
- 1 -CS - ES

Embedded Systems

- 2 -CS - ES

Predicate/transition nets

Goal: compact representation of complex systems.
Key changes:

 Tokens are becoming individuals;
 Transitions enabled if functions at incoming edges true;
 Individuals generated by firing transitions defined through functions

Changes can be explained by folding and unfolding C/E nets

REVIEW

- 3 -CS - ES

Example: Dining philosophers problem

n>1 philosophers sitting at a
round table;
n forks,
n plates with spaghetti;
philosophers either thinking
or eating spaghetti
(using left and right fork).

How to model conflict for forks?

How to guarantee avoiding
starvation?

2 forks
needed!

REVIEW

- 4 -CS - ES

Condition/event net model
of the dining philosophers problem

Let x  {1..3}
tx: x is thinking
ex: x is eating
fx: fork x is available

Model quite clumsy.

Difficult to extend to
more philosophers.

REVIEW

- 5 -CS - ES

Predicate/transition model
of the dining philosophers problem (1)

f 3

p1

p3

p2 f 3

p1

p3p2

f 2 f 1

REVIEW

- 6 -CS - ES

Time and Petri Nets

 e.g.: Petri nets tell us that "a new request can be issued only
after the resource is released”

 Nothing about time

 In literature, time has been added to PNs in many different
ways (notion of temporal constraints for: transitions, places,
arcs)  TPN

REVIEW

- 7 -CS - ES

Timed Petri Nets

 TPN
 Each transition is defined precisely based on connectivity and tokens

needed for transition
 Given an initial condition, the exact system state at an arbitrary future time

T can be determined

 Timed Petri Nets becomes a 7-tuple system
 PN = (P,T,F,W,K, M0,)
  = {1, 2,… n} is a finite set of deterministic time delays to corresponding ti

1

2 4

3

5

REVIEW

- 8 -CS - ES

Time and Petri Nets (TPN)

 adding (quantitative) time to PNs is to introduce temporal
constraints on its elements:

 e.g., a transition must fire after 5 msec

5 msec 2 msecDrill downDrill up
5 msec

7 msec

12 msec

14 msec

19 msec

21msec

Drill down

Drill up

moving

REVIEW

- 9 -CS - ES

Production system - Top level petri net REVIEW

A Distributed Real-Time Expert System for Model-Based
Fault Diagnosis in Modular Production Systems

 tech n ica l
 process m odel

 s im u la to r

d iag nosis

 sup erv is ion

 a larm

 fo re -w arn in g s

m ain ta in an ce
stra tegy

 ob se rva tion

- 10 -CS - ES

magazine/depot REVIEW

- 11 -CS - ES

Evaluation

 Pros:
 Appropriate for distributed applications,
 Well-known theory for formally proving properties,

 Cons :
 PN problems with modeling timing (extensions in TPN)
 no programming elements, no hierarchy (extensions available)

 Extensions:
 Enormous amounts of efforts on removing limitations.

 Remark:
 A FSM can be represented by a subclass of Petri nets, where

each transition has exactly one incoming edge and one outgoing
edge.

REVIEW

- 12 -CS - ES

Summary

Petri nets: focus on causal dependencies
 Condition/event nets

• Single token per place
 Place/transition nets

• Multiple tokens per place
 Predicate/transition nets

• Tokens become individuals
• Dining philosophers used as an example

 Extensions required to get around limitations

REVIEW

- 13 -CS - ES

SDL - Specification and Description Language

REVIEW

- 14 -CS - ES

SDL - Specification and Description Language

 Used here as a (prominent) example of a model of
computation based on asynchronous message passing
communication.

  appropriate also for distributed systems

 Language designed for specification of distributed systems.
 Dates back to early 70s,

 Formal semantics defined in the late 80s,

 Defined by ITU (International Telecommunication Union): Z.100
recommendation in 1980
Updates in 1984, 1988, 1992, 1996 and 1999

 Another acronym SDL (“System Design Languages”)

REVIEW

- 15 -CS - ES

SDL - Specification and Description Language

 Provides textual (tool processing) and graphical formats (user
interaction)

 Ability to be used as a wide spectrum language from requirements
to implementation

 Just like StateCharts, it is based on the CFSM (Communicating
FSM) model of computation; each FSM is called a process.

 With SDL the protocol behaviour is completely specified by
communicating FSM.

 The formal basis of SDL enables the use of code generation tool
chains, which allows an automated implementation of the
specification.

REVIEW

- 16 -CS - ES

SDL - Specification and Description Language

 However, it uses message passing instead of shared memory for
communications

 SDL supports operations on data

 object oriented description of components.

REVIEW

- 17 -CS - ES

SDL-representation of FSMs/processes

output

input

state

REVIEW

- 18 -CS - ES

Hierarchy of a SDL specification REVIEW

- 19 -CS - ES

Timers

 Timers can be declared locally. Elapsed timers put signal
into queue (not necessarily processed immediately).

