
1

 - 1 - BF - ES

Embedded Systems 10

 - 2 - BF - ES

Midterm exam Thursday May 31, 16:00-18:00

 Groups 1 – 12: HS 002

 All other groups: Günter Hotz lecture hall

 The exam will be open book. That is, you are allowed to

use printouts of the lecture slides, books, and any

handwritten notes during the exam.

 No discussion slots next week

 Last two problem sets will be discussed

in Tutorial on Wednesday

2

 - 3 - BF - ES

REVIEW: Overview of simulation

Initialization

End of simulation

Assign new values

to signals

Update

current time

Evaluate processes

Resume processes

 - 4 - BF - ES

REVIEW: Transaction list and process

activation list

 Transaction list

 For signal assignments

 Entries of form (s, v, t) meaning

„signal s is set to value v at time t“

 Example: (clock, ´1´, 10 ns)

 Process activation list

 For reactivating processes

 Entries of form (pi, t) meaning

„process pi resumes at time t“.

3

 - 5 - BF - ES

REVIEW: Initialization

 At the beginning of initialization, the current time, tcurr,
is assumed to be 0 ns.

 An initial value is assigned to each signal.
 Taken from declaration, if specified there, e.g.,

• signal s : std_ulogic := `0`;

 Otherwise: First value in enumeration for enumeration based data types, e.g.

• signal s : std_ulogic
with
type std_ulogic is (`U`, `X`, `0`, `1`, `Z`, `W`, `L`, `H`, `-`);
initial value is `Ù`

 This value is assumed to have been the value of the signal for an infinite length
of time prior to the start of the simulation.

 Initialization phase executes each process exactly once (until it suspends).

 During execution of processes: Signal assignments are collected in
transaction list (not executed immediately!) – more details later.

 If process stops at „wait for“-statement, then update process activation list –
more details later.

 After initialization the time of the next simulation cycle (which in this case is
the first simulation cycle), tnext is calculated:
 Time tnext of the next simulation cycle = earliest of

1. time’high (end of simulation time).
2. Earliest time in transaction list (if not empty)
3. Earliest time in process activation list (if not empty).

 - 6 - BF - ES

REVIEW: Signal assignment phase –

first part of step
 Each simulation cycle starts with setting the current time

to the next time at which changes must be considered:

 tcurr = tnext

 This time tnext was either computed during the
initialization or during the last execution of the simulation
cycle. Simulation terminates when the current time
would exceed its maximum, time’high.

 For all (s, v, tcurr) in transaction list:
 Remove (s, v, tcurr) from transaction list.

 s is set to v.

 For all processes pi which wait on signal s:
 Insert (pi, tcurr) in process activation list.

 Similarly, if condition of „wait until“-expression changes
value.

4

 - 7 - BF - ES

REVIEW: Process execution phase –

second part of step (1)

 Resume all processes pi with entries (pi, tcurr)
in process activation list.

 Execute all activated processes „in parallel“ (in fact: in arbitrary
order).

 Signal assignments
 are collected in transaction list (not executed immediately!).

 Examples:

• s <= a and b;

– Let v be the conjunction of current value of a and current value
of b.

– Insert (s, v, tcurr) in transaction list.

• s <= ´1´ after 10 ns;

– Insert (s, ´1´, tcurr + 10 ns) into transaction list.

 Processes are executed until wait statement is encountered.

 If process pi stops at „wait for“-statement, then update process
activation list:
 Example:

• pi stops at „wait for 20 ns;“

• Insert (pi, tcurr + 20 ns) into process activation list

 - 8 - BF - ES

REVIEW: Process execution phase –

second part of step (2)

If some process reaches last statement and
 does not have a sensitivity list and

 last statement is not a wait statement,

then it continues with first statement and runs until wait
statement is reached.

 When all processes have stopped, the time of the next
simulation cycle tnext is calculated:
 Time tnext of the next simulation cycle = earliest of

1.time’high (end of simulation time).
2.Earliest time in transaction list (if not empty)
3.Earliest time in process activation list (if not empty).

 Stop if tnext = time’high and transaction list and process
activation list are empty.

