Embedded Systems

O’H‘l’

...........

CS-ES

é'l f)
:

1¢ ﬁ

REVIEW

Petri Nets

CS-ES - 2.

Computing changes of markings REVIEW

= Firing” transitions t generate new markings on each of
the places p according to the following rules:

M(p)—W(p;t), ifpe *t\ ¢
ifpe ¢\ *t
iftpe *tn¢°
otherwise

RS
/ \1\@
When a transition t fires from a marking M, w(p, t) tokens are deleted from the incoming places

of t (i.e. from places p € °t), and w(t, p) tokens are added to the outgoing places of t (i.e. to

places p € t*), and a new marking M' is produced
CS-ES - 3-

Activated transitions REVIEW
= Transition t is ,activated”

iff
(Vpe *t:M(p) =W(p,t)) N(Npet®:M(p)+W(t,p) <K(p))
X SN
X\ L 2% _ x i %
@/ T :/ G,
€ &

Activated transitions can ,take place” or ,fire®,

but don‘t have to.

The order in which activated transitions fire Is not fixed
(it Is non-deterministic).

CS-ES . 4-

Boundedness REVIEW

= A place is called k-safe or k-bounded if it contains in the initial
marking my and in all other reachable from there markings at most k
tokens.

= Anetis bounded if each place is bounded.

» Boundedness: the number of tokens in any place cannot grow
indefinitely

= Application: places represent buffers and registers (check
there is no overflow)

= A Petri net is inherently bounded if and only if all its reachability
graphs (i.e. reachability graphs with all possible starting states) all
have a finite number of states.

CS-ES . 5.

Liveness REVIEW

A transition T is live if in any marking there exists a firing sequence such
that T becomes enabled

An entire net is live If all its transitions are live

Important for checking deadlock

NO YES

CS-ES

Liveness (more precisely)

= Atransition tis dead at M if no marking M‘ is reachable
from M such that t can fire in M".

= Atransition tislive at M if there is no marking M
reachable from M where t is dead.

= A marking is live if all transitions are live.
= AP/T netis live if the initial marking is live.

Observations:
= A |ive net is deadlock-free.

= No transition is live if the net is not deadlock-free.

CS-ES 7.

Deadlock REVIEW

» A dead marking (deadlock) is a marking where no transition can fire.
= A Petri netis deadlock-free if no dead marking is reachable.

7

CS-ES _ 8-

Shorthand for changes of markings REVIEW

M(p)—W(p.t), ifpe *r\ ¢
Firing M (p) = M(p)+W(t,p), ifpe 1*\ *
transition: P)= M(p)—W(p,t)+W(t,p), ifpe *tn¢*°
M(p) otherwise
W (p,t)if pe't\t®
W if "*
et I(p):<+ (t,p)I pet\jt o
—W(p,t)+W(t,p)if pet’ 't
0
= vp € P: M'(p) = M(p)+_t(p)
= M = M+t +: vector add

CS-ES . 9.

| o - REVIEW
Matrix N describing all changes of markings

—W (p,t)if pe't\t’
+W (t, p)if pet’\'t
—W(p,t)+W(t, p)if pet’n’t
0

t(p) =1

Def.: Matrix N (incidence matrix)of net N is a mapping

N: P xT — Z (integers)

such that V t €T: N(p,t)=t(p)

Component in column t and row p indicates the change of
the marking of place p if transition t takes place.

CS-ES - 10-

Incidence matrix REVIEW

Incidence matrix N of a pure (no elementary loops)
place/transition-net:

(—W (t, p), arcfrom p tot
=<+W(t, p), arcfromt to p
0, otherwise

N

e () N

t

Contribution

oftonp
CS-ES - 11 -

Example: N =

AR
£

9

sterd

B i

REVIEW

7

2

bo

CS-ES

RO

Pro

Pu

o
.

B, |

are de Lyon

Ps |1

- 12 -

State equation REVIEW

vV, -

71 Vl -1 “7 4 ¢

- 13-

State equation REVIEW

reachability graph

CS-ES .

Computation of Invariants REVIEW

We are interested in subsets R of places whose number
of labels remain invariant under fireing of transitions:

e e.g. the number of trains commuting between
Amsterdam and Paris (Cologne and Paris) remains
constant

Important for correctness proofs

CS-ES - 15 -

Place - invariants REVIEW

Standardized technique for proving properties of system
models

For any transition i e Tweare looking for sets R < P of
places for which the accumulated marking is constant:

Z’Ej(p):O

peR

Example:
s 8 20O

O

CS-ES - 16 -

Characteristic Vector REVIEW

th(p)zo

peR

¢ (D) 1if peR
et =P 000f p eR

= D ti(p)=t;-cp =) t;(p)c (p)=0

peR I peP
Scalar product

CS-ES - 17 -

Condition for place invariants REVIEW

2 ti(p)=t;-cp = t;(p) c (p)=0

peR peP

Accumulated marking constant for all transitions if
-k = 0

In °9R — O

Equivalentto N" cr =0 where N' is the transposed of N

CS-ES . 18-

More detailed view of computations REVIEW

(L (p)-h(p) Yer(p)) (00

L)L (p) |Cr(R) |_|0
0

\:[m(pl)_tm(pn)/\eCR(pn)/ \O/

System of linear equations.

