Embedded Systems

O’H‘l’

...........

CS-ES

é'l f)
:

1¢ ﬁ

REVIEW

Petri Nets

CS-ES - 2.

Computing changes of markings REVIEW

= Firing” transitions t generate new markings on each of

th%plﬁes*pmrﬁ‘ng to the following rules:
M(p) ifpe *t\ ¢*
@): (p)+ p) ifpe ¢*\ *t
M(p)—W(p,) + W (t,p), ifpe *tn e
M otherwise

©
I5C

When a transition t fires from a marking M, w(p,_f) tokens are
of t (i.e. from places p € °t), and w(t, p) tokens ar

places p € t*), and a new marking M' is produced
CS-ES . 3.

S

esoft (i.e. to

Tl— —

Activated transitions REVIEW

= Transition t is ,activated”

iff % 2
< 7

(Vp € "t:M(p) 2 W(p, 1)) A ;/V;Gt'ﬂ(p)JrW(t,p)SK(p))

/@@%Q&tj @\tj 2@‘
© o — e

O, &

Activated transitions can ,take place or fire®,
but don‘t have to.
The order in which activated transitions fire iIs not fixed

(It IS non-deterministic).

CS-ES . 4-

Boundedness REVIEW

= A place is called k-safe or k-bounded if it contains in the initial
marking my and in all other reachable from there markings at most k
tokens. _—

= Anetis bounded if each place is bounded.

LS
}

» Boundedness: the number of tokens in any place cannot grow
indefinitely o

= Application: places represent buffers and registers (check
there is no overflow) -

= A Petri net is inherently bounded if and only if all its reachability
graphs (i.e. reachability graphs with all possible starting states) all
have a finite_ number of states.

CS-ES . 5.

Liveness REVIEW

A transition T is live if in any marking there exists a firing sequence such
that T becomes enabled ™

——

An entire net is live If all its transitions are live

Important for iIng deadlock

Liveness (more precisely)

= Atransition tis dead at M if no marking M'is reachable
from M such that t can fire in M".

= A transmon tis I|ve at M if there is no marking M
reachable from M where t tis dead.

= A marking is live if all transitions are live.
= A P/T netis live if the initial marking is live.

— | —— —_———— ———

Observations:
= A lve net is deadlock-free.
= No transition is live if the net is not deadlock-free.

CS-ES 7.

Deadlock REVIEW

» A dead marking (deadlock) is a marking where no transition can fire.
" APetrinetis deadlock-free if n@g is reachable.

CS-ES _ 8-

Shorthand for changes of markings REVIEW

(pst), ifpe *t\ ¢°
Firing p)+W(t.p), ifpe t*\ °t
transition:) (p,t) +W(t,p), ifpe *tnt

) otherwise

If pet\t’

If pet®\'t
Let :
— D) +W(t, p)if pet™n’t

— Vp e P: M'(p) = M(p)
= @ @vector add
- 9-

CS-ES

| o - REVIEW
Matrix N describing all changes of markings

—W (p,t)if pe't\t’
+W (t, p)if pet’\'t
—W(p,t)+W(t, p)if pet’n’t
0

Def.: Ma@ncidence matrix)of net N is a mapping

t(p) =1

N: P xT — Z (integers)

such that V t €T: N(p,t)=t(p)

Component in column t and row p indicates the change of
the marking of place p if transition t takes place.

CS-ES - 10-

Incidence matrix REVIEW

Incidence matrix N of a pure (no elementary loops)
place/transition-net:

(—W (t, p), arcfrom p tot
=K +l(t, p), arcfromtto p

| @otherwise
]

/X \p

\ L) ; J
t

P Contribution

oftonp
CS-ES - 11 -

N

p.t

Example: N = REVIEW

Lt |t t |t t|t

Amsterdam ;@\ Cologne L
/ v pl ‘ﬂ
1 10 2 3|7

s ¥ -1
kI R S
f"‘—‘ : Ps -1 1
Py -1 1
(D) Ps -1 1
? Brusselg P, -1 1
| = N 1 1

%o Pro -1 1

*
¢
o I—. Paris ‘ol Py 1

o
.

I P | 1 -1

Gre de Lyon Pi5 ’1

CS-ES - 12 -

State equation REVIEW

p, bbb
AR

-1

vV, -

71 Vl -1 “7 4 ¢

f'ﬂ35/(7%7~7

CS-ES - 13-

State equation REVIEW

reachability graph

CS-ES .

