence such
that T becomes enabled

• An entire net is live if all its transitions are live

• Important for checking deadlock

Live
?

YESNO

Liveness REVIEW

- 7 -CS - ES

Liveness (more precisely)

 A transition t is dead at M if no marking M‘ is reachable
from M such that t can fire in M‘.

 A transition t is live at M if there is no marking M‘
reachable from M where t is dead.

 A marking is live if all transitions are live.
 A P/T net is live if the initial marking is live.

Observations:
 A live net is deadlock-free.
 No transition is live if the net is not deadlock-free.

- 8 -CS - ES

Deadlock

 A dead marking (deadlock) is a marking where no transition can fire.
 A Petri net is deadlock-free if no dead marking is reachable.

REVIEW

- 9 -CS - ES

Shorthand for changes of markings

0
if),(),(
 \if),(
 \if),(

)(
ttpptWtpW

ttpptW
ttptpW

ptLet

 p P: M´(p) = M(p)+ t(p)

Firing
transition:

+: vector add M´ = M+ t

REVIEW

- 10 -CS - ES

Matrix N describing all changes of markings

Def.: Matrix N (incidence matrix)of net N is a mapping

N: P T Z (integers)

such that t T: N(p,t)=t(p)

Component in column t and row p indicates the change of
the marking of place p if transition t takes place.

0
if),(),(
 \if),(
 \if),(

)(
ttpptWtpW

ttpptW
ttptpW

pt

REVIEW

- 11 -CS - ES

Incidence matrix

otherwise,0

 to from),,(
 to from),,(

:, ptarcptW
tparcptW

N tp

incidence matrix N of a pure (no elementary loops)
place/transition-net:

t

pX

Contribution
of t on p

REVIEW

- 12 -CS - ES

Example: N =

s

11
11

11
11

111
1

11
11

11
11

11
11

11

13

12

11

10

9

8

7

6

5

4

3

2

1

10987654321

p
p
p
p
p
p
p
p
p
p
p
p
p

tttttttttt

REVIEW

- 13 -CS - ES

State equation REVIEW

- 14 -CS - ES

State equation

reachability graph

REVIEW

- 15 -CS - ES

Computation of Invariants

We are interested in subsets R of places whose number
of labels remain invariant under fireing of transitions:

• e.g. the number of trains commuting between
Amsterdam and Paris (Cologne and Paris) remains
constant

Important for correctness proofs

REVIEW

- 16 -CS - ES

Place - invariants

For any transition tj T we are looking for sets R P of
places for which the accumulated marking is constant:

0)(
Rp

j pt

Example:

Standardized technique for proving properties of system
models

tj

REVIEW

- 17 -CS - ES

Characteristic Vector

Rp

Rp
pcR if 0

if1
)(Let:

0)()()(

pcptctpt
R

Pp
jRj

Rp
j

0)(
Rp

j pt

Scalar product

REVIEW

- 18 -CS - ES

Condition for place invariants

Accumulated marking constant for all transitions if

0
.........
01

Rn

R

ct

ct

Equivalent to NT cR = 0 where NT is the transposed of N

0)()()(

pcptctpt
R

Pp
jRj

Rp
j

REVIEW

- 19 -CS - ES

More detailed view of computations

System of linear equations.

Solution vectors must consist of zeros and ones.

Different techniques for solving equation system (Gauss
elimination, tools e.g. Matlab, …)

0
0
0
0

)(
...

)(
)(

)(...)(
...

)(...)(
)(...)(

2

1

1

212

111

nR

R

R

nmm

n

n

pc

pc
pc

ptpt

ptpt
ptpt

REVIEW

- 20 -CS - ES

Application to Thalys example

NT cR = 0, with NT=
p p p p p p p p p p p p p

 00000001111111, Rc

REVIEW

- 21 -CS - ES

Solution vectors for Thalys example

We proved that:
• the number of trains serving

Amsterdam, Cologne and
Paris remains constant.

• the number of train drivers
remains constant.

