Embedded Systems

Petri Nets

Computing changes of markings

■ "Firing" transitions *t* generate new markings on each of the places *p* according to the following rules:

$$
M'(p) = \begin{cases} M(p) - W(p, t), & \text{if } p \in \mathbf{P} \setminus t^{\bullet} \\ M(p) + W(t, p), & \text{if } p \in t^{\bullet} \setminus \mathbf{P} \\ M(p) - W(p, t) + W(t, p), & \text{if } p \in \mathbf{P} \cap t^{\bullet} \\ M(p) & \text{otherwise} \end{cases}
$$

When a transition t *fires* from a marking M, w(p, t) tokens are deleted from the incoming places of t (i.e. from places $p \in \mathcal{A}$), and w(t, p) tokens are added to the outgoing places of t (i.e. to places $p \in t^*$), and a new marking M' is produced

Activated transitions

Transition t is "activated" iff

 $(\forall p \in \cdot^{\bullet} t : M(p) \geq W(p,t)) \wedge (\forall p \in t^{\bullet} : M(p) + W(t,p) \leq K(p))$

Activated transitions can "take place" or "fire", but don't have to. The order in which activated transitions fire is not fixed (it is non-deterministic).

Boundedness

- A place is called *k-safe* or *k-bounded* if it contains in the initial marking m_0 and in all other reachable from there markings at most **k** \blacksquare tokens.
- A net is **bounded** if each place is bounded.
- **Boundedness: the number of tokens in any place cannot grow indefinitely**
- **Application: places represent buffers and registers (check there is no overflow)**
- Ξ A Petri net is inherently bounded if and only if all its reachability graphs (i.e. reachability graphs with all possible starting states) all have a finite number of states.

Liveness REVIEW

- \bullet A transition T is live if in any marking there exists a firing sequence such that T becomes enabled
- •• An entire net is live if all its transitions are live
- \bullet Important for checking deadlock

Liveness (more precisely)

- A **transition** t is **dead** at M if no marking M' is reachable from M such that t can fire in M'.
- A **transition** t is **live** at M if there is no marking M' reachable from M where t is dead.
- A **marking** is **live** if all transitions are live.
- A **P/T net** is **live** if the initial marking is live.

Observations:

- A live net is deadlock-free.
- No transition is live if the net is not deadlock-free.

Deadlock

- \blacksquare A **dead marking (deadlock)** is a marking where no transition can fire.
- A Petri net is **deadlock-free** if no dead marking is reachable.

Shorthand for changes of markings REVIEW

String

\ntransition:

\n
$$
M'(p) = \begin{cases} M(p) - W(p, t), & \text{if } p \in 't \setminus 't \\ M(p) + W(t, p), & \text{if } p \in 't \setminus 't \\ M(p) & \text{otherwise} \end{cases}
$$
\ntransition:

\n
$$
M'(p) = \begin{cases} M(p) - W(p, t), & \text{if } p \in 't \setminus 't \\ M(p) & \text{otherwise} \end{cases}
$$
\nLet

\n
$$
\underline{t}(p) = \begin{cases} -W(p, t) \text{ if } p \in t \setminus 't \\ +W(t, p) \text{ if } p \in t \setminus 't \\ -W(p, t) + W(t, p) \text{ if } p \in t \setminus 't \\ 0 \end{cases}
$$
\nThus, $\forall p \in P: M'(p) = M(p) + \underline{t}(p)$

\n
$$
\Rightarrow \qquad M' = M + \underline{t} \qquad \text{vector add}
$$
\nas-es

Matrix *N* **describing all changes of markings REVIEW**

$$
\underline{t}(p) = \begin{cases}\n-W(p,t) \text{ if } p \in^{\bullet} t \setminus t^{\bullet} \\
+W(t,p) \text{ if } p \in t^{\bullet} \setminus t \\
-W(p,t) + W(t,p) \text{ if } p \in t^{\bullet} \cap^{\bullet} t \\
0\n\end{cases}
$$

Def.: Matrix *N (*incidence matrix *)*of net *N* is a mapping

 $\underline{\mathsf{N}}$: $\mathsf{P}\!\times\!\mathsf{T}\to\mathsf{Z}$ (integers)

such that *t T: N(p,t)=t(p)*

Component in column *t* and row *p* indicates the change of the marking of place *p* if transition *t* takes place.