Solution vectors must consist of zeros and ones.

Different techniques for solving equation system (Gauss
elimination, tools e.g. Matlab, ...)

CS-ES - 19-

Application to Thalys example REVIEW

. P PP PalPs Ps|Pr Ps| P PP Piz|Pus
NTcr=0,withN™= [, 7= 1 1

Cq, =(1111110000000)

CS-ES - 20 -

Solution vectors for Thalys example REVIEW

Cq, =(1111110000000)
C,,=(0000001100010)
C,;=(0000000011001)

Cr,=(0000110011100)

We proved that:

e the number of trains serving
Amsterdam, Cologne and
Paris remains constant.

 the number of train drivers
remains constant.

CS-ES

Amsterdam %\Cologne
A\
’1 ﬁ !! 2 3| 1
i “\; J I. .
N 2 Cr.
\ g X
(@ 137 onnectingcﬂ)
? I/_'/) Brussels
[— V1|

Paris

e

a Gare de Lyon

- 21-

Solution vectors for Thalys example REVIEW

It follows:

each place invariant must
have at least one label at the
beginning, otherwise “dead”

at least three labels are
necessary in the example

CS-ES

10 NAmsterdam 3) Cologne
‘2 o \ !! IS
Cra R& I Cri1
») 4]
D 13 on nectingcﬁ
? 1 r.) Brussels
7 |
4 6 ':!
5 6
Gare du Nord
r. = u I_. Paris
! 3 i

8

Gare de Lyon
- 22

REVIEW

NT ., = 0, with NT= I o O 7 =

—_~ T T ¢ ? -1 -1 ¢
T2 @ 7f O -1 -4
LT 7 A A
T4 ¢ -1 T @ ¢ 7
T5 §/ ¢ - A ¢

-m

-1 -1 O
2 0 1 0 0 -1 -1
3 -1 0 1 1 0 O
M4 0 -1 1 0 0 1
50 0 -1 0 1 O

CS-ES

CS-ES

- 25 -

CS-ES

- 26 -

CS-ES

- 27 -

Place - invariants

CS-ES

- 28 -

Predicate/transition nets

»Goal: compact representation of complex systems.

=Key changes:
= Tokens are becoming individuals;
» Transitions enabled if functions at incoming edges true;
= |ndividuals generated by firing transitions defined through functions

»*Changes can be explained by folding and unfolding C/E nets

CS-ES - 29-

Example: Dining philosophers problem

=n>1 philosophers sitting at a '

round table; @ r‘w @

=N forks,

*n plates with spaghetti; /@ \\>\
»philosophers either thinking @

or eating spaghetti

(using left and right fork). .

g

How to model conflict for forks?

2 forks How to guarantee avoiding
needed! starvation?

CS-ES - 30 -

Condition/event net model
of the dining philosophers problem

®

@

"letx € {1..3}

) K

=t.: X IS thinking
"¢, X IS eating

LB

=f : fork x Iis available

A -
Nt/

Model quite clumsy.

Difficult to extend to
more philosophers.

CS-ES

- 31-

Predicate/transition model
of the dining philosophers problem (1)

sLet x be one of the philosophers, |* Tokens individuals

=let I(x) be the left spoon of X, Edges can be labeled
slet r(x) be the right spoon of x. with variables and
functions

CS-ES - 32 -

Predicate/transition model
of the dining philosophers problem (1)

CS-ES - 33 -

Predicate/transition model
of the dining philosophers problem (2)

» Model can be

X
extended to
arbitrary numbers
of people.

=
@ [(x) 1,
Y @ r(x) No change of the
J structure.
x ¢
Vi

CS-ES

Time and Petri Nets

= e.g.: Petri nets tell us that ""a new request can be issued
only after the resource is released”

= Nothing about time

= |n literature, time has been added to PNs in many different
ways (notion of temporal constraints for: transitions, places,
arcs) - TPN

CS-ES . 35.