 00000001111111, Rc
 01000110000002, Rc
 10011000000003, Rc

 00111001100014, Rc s

CR,2

CR,3 CR,1CR,4

REVIEW

- 22 -CS - ES

Solution vectors for Thalys example

It follows:
• each place invariant must

have at least one label at the
beginning, otherwise “dead”

• at least three labels are
necessary in the example

s

CR,2

CR,3 CR,1CR,4

REVIEW

- 23 -CS - ES

NT cR = 0, with NT= P1 P2 P3 P4 P5 P6
T1
T2
T3
T4
T5

T1 T2T5

T3 T4

P5

P1P4 P3 P2 P6

REVIEW

- 24 -CS - ES

P1 P2 P3 P4 P5 P6
T1 1 0 0 -1 -1 0
T2 0 1 0 0 -1 -1
T3 -1 0 1 1 0 0
T4 0 -1 1 0 0 1
T5 0 0 -1 0 1 0

- 25 -CS - ES

- 26 -CS - ES

- 27 -CS - ES

- 28 -CS - ES

T1 T2T5

T3 T4

P5

P1P4 P3 P2 P6

Place - invariants

- 29 -CS - ES

Predicate/transition nets

Goal: compact representation of complex systems.
Key changes:

 Tokens are becoming individuals;
 Transitions enabled if functions at incoming edges true;
 Individuals generated by firing transitions defined through functions

Changes can be explained by folding and unfolding C/E nets

- 30 -CS - ES

Example: Dining philosophers problem

n>1 philosophers sitting at a
round table;
n forks,
n plates with spaghetti;
philosophers either thinking
or eating spaghetti
(using left and right fork).

How to model conflict for forks?

How to guarantee avoiding
starvation?

2 forks
needed!

- 31 -CS - ES

Condition/event net model
of the dining philosophers problem

Let x {1..3}
tx: x is thinking
ex: x is eating
fx: fork x is available

Model quite clumsy.

Difficult to extend to
more philosophers.

- 32 -CS - ES

• Tokens individuals

• Edges can be labeled
with variables and
functions

Predicate/transition model
of the dining philosophers problem (1)

Let x be one of the philosophers,
let l(x) be the left spoon of x,
let r(x) be the right spoon of x.

f 1
f 2 f 3

p1 p3

p2

- 33 -CS - ES

Predicate/transition model
of the dining philosophers problem (1)

f 3

p1

p3

p2 f 3

p1

p3p2

f 2 f 1

- 34 -CS - ES

Predicate/transition model
of the dining philosophers problem (2)

• Model can be
extended to
arbitrary numbers
of people.

• No change of the
structure.

f 1
f 2 f 3

p1 p3

p2

f 4

p4

- 35 -CS - ES

Time and Petri Nets

 e.g.: Petri nets tell us that ""a new request can be issued
only after the resource is released”

 Nothing about time

 In literature, time has been added to PNs in many different
ways (notion of temporal constraints for: transitions, places,
arcs) TPN

- 36 -CS - ES

Timed Petri Nets

 TPN
 Each transition is defined precisely based on connectivity and tokens

needed for transition
 Given an initial condition, the exact system state at an arbitrary future time

T can be determined

 Timed Petri Nets becomes a 7-tuple system
 PN = (P,T,F,W,K, M0,)
 = {1, 2,… n} is a finite set of deterministic time delays to corresponding ti

1

2 4

3

5

- 37 -CS - ES

Time and Petri Nets (TPN)

 adding (quantitative) time to PNs is to introduce temporal
constraints on its elements:

 e.g., a transition must fire after 5 msec

5 msec 2 msecDrill downDrill up
5 msec

7 msec

12 msec

14 msec

19 msec

21msec

Drill down

Drill up

moving

- 38 -CS - ES

Production system - Top level petri net

- 39 -CS - ES

magazine/depot

drilling machine

gripper

top level

NC axis

- 40 -CS - ES

magazine/depot

- 41 -CS - ES

NC axis

- 42 -CS - ES

- 43 -CS - ES

Evaluation

 Pros:
 Appropriate for distributed applications,
 Well-known theory for formally proving properties,

 Cons :
 PN problems with modeling timing (extensions in TPN)
 no programming elements, no hierarchy (extensions available)

 Extensions:
 Enormous amounts of efforts on removing limitations.

 Remark:
 A FSM can be represented by a subclass of Petri nets, where

each transition has exactly one incoming edge and one outgoing
edge.

