
- 1 -CS - ES

Embedded Systems

- 2 -CS - ES

Petri Nets

REVIEW

- 3 -CS - ES

Computing changes of markings
 „Firing“ transitions t generate new markings on each of

the places p according to the following rules:

When a transition t fires from a marking M, w(p, t) tokens are deleted from the incoming places
of t (i.e. from places p  t), and w(t, p) tokens are added to the outgoing places of t (i.e. to

places p  t ), and a new marking M' is produced

REVIEW

- 4 -CS - ES

Activated transitions
 Transition t is „activated“

iff

Activated transitions can „take place“ or „fire“,
but don‘t have to.
The order in which activated transitions fire is not fixed
(it is non-deterministic).

REVIEW

- 5 -CS - ES

Boundedness
 A place is called k-safe or k-bounded if it contains in the initial

marking m0 and in all other reachable from there markings at most k
tokens.

 A net is bounded if each place is bounded.

 Boundedness: the number of tokens in any place cannot grow
indefinitely

 Application: places represent buffers and registers (check
there is no overflow)

 A Petri net is inherently bounded if and only if all its reachability
graphs (i.e. reachability graphs with all possible starting states) all
have a finite number of states.

REVIEW

- 6 -CS - ES

• A transition T is live if in any marking there exists a firing sequence such
that T becomes enabled

• An entire net is live if all its transitions are live

• Important for checking deadlock

Live
?

YESNO

Liveness REVIEW

- 7 -CS - ES

Liveness (more precisely)

 A transition t is dead at M if no marking M‘ is reachable
from M such that t can fire in M‘.

 A transition t is live at M if there is no marking M‘
reachable from M where t is dead.

 A marking is live if all transitions are live.
 A P/T net is live if the initial marking is live.

Observations:
 A live net is deadlock-free.
 No transition is live if the net is not deadlock-free.

- 8 -CS - ES

Deadlock

 A dead marking (deadlock) is a marking where no transition can fire.
 A Petri net is deadlock-free if no dead marking is reachable.

REVIEW

- 9 -CS - ES

Shorthand for changes of markings






















0
if),(),(
 \if),(
 \if),(

)(
ttpptWtpW

ttpptW
ttptpW

ptLet

 p  P: M´(p) = M(p)+ t(p)

Firing
transition:

+: vector add M´ = M+ t

REVIEW

- 10 -CS - ES

Matrix N describing all changes of markings

Def.: Matrix N (incidence matrix)of net N is a mapping

N: P T  Z (integers)

such that  t T: N(p,t)=t(p)

Component in column t and row p indicates the change of
the marking of place p if transition t takes place.






















0
if),(),(
 \if),(
 \if),(

)(
ttpptWtpW

ttpptW
ttptpW

pt

REVIEW

- 11 -CS - ES

Incidence matrix












otherwise,0

 to from),,(
 to from),,(

:, ptarcptW
tparcptW

N tp

incidence matrix N of a pure (no elementary loops)
place/transition-net:

t

pX

Contribution
of t on p

REVIEW

- 12 -CS - ES

Example: N =

s

11
11

11
11

111
1

11
11

11
11

11
11

11

13

12

11

10

9

8

7

6

5

4

3

2

1

10987654321





















p
p
p
p
p
p
p
p
p
p
p
p
p

tttttttttt

REVIEW

- 13 -CS - ES

State equation REVIEW

- 14 -CS - ES

State equation

reachability graph

REVIEW

- 15 -CS - ES

Computation of Invariants

We are interested in subsets R of places whose number
of labels remain invariant under fireing of transitions:

• e.g. the number of trains commuting between
Amsterdam and Paris (Cologne and Paris) remains
constant

Important for correctness proofs

REVIEW

- 16 -CS - ES

Place - invariants

For any transition tj  T we are looking for sets R  P of
places for which the accumulated marking is constant:

0)(
Rp

j pt

Example:

Standardized technique for proving properties of system
models

tj

REVIEW

- 17 -CS - ES

Characteristic Vector









Rp

Rp
pcR if 0

if1
)(Let:

0)()()( 


pcptctpt
R

Pp
jRj

Rp
j

0)(
Rp

j pt

Scalar product

REVIEW

- 18 -CS - ES

Condition for place invariants

Accumulated marking constant for all transitions if

0
.........
01





Rn

R

ct

ct

Equivalent to NT cR = 0 where NT is the transposed of N

0)()()( 


pcptctpt
R

Pp
jRj

Rp
j

REVIEW

- 19 -CS - ES

More detailed view of computations

System of linear equations.

Solution vectors must consist of zeros and ones.

Different techniques for solving equation system (Gauss
elimination, tools e.g. Matlab, …)

























































0
0
0
0

)(
...

)(
)(

)(...)(
...