Timed Petri Nets

= TPN
» Each transition is defined precisely based on connectivity and tokens
needed for transition
» Given an initial condition, the exact system state at an arbitrary future time
T can be determined

= Timed Petri Nets becomes a 7-tuple system
= PN=(P,T,F,WK, My1)
= 1 ={1y, T,... Tt IS @ finite set of deterministic time delays to corresponding t;

CS-ES - 36 -

Time and Petri Nets (TPN)

* adding (quantitative) time to PNs is to introduce temporal
constraints on its elements:

* e.g., atransition must fire after 5 msec

= MOVing

5 msec Drill down 2 msec

5 msec 12 msec 19 msec
\ H m Drill down
° __/

Drill up o—>

Drill up

7 msec 14 msec 21msec

CS-ES . 37.-

Production system - Top level petri net

CS-ES - 38-

magazine/depot

NC axis

Do |
- g
"
oo -
e
- s
o
e
=
s juucn
Py ™o
— 20 e
it oo
3 o

”
.
5o ®
|7 so3 T o | 00 sam T som
o
s
S o
" _,()‘/ o]
6 A
= o
sa
- 103
oes
s
a— I
Sois 109 500 N\O% 500 oo o4
-
03
T W

magazine/depot

CS-ES

A0S

™IS
™7 SM}
i3 ML sMu 3 M6 R s 18
k ms ™4
\’ : M1 EL7
™2 S BO2
IN
S
M21
EDS SM39 A0 7 Inos
o FI sMi2 —
™S s
| SM3S MBI
e ™R
SMd0
SM30 \ SM24
™S
s SM9 | —— Y
SM25
™4
s
Va 4
. E——
v 1 SM10 \
N s 3
WS_MAG! =
SM? ne SMS1 SM52
WS_SCH
- SAD L
™I ™S |0 T4
ry ™
WS_MAG2
G ML

- 40 -

NC axis

SN1
TN9
TNI
s SN3 SN4 SNS SN6 SN7 SNB SN9
™2 TN3 NS TNS TNG ™7 TNS
ENCBO2.4
SN10 Al06
TNIO : ™l BO

TNI2

CS-ES

CS-ES

Narkenanzahl

Markenanzahl

1.2

B CREEETEE PEPEPPPPPEPEERST T

..

20000 40000 60000

Zeit in ns

80000 100000

Abbildung 5.7: E1.7 - MPS (Teil 1)

0.6 -

0.2 pr

M H
H H
L . H :
: : :
H] $
H : :
H . H
H H H
H H H
: H H
L B SR BN | EEEETEEPE PEPPPTPPTPPTPEPIS "HS | S TR T B | e T ! -
2 H :
: : :
: : :
L | e ELLLLL b | S LLLTTTTTTE - SEPPEFENESES PN | P sas =
1 i
: :
: :
: :
H H
B O | EITTITTTT TTTTTTT T T s S | [Sp—- A —— N S, : .
: :
: :
H H H
........... | S T | [— S———— ots -
H H .
H : H
H H :
H H H
: g :
: : :
: H :
1 A 1

T T

L]]
E1}7 - SIMULATOR ——

20000 40000 60000

Zeit in ns

80000 100000

Abbildung 5.8: E1.7 - SIMULATOR (Teil 1)

- 42 -

Evaluation

* Pros:
= Appropriate for distributed applications,
= Well-known theory for formally proving properties,
= Cons:
= PN problems with modeling timing (extensions in TPN)
" no programming elements, no hierarchy (extensions available)

= Extensions:
» Enormous amounts of efforts on removing limitations.

= Remark:

= A FSM can be represented by a subclass of Petri nets, where
each transition has exactly one incoming edge and one outgoing
edge.

CS-ES . 43-

Summary

*Petri nets: focus on causal dependencies
= Condition/event nets
« Single token per place
= Place/transition nets
« Multiple tokens per place
» Predicate/transition nets
 Tokens become individuals
» Dining philosophers used as an example
= EXxtensions required to get around limitations

CS-ES

- 44 -

SDL - Specification and Description Language

CS-ES - 45 -

SDL - Specification and Description Language

= Used here as a (prominent) example of a model of
computation based on asynchronous message passing
communication.

= & gppropriate also for distributed systems

» Language designed for specification of distributed systems.
= Dates back to early 70s,
» Formal semantics defined in the late 80s,

= Defined by ITU (International Telecommunication Union): Z.100
recommendation in 1980
Updates in 1984, 1988, 1992, 1996 and 1999

= Another acronym SDL (“System Design Languages”)
CS-ES . 46 -

SDL - Specification and Description Language

CS -

Provides textual (tool processing) and graphical formats (user
Interaction)

= Ability to be used as a wide spectrum language from requirements
to implementation

= Just like StateCharts, it is based on the CFSM (Communicating
FSM) model of computation; each FSM is called a process.