- 44 -CS - ES

Summary

Petri nets: focus on causal dependencies
 Condition/event nets

• Single token per place
 Place/transition nets

• Multiple tokens per place
 Predicate/transition nets

• Tokens become individuals
• Dining philosophers used as an example

 Extensions required to get around limitations

- 45 -CS - ES

SDL - Specification and Description Language

- 46 -CS - ES

SDL - Specification and Description Language

 Used here as a (prominent) example of a model of
computation based on asynchronous message passing
communication.

 appropriate also for distributed systems

 Language designed for specification of distributed systems.
 Dates back to early 70s,

 Formal semantics defined in the late 80s,

 Defined by ITU (International Telecommunication Union): Z.100
recommendation in 1980
Updates in 1984, 1988, 1992, 1996 and 1999

 Another acronym SDL (“System Design Languages”)

- 47 -CS - ES

SDL - Specification and Description Language

 Provides textual (tool processing) and graphical formats (user
interaction)

 Ability to be used as a wide spectrum language from requirements
to implementation

 Just like StateCharts, it is based on the CFSM (Communicating
FSM) model of computation; each FSM is called a process.

 With SDL the protocol behaviour is completely specified by
communicating FSM.

 The formal basis of SDL enables the use of code generation tool
chains, which allows an automated implementation of the
specification.

- 48 -CS - ES

SDL - Specification and Description Language

 However, it uses message passing instead of shared memory for
communications

 SDL supports operations on data

 object oriented description of components.

- 49 -CS - ES

Structuring SDL designs

SDL systems can be structured in various means:

 A system consists of a number of blocks connected by channels,
each block may contain a substructure of blocks or it may contain
process sets connected by signals.

 Processes execute concurrently with other processes and
communicate by exchanging signals; or by remote procedure
calls.

- 50 -CS - ES

Specifying behaviour

1. The behaviour of a process is described as an extended FSM:
When started, a process executes its start transition and enters
the first state. (triggered by signals)

2. In transitions, a process may execute actions.

3. E.g.: Actions can assign values to variable attributes of a
process, branch on values of expression, call procedures, create
new processes, send signal to other processes.

- 51 -CS - ES

SDL-representation of FSMs/processes

output

input

state

- 52 -CS - ES

Communication among SDL-FSMs

 Communication between FSMs (or “processes“) is based
on message-passing, assuming a potentially
indefinitely large FIFO-queue.

Each process fetches
next entry from FIFO,
 checks if input enables

transition,
 if yes: transition takes

place,
 if no: input is ignored

(exception: SAVE-
mechanism).

- 53 -CS - ES

Determinate?

 Let tokens be arriving at FIFO at the same time:
Order in which they are stored, is unknown:

All orders are legal: simulators can show different
behaviors for the same input, all of which are correct.

- 54 -CS - ES

Operations on data

 Variables can be declared locally for processes.
 Their type can be predefined or defined in SDL itself.
 SDL supports abstract data types (ADTs). Examples:

- 55 -CS - ES

Process interaction diagrams

 Interaction between processes can be described in
process interaction diagrams (special case of block
diagrams).

 In addition to processes, these diagrams contain
channels and declarations of local signals.

 Example:

,

B

- 56 -CS - ES

Designation of recipients

1. Through process
identifiers:
Example: OFFSPRING
represents identifiers of
processes generated
dynamically.

2. Explicitly:
By including the
channel name.

3. Implicitly:
If signal names imply
channel names (B
Sw1)

Counter
Via Sw1

Counter
TO OFFSPRING

- 57 -CS - ES

Hierarchy in SDL

 Process interaction diagrams can be included in blocks.
The root block is called system.

Processes cannot contain other processes, unlike in StateCharts.

- 58 -CS - ES

Hierarchy of a SDL specification

- 59 -CS - ES

Timers

 Timers can be declared locally. Elapsed timers put signal
into queue (not necessarily processed immediately).

 RESET removes timer (also from FIFO-queue).

- 60 -CS - ES

SDL application

The semantics of SDL defines the state space of the
specification. This state space can be used for various
analyses and transformation techniques, e.g.:

 state space exploration, simulation
 checking the SDL-specification for deadlocks/lifelocks
 deriving test cases automatically
 code generation for an executable prototype or end system

- 61 -CS - ES

Summary

 MoC: finite state machine components
+ non-blocking message passing communication

 Representation of processes

 Communication & block diagrams

 Timers and other language elements

 Excellent for distributed applications (e.g., Integrated Services
Digital Network (ISDN))

 Commercial tools available from SINTEF, Telelogic, Cinderella
(//www.cinderella.dk)