 RESET removes timer (also from FIFO-queue).

REVIEW

- 20 -CS - ES

SDL application

The semantics of SDL defines the state space of the
specification. This state space can be used for various
analyses and transformation techniques, e.g.:

 state space exploration, simulation
 checking the SDL-specification for deadlocks/lifelocks
 deriving test cases automatically
 code generation for an executable prototype or end system

REVIEW

- 21 -CS - ES

Summary

 MoC: finite state machine components
+ non-blocking message passing communication

 Representation of processes

 Communication & block diagrams

 Timers and other language elements

 Excellent for distributed applications (e.g., Integrated Services
Digital Network (ISDN))

 Commercial tools available from SINTEF, Telelogic, Cinderella
(//www.cinderella.dk)

REVIEW

- 22 -CS - ES

Message Sequence Charts

- 23 -CS - ES

Motivation: Scenario-based Specification

 “Well, the controller of my ATM can be in waiting-for-user-
input mode or in connecting-to-bank-computer mode or in
delivering-money-mode; in the first case, here are the
possible inputs and the ATM’s reactions, . . .; in the second
case, here is what happens, . . ., etc.”.

vs.
 “If I insert my card, and then press this button and type in

my PIN, then the following shows up on the display, and by
pressing this other button my account balance will show”.

- 24 -CS - ES

Motivation: Scenario-based Specification

 Claim: it is more natural to describe and discuss the
reactive behavior of a system by the scenarios it
enables rather than by the state-based reactivity of each
of its components.

 In order to implement the system, as opposed to stating
its required behavior or preparing test suites, state-
based modeling is needed, whereby we must specify
for each component the complete array of possibilities
for incoming events and changes and the component’s
reactions to them.

- 25 -CS - ES

Inter-Object vs Intra-Object

 inter-object approach
‘one story for all relevant objects’
scenario-based behavioral descriptions,
which cut across the boundaries of the
components (or objects) of the system,
in order to provide coherent and
comprehensive descriptions of
scenarios of behavior

 intra-object approach
‘all pieces of stories for one object’
statebased behavioral descriptions,
which remain within the component, or
object, and are based on providing a
complete description of the reactivity of
each one

- 26 -CS - ES

Message Sequence Charts

 Message Sequence Charts (MSC) is a language to
describe the interaction between a number of
independent message-passing instances.

 Defined by ITU (International Telecommunication Union)
- Z.120 recommendation

 MSC is
 a scenario language
 graphical
 formal
 practical
 widely applicable

- 27 -CS - ES

MSC

 In telecommunication industry, MSCs are the first choice to describe
example traces of the system under development. MSCs are used
throughout the whole protocol life cycle from requirements analysis
to testing.

 To define longer traces hierarchically, simple MSCs can be
composed by operators in high-level MSC (HMSC).

 Message Sequence Charts may be used for requirement
specification, simulation and validation, test-case specification and
documentation of real-time systems.

- 28 -CS - ES

Message sequence charts (MSC)

 Graphical means for representing schedules; time used
vertically, “geographical” distribution horizontally.

- 29 -CS - ES

MSC: Example

 user (U) sends a request to an interface (I) to gain
access to a resource R

 interface in turn sends a request to the resource,
receives “grant” as a response

 Sends “yes” to U.

- 30 -CS - ES

Visual representation

 Processes (instances) – vertical lines or „life lines“
 time flows downwards along each life-line

 Messages – horizontal arrows across the life lines representing
„causal links“ from a send event (the source of the arrow) to the
corresponding receive event (the target of the arrow)

 label on the arrow denotes the message being transmitted

- 31 -CS - ES

Instance

- 32 -CS - ES

Basic MSC in a nutshell

User AC System

Code

OK

msc User_accepted

UnlockCard out

Idle

Door unlocked

MSC diagram

MSC heading

Condition
no predicate logic,

merely a label

Output event

Input event

Instance

Message to
the

environment

Instance end

- 33 -CS - ES

Timer set and timeout

• User is accepted  forget to push the door

• AC system will detect this through the expiration
of the timer  Lock

- 34 -CS - ES

Preferred situation

- 35 -CS - ES

MSC reference

• In almost all description/programming/specification
languages there is a way to isolate subparts of the
description in a separate named construct
(procedures, functions, classes, packages)

• In MSC there are MSCs which can be referred from
other MSCs.

- 36 -CS - ES

MSC reference

• Assume that the scenario where the user is accepted is
part of a larger context where there is an automatic
door. When the door is unlocked it automatically opens.

• The MSC reference symbol is a box with rounded
corners.