Computation of Invariants REVIEW

We are interested in subsets R of places whose number
of labels remain invariant under 1 fireing of transitions:

—— —

 e.g.the number of trains commuting between
Amsterdam and Paris (Cologne and Paris) remains
constant

Important for correctness proofs

CS-ES - 15 -

Place - invariants REVIEW

Standardized technique for proving properties of system
models

For any transition t; e T we are looking for sets R < P of
places for which tﬁe accumulated marklng Is constant:

Example:

CS-ES - 16 -

Characteristic Vector REVIEW

th(p)zo

bR

1if peR =

Let: QR(p):< : P -
— 0If p ¢gR

\ ~Z —/

— t t C =0

Scalar product

CS-ES - 17 -

Condition for place invariants REVIEW

2 ti(p)=t;-cp = t;(p) c (p)=0

peR peP

Accumulated marking constant for all transitions if
-k = 0

In °9R — O

Equivalent t@z 0 where N' is the transposed c@
~—_"

CS-ES . 18-

More detailed view of computations

e ()]

Cr (pz);

~.

\t

b

H(p)-h(p)

L (). 5 (py)

m

i/

L

()t (P)

———

System of linear equations.

Solution vectors must consist of&zeros and ones.

¢/

\

CR(pn)

—

REVIEW

Different techniques for solving equation system (Gauss
elimination, tools e.g. Matlab, ...)

CS-ES

- 19-

Application to Thalys example REyEW

. P PP PalPs Ps|Pr Ps| P PP Piz|Pus
NT Cr = 0, with NT= t, BBl 1 1

Cr, =(1111110000000)

CS-ES - 20 -

Solution vectors for Thalys example REVIEW

Cr, =(1111110000000)
C,,=(0000001100010)
C,;=(0000000011001)

Cr,=(0000110011100)

We proved that:

e the number of trains serving
Amsterdam, Cologne and
Paris remains constant.

 the number of train drivers
remains constant.

CS-ES

,‘ Amsterdam %\Cologne

\ N
~——_-
vy
-~
C
(7))

(7))

@

w

Paris

e

a Gare de Lyon

- 21-

Solution vectors for Thalys example REVIEW

It follows:

each place invariant must
have at least one label at the
beginning, otherwise “dead”

at least three labels are
necessary in the example

CS-ES

10 NAmsterdam 3) Cologne
‘2 o \ !! IS
Cra R& I Cri1
») 4]
D 13 on nectingcﬁ
? 1 r.) Brussels
7 |
4 6 ':!
5 6
Gare du Nord
r. = u I_. Paris
! 3 i

8

Gare de Lyon
- 22

REVIEW

NT ., = 0, with NT= I o O 7 =

—~ T 7 @ ? -1 -1 ¢
T2 @ 7f O -1 -4
LT 7 A A
w ¢ -1 T @ YT
T5 §/ ¢ -1 0 4 ¢

-m)
TL(1 0 1 0 € \
2\0 1 0 O -1 -1 Cq
7311 0 1 1 0 0 | | C5
40 1 1 0 0 1 c.
T5 (E) O -1 0 1 O c
= — N
C C -
- 7 (‘7 . ((=0
I - C
\)T/\’ - C <
3 (B N (5 _:7,
\>ZE g - C ~
1 Y3 +c, = 7/
—_) _

CS-ES

- 24 -

CS-ES

- 25 -

Place - invariants

CS-ES

- 27 -

Predicate/transition nets

—

»Goal: compact representation of complex systems.

= Tokens are becomingindividuals;—
= Transitions enabled if functions at incoming edges true;

» |ndividuals generated by firing transitions defined through functions

»*Changes can be explained by folding and unfolding C/E nets

CS-ES - 28-

Example: Dining philosophers problem

*n>1 philosophers sitting at a '7 , L

round table; @ r‘w @

=n forks,

*n plates with spaghetti;

=philosophers either thinking @

or eating spaghetti

(using left and right fork). .,1

How to model conflict for forks?

2 forks How to guarantee avoiding
needed! starvation?

CS-ES - 29-

Condition/event net model
~of the dining philosophers problem

®

"letx € {1..3}

03
(o

=t.: X IS thinking
"¢, X IS eating

LB

=f : fork x Iis available

Y 18>
N A

Model quite clumsy.

Difficult to extend to
more philosophers.

CS-ES

- 30 -

Predicate/transition model
of the dining philosophers problem (1)

sLet x be one of the philosophers, |* Tokens individuals

=let I(x) be the left spoon of X, Edges can be labeled
slet r(x) be the right spoon of x. with variables and
functions

CS-ES - 31-

Predicate/transition model
of the dining philosophers problem (1)

CS-ES - 32-

Predicate/transition model
of the dining philosophers problem (2)

 Model can be
extended to
arbitrary numbers
of people.