CS - ES $-$ -definition of $-$ -definition of $-$

Incidence matrix

incidence matrix N of a pure (no elementary loops) place/transition-net:

> $\bigg\downarrow$ $=\begin{cases} -\n\end{cases}$ 0, otherwise $(t, p), \, \textit{arc}$ from t to $(t, p),$ arc from p to $\mathcal{L}_{\mathcal{J}_{\mathcal{J}}}:=\{+W(t,p),\,arc\,\text{from}\,t\,\text{to}\,p\}$ $W(t, p)$, arc from p to *t* $N_{p,t}$

Example: *N* **=**

CS - ES $-$ -definition of $-$ -definition of $-$

reachability graph

Computation of Invariants

We are interested in subsets *R* of places whose number of labels remain invariant under fireing of transitions:

• e.g. the number of trains commuting between Amsterdam and Paris (Cologne and Paris) remains constant

Important for correctness proofs

Standardized technique for proving properties of system models

For any transition $t_j \in T$ we are looking for sets $R \subseteq P$ of places for which the accumulated marking is constant:

$$
\sum_{p\in R}t_j(p)=0
$$

Characteristic Vector

REVIEW

$$
\sum_{p\in R}t_j(p)=0
$$

Let:
$$
\underline{c}_R(p) = \begin{cases} 1 & \text{if } p \in R \\ 0 & \text{if } p \notin R \end{cases}
$$

$$
\Rightarrow \sum_{p \in R} t_j(p) = t_j \cdot c_R = \sum_{p \in P} t_j(p) \cdot c_R(p) = 0
$$

Scalar product

Condition for place invariants REVIEW

$$
\sum_{p \in R} t_j(p) = t_j \cdot c_R = \sum_{p \in P} t_j(p) \underbrace{c}_R(p) = 0
$$

Accumulated marking constant for **all** transitions if $\int_R \cdot \underline{C}_R$ = 0 $\underline{t}_1 \cdot \underline{c}_R = 0$ t \cdot c

Equivalent to \mathbf{M}^T \mathbf{c}_R = 0 where N^T is the transposed of N

More detailed view of computations REVIEW

$$
\begin{pmatrix}\n\underline{t}_1(p_1)... \underline{t}_1(p_n) \\
\underline{t}_2(p_1)... \underline{t}_2(p_n) \\
... \\
... \\
\underline{t}_m(p_1)... \underline{t}_m(p_n)\n\end{pmatrix}\n\begin{pmatrix}\n\underline{c}_R(p_1) \\
\underline{c}_R(p_2) \\
... \\
... \\
\underline{c}_R(p_n)\n\end{pmatrix} = \begin{pmatrix}\n0 \\
0 \\
0 \\
0\n\end{pmatrix}
$$

System of linear equations.

Solution vectors must consist of zeros and ones.

Different techniques for solving equation system (Gauss elimination, tools e.g. Matlab, …)

Application to Thalys example REVIEW

 $N^T C_R = 0$, with $N^T =$

 $c_{R,1} = (1\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 0)$

Solution vectors for Thalys example REVIEW

¹¹¹¹¹¹ ⁰ ⁰ ⁰ ⁰ ⁰ ⁰ ⁰ *cR*,¹ ⁰ ⁰ ⁰ ⁰ ⁰ ⁰ ¹¹ ⁰ ⁰ ⁰ ¹ ⁰ *cR*,² ⁰ ⁰ ⁰ ⁰ ⁰ ⁰ ⁰ ⁰ ¹¹ ⁰ ⁰ ¹ *cR*,³ ¹ ⁰ ⁰ ⁰ ¹¹ ⁰ ⁰ ¹¹ ¹ ⁰ ⁰ *cR*,⁴ ^s *C*

We proved that:

- the number of trains serving Amsterdam, Cologne and Paris remains constant.
- • the number of train drivers remains constant.