- 37 -CS - ES

HMSC (High Level MSC)

User accepted

Idle

Unlocked_reset Unlocked_timeout

Door unlocked

Unlocked_unclosed

User rejected

msc ACsystemOverview

HMSC Start

MSC Reference

Condition

Alternative

Loop

Conne
ction
Point

- 38 -CS - ES

HMSC

The symbols named "Successful_Setup", "SetupFail_IllegalNumber" and
"SetupFail_NoResponse" are references to interactions described in basic
MSC diagrams.

- 39 -CS - ES

Basic MSC for a "Successful_Setup"connection
setup scenario

- 40 -CS - ES

What is new in MSC-2000 relative to MSC-96

 Improved structural concepts and object orientation
 Data with the data language of your choice
 Time observations and time constraints (Observing

absolute/relative time)
 Method calls for more synchronizing communication

- 41 -CS - ES

Data in MSC-2000

 MSC has no data language of its own!

 MSC has parameterized data languages such that

 fragments of your favorite (data) language can be used
• C, C++, SDL, Java, ...

 MSC can be parsed without knowing the details of the chosen
data language

 the interface between MSC and the chosen data language is
given in a set of interface functions

- 42 -CS - ES

Data Flow Models

- 43 -CS - ES

Data flow modeling

 Def.: The process of identifying, modeling and
documenting how data moves around an information
system.

Data flow modeling examines
 processes (activities that transform data from one form to

another),
 data stores (the holding areas for data),
 external entities (what sends data into a system or receives data

from a system, and
 data flows (routes by which data can flow).

- 44 -CS - ES

Data flow as a “natural” model of applications

http://www.agilemodeling.com/artifacts/dataFlowDiagram.htm

Registering for courses

www.ece.ubc.ca/~irenek/techpaps/vod/vod.html

Video on demand system

- 45 -CS - ES

Dataflow model
 Nodes represent transformations

 May execute concurrently

 Edges represent flow of tokens (data) from one node to
another
 May or may not have token at any given time

 When all of node’s input edges have at least one token,
node may fire

 When node fires, it consumes input tokens processes
transformation and generates output token

 Nodes may fire simultaneously

 Several commercial tools support graphical languages for
capture of dataflow model
 Can automatically translate to concurrent process model for

implementation
 Each node becomes a process

modulate convolve

transform

A B C D

Z

Nodes with more complex
transformations

t1 t2

+ –

*

A B C D

Z

Nodes with arithmetic
transformations

t1 t2

Z = (A + B) * (C - D)

- 46 -CS - ES

Philosophy of Dataflow Languages

 Drastically different way of looking at computation

 Von Neumann imperative language style: program counter
controls everything

 Dataflow language: movement of data the priority

 Scheduling responsibility of the system, not the programmer

- 47 -CS - ES

Dataflow Language Model

 Processes communicating through FIFO buffers

Process 1 Process 2

Process 3

FIFO Buffer

FIFO Buffer
FIFO Buffer

- 48 -CS - ES

Dataflow Languages

 Every process runs simultaneously

 Processes can be described with imperative code

 Compute … receive … compute … transmit

- 49 -CS - ES

Dataflow Communication

 Communication is only through buffers

 Buffers usually treated as unbounded for flexibility

 Destructive read: reading a value from a buffer removes
the value

 Fundamentally concurrent: should map more easily to
parallel hardware

- 50 -CS - ES

Applications of Dataflow

 signal-processing applications

 Anything that deals with a continuous stream of data

 Becomes easy to parallelize

 Buffers typically used for signal processing applications
anyway

- 51 -CS - ES

Applications of Dataflow

 Perfect fit for block-diagram specifications
 Circuit diagrams
 Linear/nonlinear control systems
 Signal processing

 Suggest dataflow semantics

 Common in Electrical Engineering

 Processes are blocks, connections are buffers

- 52 -CS - ES

Kahn Process Networks

 Proposed by Kahn in 1974 as a general-purpose scheme for
parallel programming

 Theoretical foundation for dataflow
 Unique attribute: deterministic

 Difficult to schedule
 Too flexible to make efficient, not flexible enough for a wide

class of applications
 Never put to widespread use

…
Send();

…

…
Wait();

…

- 53 -CS - ES

Reference model for data flow:
Kahn process networks

Special case: Kahn process networks:
executable task graphs;
Communication via infinitely large FIFOs

For asynchronous message passing:
communication between tasks is buffered

- 54 -CS - ES

Properties of Kahn process networks (2)

 There is only one sender per channel.
 A process cannot check whether data is available before

attempting a read.
 A process cannot wait for data for more than one port at a time.
 Therefore, the order of reads depends only on data, not on the

arrival time.
 Therefore, Kahn process networks are deterministic (!); for a

given input, the result will always the same, regardless of the
speed of the nodes.

This is the
key beauty
of KPNs!