“le 0 change of the
structure

CS-ES

Time and Petri Nets

» e.g.: Petri nets tell us that Y3 new request can be issued
only after the resource is released”

= Nothing about time

= |n literature, time has been added to PNs in many different
ways (notion of temporal constraints for: transitions, places,
arcs) - TPN

CS-ES 34

Timed Petri Nets

= TPN
—= Each transition is defined precisely based on connectivity and tokens
needed for transition
» Given an initial condition, the exact system state at an arbitrary future time
T can be determined

= Timed Petri Nets becomes a 7-tuple system
= PN=(P,T,FWK,
= 1 ={1q, T,... T} IS @ finite set of deterministic time delays to corresponding t;

CS-ES - 35-

Time and Petri Nets (TPN)

* adding (quantitative) time to PNs is to introduce temporal
constraints on its elements:

* e.g., atransition must fire after 5 msec

= MOVing

5 msec Drill down 2 msec

5 msec 12 msec 19 msec
\ H m Drill down
- ./

Drill up

Drill up

=<
7 msec 14 msec 21msec

CS-ES - 36 -

Production system - Top level petri net

CS-ES . 37.-

magazine/depot

NC axis

Do |
- g
"
oo -
e
- s
o
e
=
s juucn
Py ™o
— 20 e
it oo
3 o

”
.
5o ®
|7 so3 T o | 00 sam T som
o
s
S o
" _,()‘/ o]
6 A
= o
sa
- 103
oes
s
a— I
Sois 109 500 N\O% 500 oo o4
-
03
T W

magazine/depot

CS-ES

A0S

™IS
™7 SM}
i3 ML sMu 3 M6 R s 18
k ms ™4
\’ : M1 EL7
™2 S BO2
IN
S
M21
EDS SM39 A0 7 Inos
o FI sMi2 —
™S s
| SM3S MBI
e ™R
SMd0
SM30 \ SM24
™S
s SM9 | —— Y
SM25
™4
s
Va 4
. E——
v 1 SM10 \
N s 3
WS_MAG! =
SM? ne SMS1 SM52
WS_SCH
- SAD L
™I ™S |0 T4
ry ™
WS_MAG2
G ML

- 39-

NC axis

s sN3) s SNS K N7 N8 SN9
™ ™6 | rmi JT

ENCBO24

TNI2

CS-ES

CS-ES

Narkenanzahl

Markenanzahl

1.2

E1.7 - IDTI—

: :
$ H H
H H H
: : :
EEEE T safes - r. -!. -
H H H
: :
.......... e ECLLLLLrTY TT | EEPSNPPRAAMN FRPANARRpry D | AP S——
:
......... ERRAPRURREN: 19 | TP S B | I SA—
I CLLTTTT TP B | N Rp: (A K | . S -
:
:
—

Abbxldung 5.

20000 40000

‘00 03 100000
T: PS ('r),

0.6 -

0.2 p

: $
: §
1 b - - .
: : :
i H $
: : :
0.8 Fof-- .' IS T - F—— H— -
: : :
2 : :
| . 1 | S PN 1 E R S 4
: .
) :
.. I R—
i :
: :
3 :
: -
............. - I ie -
H :
: 3
: :
i :
; : :
i ' 1

,'.v - s:mumit -

20000 40000 60000

Abbildung 5.8 _E1.7

Zei\ in ns

80000 100000

IMULATOR (Teil 1)

- 4] -

Evaluation

= Pros:

= Appropriate for distributed applications,

= Well-known theory for formally proving properties,
= Cons:
= PN problems with modeling timing (extensions in TPN)
" N0 programming eIemEnts, no hierarchy (extensions available)

= Extensions:
» Enormous amounts of efforts on removing limitations.

= Remark:

= A FSM can be represented by a subclass of Petri nets, where

each-transition has exactly one incoming edge and one outgoing
edge.

CS-ES .42

Summary

*Petri nets: focus on causal dependencies
= Condition/event nets
« Single token per place
= Place/transition nets
« Multiple tokens per place
» Predicate/transition nets
 Tokens become individuals
» Dining philosophers used as an example
= EXxtensions required to get around limitations

CS-ES

- 43 -

SDL - Specification and Description Language

CS-ES - 44 -

SDL - Specification and Description Language

» Used here as a (prominent) example of a model of
computation based on asynchronous message passing
communication.

= & gppropriate also for distributed systems

» Language designed for specification of distributed systems.

= Dates back to early 70s,

= Formal semantics defined in the late 80s, -

= Defined byUTW (International Telecommunication Union): Z.100

recommendation in 1980 —
Updates in 1984, 1988, 1992, 1996 and 1999
= Another acronym SDI (“System Design Languages”)

CS-ES - 45 -

SDL - Specification and Description Language

CS -

ES

Provides textual (tool processing) and graphical formats (user
interaction) -

—

Ability to be used as a wide spectrum language from requirements

to implementation

Just like StateCharts, it is based on the CEFSM (Communicating
FSM) model of computation; each FSM is called a process.