Solution vectors for Thalys example REVIEW

It follows:

- • each place invariant must have at least one label at the beginning, otherwise "dead"
- \bullet at least three labels are necessary in the example

$N^T C_R = 0$, with $N^T =$	P1	P2	P3	P4	P5	P6	
T1	1	4	6	9	-1	-1	4
T2	9	1	4	9	-1	-1	
T3	-1	4	4	1	4	4	4
T4	4	-1	1	9	4	1	
T5	9	4	1	9	-1	-1	

23 -

Place - invariants

Predicate/transition nets

Goal: compact representation of complex systems.

Key changes:

- **Tokens are becoming individuals;**
- Transitions enabled if functions at incoming edges true;
- \blacksquare Individuals generated by firing transitions defined through functions

Changes can be explained by folding and unfolding C/E nets

Example: Dining philosophers problem

n>1 philosophers sitting at a round table;

n forks*,*

n plates with spaghetti; philosophers either thinking or eating spaghetti (using left and right fork).

2 forks needed! How to model conflict for forks?How to guarantee avoiding starvation?

Condition/event net model of the dining philosophers problem

 \blacktriangleleft Let $x \in \{1..3\}$ $\blacksquare t_x$: *x* is thinking \mathbf{e}_x : *x* is eating \mathbf{f}_x : fork *x* is available

Model quite clumsy.

Difficult to extend to more philosophers.

Predicate/transition model of the dining philosophers problem (1)

 \blacksquare Let x be one of the philosophers, \blacksquare let $l(x)$ be the left spoon of x , \blacksquare let $r(x)$ be the right spoon of x.

- •Tokens individuals
- • Edges can be labeled with variables and functions

32 -

Predicate/transition model of the dining philosophers problem (1)

Predicate/transition model of the dining philosophers problem (2)

- • Model can be extended to arbitrary numbers of people.
- • No change of the structure.

Time and Petri Nets

■ e.g.: Petri nets tell us that ""a new request can be issued only after the resource is released"

- **Nothing about time**
- **IFT In literature, time has been added to PNs in many different** ways (notion of temporal constraints for: transitions, places, $\arcs)$ \rightarrow TPN

Timed Petri Nets

- \blacksquare TPN
	- Each transition is defined precisely based on connectivity and tokens needed for transition
	- \blacksquare Given an initial condition, the exact system state at an arbitrary future time *T* can be determined
- \blacksquare Timed Petri Nets becomes a 7-tuple system
	- \blacksquare PN = (P,T,F,W,K, $\mathsf{M_{0}}$, τ)
	- $\tau = {\tau_1, \tau_2,... \tau_n}$ is a finite set of deterministic time delays to corresponding t_i

Time and Petri Nets (TPN)

- **adding (quantitative) time to PNs is to introduce temporal** constraints on its elements:
	- e.g., a transition must fire after 5 msec

Production system - Top level petri net

$$
\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2}
$$

magazine/depot

40 -

NC axis

42 -

Evaluation

- \blacksquare **Pros:**
	- \blacksquare Appropriate for distributed applications,
	- Well-known theory for formally proving properties,
- **Cons :**
	- PN problems with modeling timing (extensions in TPN)
	- no programming elements, no hierarchy (extensions available)

Extensions:

Enormous amounts of efforts on removing limitations.

E Remark:

 A FSM can be represented by a subclass of Petri nets, where each transition has exactly one incoming edge and one outgoing edge.