- 55 -CS - ES

Kahn Process Networks

 Key idea:

Reading an empty channel blocks until data is available

 No other mechanism for sampling communication
channel’s contents

 Can’t check to see whether buffer is empty
 Can’t wait on multiple channels at once

- 56 -CS - ES

Kahn Processes

 A C-like function (Kahn used Algol)
 Arguments include FIFO channels
 Language augmented with send() and wait() operations

that write and read from channels

- 57 -CS - ES

Sample parallel program S

(1) … channel declation

processes f, g, h are declared

- 58 -CS - ES

A Kahn Process
 From Kahn’s original 1974 paper

process f(in int u, in int v, out int w)
{
int i; bool b = true;
for (;;) {
i = b ? wait(u) : wait(v);
printf("%i\n", i);
send(i, w);
b = !b;

}
}

f

u

v

w

Process alternately reads
from u and v, prints the data

value, and writes it to w

What does this do?

- 59 -CS - ES

A Kahn Process

 From Kahn’s original 1974 paper:

process f(in int u, in int v, out int w)
{
int i; bool b = true;
for (;;) {
i = b ? wait(u) : wait(v);
printf("%i\n", i);
send(i, w);
b = !b;

}
}

Process
interface

includes FIFOs

wait() returns the next
token in an input FIFO,

blocking if it’s empty

send() writes a data
value on an output FIFO

- 60 -CS - ES

A Kahn Process

 From Kahn’s original 1974 paper:

process g(in int u, out int v, out int w)
{
int i; bool b = true;
for(;;) {
i = wait(u);
if (b) send(i, v); else send(i, w);
b = !b;

}
}

gu
v

w

Process reads from u and
alternately copies it to v and w

What does this do?

- 61 -CS - ES

A Kahn Process

 From Kahn’s original 1974 paper:

process h(in int u, out int v, int init)
{
int i = init;
send(i, v);
for(;;) {
i = wait(u);
send(i, v);

}
}

hu v

Process sends initial value,
then passes through values.

What does this do?

- 62 -CS - ES

Sample parallel program S

(1) … channel declation

processes f, g, h are declared

(6) … body of the main program:
- calling instances of the

processes
- actual names of the channels

are bound to the formal parameters
- infix operator par  concurrent

activation of the processes

- 63 -CS - ES

A Kahn System

 What does this do?

fg

h
init = 0

h
init = 1

Emits a 1 then copies input to output

Emits a 0 then copies input to output

Prints an alternating sequence of 0’s and 1’s

T2 Z

T2

X

Y

- 64 -CS - ES

- 65 -CS - ES

Kahn network animation

- 66 -CS - ES

Determinism

 Process: “continuous mapping” of input sequence to
output sequences

 Continuity: process uses prefix of input sequences to
produce prefix of output sequences. Adding more
tokens does not change the tokens already produced

 The state of each process depends on token values
rather than their arrival time

 Unbounded FIFO: the speed of the two processes
does not affect the sequence of data values

F
x1,x2,x3… y1,y2,y3…

- 67 -CS - ES

Determinism
 Another way to see it:

 If I’m a process, I am only affected by the sequence of
tokens on my inputs

 I can’t tell whether they arrive early, late, or in what order
 I will behave the same in any case

 Thus, the sequence of tokens I put on my outputs is the
same regardless of the timing of the tokens on my inputs

- 68 -CS - ES

Kahn Process Networks

 Their beauty is that the scheduling algorithm does not
affect their functional behavior

 Difficult to schedule because of need to balance relative
process rates

 System inherently gives the scheduler few hints about
appropriate rates

- 69 -CS - ES

Synchronous Dataflow (SDF)
 Edward Lee and David Messerchmitt, Berkeley, 1987

Ptolemy System

 Restriction of Kahn Networks to allow compile-time
scheduling

 Basic idea: each process reads and writes a fixed number of
tokens each time it fires:

loop
read 3 A, 5 B, 1 C …compute…write 2 D, 1 E, 7 F

end loop

- 70 -CS - ES 70

Synchronous dataflow

 With digital signal-processors (DSPs), data flows at fixed
rate

ADC DACDSP

0110.. 1110..

- 71 -CS - ES 71

Synchronous dataflow
 Multiple tokens consumed and produced per firing

 Synchronous dataflow model takes advantage of this
 Each edge labeled with number of tokens

consumed/produced each firing
 Can statically schedule nodes, so can easily use sequential

program model
• Don’t need real-time operating system and its overhead

 Algorithms developed for scheduling nodes into “single-
appearance” schedules
 Only one statement needed to call each node’s associated

procedure
• Allows procedure inlining without code explosion, thus reducing

overhead even more

modulate convolve

transform

A B C D

Z

Synchronous dataflow

mt1 ct2

mA mB mC mD

tZ

tt1 tt2

t1 t2