)(...)(
)(...)(

2

1

1

212

111

nR

R

R

nmm

n

n

pc

pc
pc

ptpt

ptpt
ptpt

REVIEW

- 20 -CS - ES

Application to Thalys example

NT cR = 0, with NT=
p p p p p p p p p p p p p

 00000001111111, Rc

REVIEW

- 21 -CS - ES

Solution vectors for Thalys example

We proved that:
• the number of trains serving

Amsterdam, Cologne and
Paris remains constant.

• the number of train drivers
remains constant.

 00000001111111, Rc
 01000110000002, Rc
 10011000000003, Rc

 00111001100014, Rc s

CR,2

CR,3 CR,1CR,4

REVIEW

- 22 -CS - ES

Solution vectors for Thalys example

It follows:
• each place invariant must

have at least one label at the
beginning, otherwise “dead”

• at least three labels are
necessary in the example

s

CR,2

CR,3 CR,1CR,4

REVIEW

- 23 -CS - ES

NT cR = 0, with NT= P1 P2 P3 P4 P5 P6
T1
T2
T3
T4
T5

T1 T2T5

T3 T4

P5

P1P4 P3 P2 P6

REVIEW

- 24 -CS - ES

P1 P2 P3 P4 P5 P6
T1 1 0 0 -1 -1 0
T2 0 1 0 0 -1 -1
T3 -1 0 1 1 0 0
T4 0 -1 1 0 0 1
T5 0 0 -1 0 1 0

- 25 -CS - ES

- 26 -CS - ES

- 27 -CS - ES

- 28 -CS - ES

T1 T2T5

T3 T4

P5

P1P4 P3 P2 P6

Place - invariants

- 29 -CS - ES

Predicate/transition nets

Goal: compact representation of complex systems.
Key changes:

 Tokens are becoming individuals;
 Transitions enabled if functions at incoming edges true;
 Individuals generated by firing transitions defined through functions

Changes can be explained by folding and unfolding C/E nets

- 30 -CS - ES

Example: Dining philosophers problem

n>1 philosophers sitting at a
round table;
n forks,
n plates with spaghetti;
philosophers either thinking
or eating spaghetti
(using left and right fork).

How to model conflict for forks?

How to guarantee avoiding
starvation?

2 forks
needed!

- 31 -CS - ES

Condition/event net model
of the dining philosophers problem

Let x  {1..3}
tx: x is thinking
ex: x is eating
fx: fork x is available

Model quite clumsy.

Difficult to extend to
more philosophers.

- 32 -CS - ES

• Tokens individuals

• Edges can be labeled
with variables and
functions

Predicate/transition model
of the dining philosophers problem (1)

Let x be one of the philosophers,
let l(x) be the left spoon of x,
let r(x) be the right spoon of x.

f 1
f 2 f 3

p1 p3

p2

- 33 -CS - ES

Predicate/transition model
of the dining philosophers problem (1)

f 3

p1

p3

p2 f 3

p1

p3p2

f 2 f 1

- 34 -CS - ES

Predicate/transition model
of the dining philosophers problem (2)

• Model can be
extended to
arbitrary numbers
of people.

• No change of the
structure.

f 1
f 2 f 3

p1 p3

p2

f 4

p4

- 35 -CS - ES

Time and Petri Nets

 e.g.: Petri nets tell us that ""a new request can be issued
only after the resource is released”

 Nothing about time

 In literature, time has been added to PNs in many different
ways (notion of temporal constraints for: transitions, places,
arcs)  TPN

- 36 -CS - ES

Timed Petri Nets

 TPN
 Each transition is defined precisely based on connectivity and tokens

needed for transition
 Given an initial condition, the exact system state at an arbitrary future time

T can be determined

 Timed Petri Nets becomes a 7-tuple system
 PN = (P,T,F,W,K, M0,)
  = {1, 2,… n} is a finite set of deterministic time delays to corresponding ti

1

2 4

3

5

- 37 -CS - ES

Time and Petri Nets (TPN)

 adding (quantitative) time to PNs is to introduce temporal
constraints on its elements:

 e.g., a transition must fire after 5 msec

5 msec 2 msecDrill downDrill up
5 msec

7 msec

12 msec

14 msec

19 msec

21msec

Drill down

Drill up

moving

- 38 -CS - ES

Production system - Top level petri net

- 39 -CS - ES

magazine/depot

drilling machine

gripper

top level

NC axis

- 40 -CS - ES

magazine/depot

- 41 -CS - ES

NC axis

- 42 -CS - ES

- 43 -CS - ES

Evaluation

 Pros:
 Appropriate for distributed applications,
 Well-known theory for formally proving properties,

 Cons :
 PN problems with modeling timing (extensions in TPN)
 no programming elements, no hierarchy (extensions available)

 Extensions:
 Enormous amounts of efforts on removing limitations.