Summary

Petri nets: focus on causal dependencies

- **Condition/event nets**
	- Single token per place
- **Place/transition nets**
	- Multiple tokens per place
- **Predicate/transition nets**
	- Tokens become individuals
	- Dining philosophers used as an example
- **Extensions required to get around limitations**

- Used here as a (prominent) example of a model of computation based on **asynchronous message passing communication**.
- $\quad \textcolor{red}{\bullet}$ appropriate also for distributed systems
- Language designed for specification of distributed systems.
	- Ξ Dates back to early 70s,
	- Formal semantics defined in the late 80s,
	- Defined by ITU (International Telecommunication Union): Z.100 recommendation in 1980 Updates in 1984, 1988, 1992, 1996 and 1999
- CS ES $-$ -definition of $-$ -definition of $-$ Another acronym SDL ("System Design Languages")

- Provides textual (tool processing) and graphical formats (user interaction)
- Ability to be used as a wide spectrum language from requirements to implementation
- Just like StateCharts, it is based on the CFSM (Communicating FSM) model of computation; each FSM is called a **process.**
- With SDL the protocol behaviour is completely specified by communicating FSM.
- The formal basis of SDL enables the use of code generation tool chains, which allows an automated implementation of the specification.

- However, it uses message passing instead of shared memory for communications
- **SDL supports operations on data**
- **DEDIATE:** object oriented description of components.

Structuring SDL designs

SDL systems can be structured in various means:

- A system consists of a number of blocks connected by channels, each block may contain a substructure of blocks or it may contain process sets connected by signals.
- **Processes execute concurrently with other processes and** communicate by exchanging signals; or by remote procedure calls.

Specifying behaviour

1. The behaviour of a process is described as an extended FSM: When started, a process executes its start transition and enters the first state. (triggered by signals)

2. In transitions, a process may execute actions.

3. E.g.: Actions can assign values to variable attributes of a process, branch on values of expression, call procedures, create new processes, send signal to other processes.

SDL-representation of FSMs/processes

Communication among SDL-FSMs

 Communication between FSMs (or "processes") is based on **message-passing**, assuming a **potentially indefinitely large FIFO-queue**.

- **Each process fetches** next entry from FIFO,
- **Checks if input enables** transition,
- **I** if yes: transition takes place,
- **If no: input is ignored** (exception: SAVEmechanism).

Determinate?

Example 2 FIFO at the same time: Order in which they are stored, is unknown:

All orders are legal: $\mathcal F$ simulators can show different behaviors for the same input, all of which are correct.

Operations on data

- **Variables can be declared locally for processes.**
- \blacksquare Their type can be predefined or defined in SDL itself.
- SDL supports abstract data types (ADTs). Examples:

Process interaction diagrams

- \blacksquare Interaction between processes can be described in process interaction diagrams (special case of block diagrams).
- In addition to processes, these diagrams contain channels and declarations of local signals.
- **Example:**

Designation of recipients

- **1. Through process identifiers:**Example: OFFSPRING represents identifiers of processes generated dynamically.
- **2. Explicitly:** By including the channel name.
- **3. Implicitly:**
	- If signal names imply channel names ($B \rightarrow$ Sw1)

Counter Via Sw1

CS - ES $-$ -definition of $-$ -definition of $-$

Hierarchy in SDL

■ Process interaction diagrams can be included in **blocks.** The root block is called **system.**

CS - ES $-$ -definition of $-$ -definition of $-$ Processes cannot contain other processes, unlike in StateCharts.

Hierarchy of a SDL specification

Timers

- Timers can be declared locally. Elapsed timers put signal into queue (not necessarily processed immediately).
- RESET removes timer (also from FIFO-queue).

SDL application

The semantics of SDL defines the state space of the specification. This state space can be used for various analyses and transformation techniques, e.g.:

- **state space exploration, simulation**
- checking the SDL-specification for deadlocks/lifelocks
- **deriving test cases automatically**
- code generation for an executable prototype or end system

Summary

- MoC: finite state machine components + non-blocking message passing communication
- **Representation of processes**
- Communication & block diagrams
- **Timers and other language elements**
- \blacksquare Excellent for distributed applications (e.g., *Integrated Services Digital Network* (ISDN))
- \blacksquare Commercial tools available from SINTEF, Telelogic, Cinderella (//www.cinderella.dk)