With SDL the protocol behaviour is completely specified by
communicating FSM.

The formal basis of SDL enables the use of cade generation tool
chains, which allows an automated implementation of the
specification.

- 46 -

SDL - Specification and Description Language

= However, it uses message passing instead of shared memory for
communications

= SDL supports operations on data

= object oriented description of components.

CS-ES - 47 -

Structuring SDL designs

SDL systems can be structured in various means:

= A system consists of a number of blocks connected by channels,
each block may contain a substructure of blocks or it may contain
process sets connected by signals.
)CESS Sels.

* Processes execute concurrently with other processes and
communicate by exchanging signals; or by remote procedure
calls.

CS-ES . 48-

Specifying behaviour

1.

CS-ES

The behaviour of a process is described as an extended FSM:
When started, a process executes its start transition and enters
the first state. (triggered by signals)

In transitions, a process may execute actions.

E.g. Acti@assign values to variable attributes of a
a

process, nch’on values of expression, call procedures; create
new processes, send signal to other processes.
f S —

- 49 -

SDL-representation of FSMs/processes

() (V Y e) (f/) Y(E e w ... state
L L n | i i< s <k Lo ~input
© > .X> y > l/> V> g] .. 9@“

() (e (D)) () (4D

CS-ES . 50.

Communication among SDL-FSMs

= Communication between FSMs (or “processes”) is based
on message-passing, assuming a potentially
Indefinitely large FIFO-queue.

CS-ES

process 3
O

Each process fetches
next entry from FIFO,

checks if input enables
transition,

If yes: transition takes
place,

if no: input is ignored
(exception: SAVE-
mechanism).

- 51 -

Determinate?

= |et tokens be arriving at FIFO at the same time:
< Order in which they are stored, is unknown:

O
process 2

All orders are legal: = simulators can show different
behaviors for the same input, all of which are correct.

CS-ES - 92 -

Operations on data

= Variables can be declared locally for processes.
= Their type can be predefined or defined in SDL itself.
» SDL supports abstract data types (ADTs). Examples:

DCL = | Counter % Counter + 3;

Counter Integer;

Date String; ‘@

|
Y Y Y
(1:10) (11:30) ELSE

'

CS-ES

Process interaction diagrams

* [nteraction between processes can be described in
process interaction diagrams (special case of block
diagrams).

* |n addition to processes, these diagrams contain
channels and declarations of local signals.

= Example:

BLOCK B1

[A B]
process P1 process P2

[A]

Sgna(AB>

CS-ES - 54 -

Designation of recipients

1. Through process Counter >

identifiers: TO OFFSPRING
Example: OFFSPRING

represents identifiers of
processes generated

dynamically.
2. Explicitly:
By including the S;”g\t,‘ve{>

channel name.

3. Implicitly:
If signal names imply
channel names (B —»

Swl)

CS-ES - 55 -

Hierarchy in SDL

* Process interaction diagrams can be included in blocks.
The root block is called system.
D0t BIOCK

—

SystemS _—
B &
4-—@/
Block B
@ C2 2 | L
s
Processes cannot containother processes, unlike in StateCharts.

CS-ES - 56 -

Hierarchy of a SDL specification

CS-ES

system S 7)block Block2 _
E:I [] BIOCk1 ‘ / signa|
a req10(Integer,Integer),
onf10(Integer,Integer); [req10]
K2
= SR4 w[conf10]|
K3 o |_SR2 (-]
—[1— Block2 | K3 | Server
= [...1___ - .SR3.

rocess Serve
P dcl
mscld, invoc Integer:
‘ ready)
|
reqi req2 nf1 0 onf20
mscld inv mscld invo mscld invi mscld invi

- 57-

Timers

—_——

= Timers can be declared locally. Elapsed timers put signal

\© Process S 'L,‘gj
(4)z) e)FED) e
e <[< [[< [T<
wo > x> y > |set(now+p,T) Ql\>
C5) (£) (RESET(T)
4 T 1

CS-ES

SDL application

The semantics of SDL defines the state space of the
specification. This state space can be used for various
analyses and transformation techniques, €.9..

= state space exploration, simulation
= checking the SDL-specification for deadlocks/lifelocks

» deriving test cases automatically
»= code generation for an executable _prototype or end system

CS-ES . 59.-

Summary

MoC. finite state machine components
+ pion-blocking message passing communication

/

= Representation of processes

= Communication & block diagrams

@and other language elements

Excellent for distributed applications (e.g., Integrated Services
Digital Network (ISDN)) /,) (1=y

Sommercial tools-available from SINTEF, Telelogic, Cinderella
(//lwww .cinderella.dk)

CS-ES - 60 -