 Remark:
 A FSM can be represented by a subclass of Petri nets, where

each transition has exactly one incoming edge and one outgoing
edge.

- 44 -CS - ES

Summary

Petri nets: focus on causal dependencies
 Condition/event nets

• Single token per place
 Place/transition nets

• Multiple tokens per place
 Predicate/transition nets

• Tokens become individuals
• Dining philosophers used as an example

 Extensions required to get around limitations

- 45 -CS - ES

SDL - Specification and Description Language

- 46 -CS - ES

SDL - Specification and Description Language

 Used here as a (prominent) example of a model of
computation based on asynchronous message passing
communication.

  appropriate also for distributed systems

 Language designed for specification of distributed systems.
 Dates back to early 70s,

 Formal semantics defined in the late 80s,

 Defined by ITU (International Telecommunication Union): Z.100
recommendation in 1980
Updates in 1984, 1988, 1992, 1996 and 1999

 Another acronym SDL (“System Design Languages”)

- 47 -CS - ES

SDL - Specification and Description Language

 Provides textual (tool processing) and graphical formats (user
interaction)

 Ability to be used as a wide spectrum language from requirements
to implementation

 Just like StateCharts, it is based on the CFSM (Communicating
FSM) model of computation; each FSM is called a process.

 With SDL the protocol behaviour is completely specified by
communicating FSM.

 The formal basis of SDL enables the use of code generation tool
chains, which allows an automated implementation of the
specification.

- 48 -CS - ES

SDL - Specification and Description Language

 However, it uses message passing instead of shared memory for
communications

 SDL supports operations on data

 object oriented description of components.

- 49 -CS - ES

Structuring SDL designs

SDL systems can be structured in various means:

 A system consists of a number of blocks connected by channels,
each block may contain a substructure of blocks or it may contain
process sets connected by signals.

 Processes execute concurrently with other processes and
communicate by exchanging signals; or by remote procedure
calls.

- 50 -CS - ES

Specifying behaviour

1. The behaviour of a process is described as an extended FSM:
When started, a process executes its start transition and enters
the first state. (triggered by signals)

2. In transitions, a process may execute actions.

3. E.g.: Actions can assign values to variable attributes of a
process, branch on values of expression, call procedures, create
new processes, send signal to other processes.

- 51 -CS - ES

SDL-representation of FSMs/processes

output

input

state

- 52 -CS - ES

Communication among SDL-FSMs

 Communication between FSMs (or “processes“) is based
on message-passing, assuming a potentially
indefinitely large FIFO-queue.

Each process fetches
next entry from FIFO,
 checks if input enables

transition,
 if yes: transition takes

place,
 if no: input is ignored

(exception: SAVE-
mechanism).

- 53 -CS - ES

Determinate?

 Let tokens be arriving at FIFO at the same time:
Order in which they are stored, is unknown:

All orders are legal: simulators can show different
behaviors for the same input, all of which are correct.

- 54 -CS - ES

Operations on data

 Variables can be declared locally for processes.
 Their type can be predefined or defined in SDL itself.
 SDL supports abstract data types (ADTs). Examples:

- 55 -CS - ES

Process interaction diagrams

 Interaction between processes can be described in
process interaction diagrams (special case of block
diagrams).

 In addition to processes, these diagrams contain
channels and declarations of local signals.

 Example:

,

B

- 56 -CS - ES

Designation of recipients

1. Through process
identifiers:
Example: OFFSPRING
represents identifiers of
processes generated
dynamically.

2. Explicitly:
By including the
channel name.

3. Implicitly:
If signal names imply
channel names (B 
Sw1)

Counter
Via Sw1

Counter
TO OFFSPRING

- 57 -CS - ES

Hierarchy in SDL

 Process interaction diagrams can be included in blocks.
The root block is called system.

Processes cannot contain other processes, unlike in StateCharts.

- 58 -CS - ES

Hierarchy of a SDL specification

- 59 -CS - ES

Timers

 Timers can be declared locally. Elapsed timers put signal
into queue (not necessarily processed immediately).

 RESET removes timer (also from FIFO-queue).

- 60 -CS - ES

SDL application

The semantics of SDL defines the state space of the
specification. This state space can be used for various
analyses and transformation techniques, e.g.:

 state space exploration, simulation
 checking the SDL-specification for deadlocks/lifelocks
 deriving test cases automatically
 code generation for an executable prototype or end system

- 61 -CS - ES

Summary

 MoC: finite state machine components
+ non-blocking message passing communication

 Representation of processes

 Communication & block diagrams

 Timers and other language elements

 Excellent for distributed applications (e.g., Integrated Services
Digital Network (ISDN))

 Commercial tools available from SINTEF, Telelogic, Cinderella
(//www.cinderella.dk)