= With SDL the protocol behaviour is completely specified by
communicating FSM.

= The formal basis of SDL enables the use of code generation tool
chains, which allows an automated implementation of the
specification.

ES - 47 -

SDL - Specification and Description Language

= However, it uses message passing instead of shared memory for
communications

= SDL supports operations on data

» object oriented description of components.

CS-ES . 48-

Structuring SDL designs

SDL systems can be structured in various means:

= A system consists of a number of blocks connected by channels,
each block may contain a substructure of blocks or it may contain
process sets connected by signals.

* Processes execute concurrently with other processes and
communicate by exchanging signals; or by remote procedure
calls.

CS-ES . 49-

Specifying behaviour

1.

CS-ES

The behaviour of a process is described as an extended FSM:
When started, a process executes its start transition and enters
the first state. (triggered by signals)

In transitions, a process may execute actions.

E.g.: Actions can assign values to variable attributes of a
process, branch on values of expression, call procedures, create
new processes, send signal to other processes.

- 50 -

SDL-representation of FSMs/processes

© Process P1

(M\) ('V Y (@) (:,_/) Y(E e w ... state
g | 1< RO G ECH ¢ mm— input
S TS TS 2D [D J __ output

() (e (D)) () (4D

- 51-

Communication among SDL-FSMs

= Communication between FSMs (or “processes”) is based
on message-passing, assuming a potentially
Indefinitely large FIFO-queue.

CS-ES

process 3
O

Each process fetches
next entry from FIFO,

checks if input enables
transition,

If yes: transition takes
place,

If no: input is ignored
(exception: SAVE-
mechanism).

- 52-

Determinate?

» |ettokens be arriving at FIFO at the same time:
< Order in which they are stored, is unknown:

process 1
process 3
O
process 2

All orders are legal: = simulators can show different
behaviors for the same input, all of which are correct.

CS-ES

Operations on data

» Variables can be declared locally for processes.
= Their type can be predefined or defined in SDL itself.
» SDL supports abstract data types (ADTs). Examples:

DCL = | Counter % Counter + 3;

Counter Integer;

Date String; ‘w

|
Y Y Y
(1:10) (11:30) ELSE

'

CS-ES

Process interaction diagrams

* [nteraction between processes can be described in
process interaction diagrams (special case of block
diagrams).

* |n addition to processes, these diagrams contain
channels and declarations of local signals.

= Example:
BLOCK B1
AB
process P1 A.B] » process P2\—>
Swi1
Signal A,B; S Ql[A]
W

CS-ES - 55-

Designation of recipients

1. Through process Counter >

identifiers: TO OFFSPRING
Example: OFFSPRING

represents identifiers of
processes generated

dynamically.
2. Explicitly:
By including the S;”g\t,‘ve{>

channel name.

3. Implicitly:
If signal names imply
channel names (B —»

Swl)

CS-ES - 56 -

Hierarchy in SDL

* Process interaction diagrams can be included in blocks.
The root block is called system.

System S
<
C!
B «— A
—»—1 C
Block B
C2 C4
B1 > B2 e

|

Processes cannot contain other processes, unlike in StateCharts.
CS-ES - 57-

Hierarchy of a SDL specification

CS-ES

system S

s||block Block2
E:I [] Block1 ‘ ’I s|gna|
/ req10(Integer,Integer),
/ onf10(Integer, Integer); [req10]
|
K2y [.] K SR4 fconf10]

Block2 |
) " BIT1 ___ sre.

SR2

process Server

dcl
mscld, invoc Integer:
‘ ready)

reqi req2 nf1 0 onf20
mscld inv mscld invo mscld invi mscld invi

- 58 -

Timers

= Timers can be declared locally. Elapsed timers put signal
Into queue (not necessarily processed immediately). K&t

= RESET removes timer (also from FIFO-gueue).

© Process S Timer T g}
\

4) \@ e) (O w
e L i< LXK r T <
S TS [[sstnowem | [> >
R (PO (B (ED [

CS-ES

SDL application

The semantics of SDL defines the state space of the
specification. This state space can be used for various
analyses and transformation techniques, e.g.:

= state space exploration, simulation

= checking the SDL-specification for deadlocks/lifelocks

= deriving test cases automatically

»= code generation for an executable prototype or end system

CS-ES - 60 -

Summary

CS-ES

MoC: finite state machine components
+ non-blocking message passing communication

Representation of processes

Communication & block diagrams

Timers and other language elements

Excellent for distributed applications (e.g., Integrated Services
Digital Network (ISDN))

Commercial tools available from SINTEF, Telelogic, Cinderella

(//lwww.cinderella.dk)

- 61 -