5

 - 9 - BF - ES

Current time Delta delay Event

0 ns 1 -- evaluation of inverter

-- (A, 1, 0 ns)

2 -- evaluation of AND and

NAND

-- (B, 0, 0ns), (C, 1, 0ns)

3 -- evaluation of AND

-- (C, 0, 0ns)

 Simulation time does not

proceed due to delta delays!

 X

1

A

B

C
= 1 = 0

= 1

= 0
1→0

… erklärt an einem kleinen Beispiel

REVIEW: Delta delay

 - 10 - BF - ES

„Write-write-conflicts“

 Case 1:

Write-write-conflicts are restricted to

the same process

(i.e. they occur inside the same

process)

 Then the second signal assignment

overwrites the first one.

 This is the only case of „non-concurrency“

of signal assignments

 Note that writing to different signals

occurs concurrently, however!

signal s : bit;

…

p : process

begin

 …

 s <= `0`;

 …

 s <= `1`;

 wait for 5 ns;

end process p;

6

 - 11 - BF - ES

„Write-write-conflicts“

 Case 2:

Write-write-conflicts between different

processes

 If there is no „resolution function“ for

the data type dt, then writing the same

signal by different processes in the same

step is forbidden.

 If there is a resolution function, then the

resolution function computes the value of s

at time tcurr:

• Value for s in the current step is computed

for each process separately,

• resolution function is used to compute final

result.

signal s : dt;

…

s<= v1;

…

p : process

begin

 …

 s <= v2;

 …

end process p;

q : process

begin

 …

 s <= v3;

 …

end process q;

 - 12 - BF - ES

Abstraction of electrical signals

 Complete analog simulation at the circuit level would be

time-consuming

We try to use digital values and DE simulation as long as possible

However, using just 2 digital values would be too restrictive

  We introduce the distinction between:

 the logic level (as an abstraction of the voltage) and

 the strength (as an abstraction of the current drive capability) of a

signal.

 The two are encoded in logic values.

7

 - 13 - BF - ES

1 signal strength

 Logic values '0' and '1'.

 Both of the same strength.

 Encoding false and true, respectively.

 - 14 - BF - ES

2 signal strengths

 Many subcircuits

can effectively

disconnect

themselves from

the rest of the

circuit (they

provide “high

impedance“ values

to the rest of the

circuit).

 Example:

subcircuits with

open collector

8

 - 15 - BF - ES

TriState circuits

 We introduce signal value 'Z', meaning “high impedance“

 - 16 - BF - ES

2 signal strengths (cont’ed)

 We introduce an operation #, which generates the effective

signal value whenever two signals are connected by a wire.

 #('0','Z')='0'; #('1','Z')='1'; '0' and '1' are “stronger“ than 'Z'

1 strength

According to the partial order in

the diagram, # returns the

smallest element at least as large

as the two arguments (“Sup”).

In order to define #('0','1'), we

introduce 'X', denoting an

undefined signal level.

'X' has the same strength as '0'

and '1'.
Hasse diagram

9

 - 17 - BF - ES

Application example

signal value on bus = #(value from left subcircuit, value from right subcircuit)

#('Z', value from right subcircuit) = value from right subcircuit

“as if left circuit were not there“.

 - 18 - BF - ES

3 signal strengths

Depletion transistor contributes a weak value to be

considered in the #-operation for signal A

 Introduction of 'H',

denoting a weak signal of the same level as '1'.

#('H', '0')='0'; #('H','Z') = 'H'

10

 - 19 - BF - ES

3 signal strengths

 There may also be weak signals

of the same level as '0'

  Introduction of 'L', denoting a

weak signal of the same level as

'0': #('L', '1')=‘1'; #('L','Z') = 'L';

  Introduction of 'W', denoting a

weak signal of undefined level 'X':

#('L', 'H')='W'; #('L','W') = 'W';

 # reflected by the partial order

shown.

 - 20 - BF - ES

4 signal strengths (1)

 pre-charging:

Pre-charged '1'-levels weaker than any of the values

considered so far, except 'Z'.

 Introduction of 'h', denoting a very weak signal of the

same level as '1'.

#('h', '0')='0'; #('h','Z') = 'h'

11

 - 21 - BF - ES

4 signal strengths (2)

 There may also be weak signals

of the same level as '0'

  Introduction of 'l', denoting a

very weak signal of the same level

as '0': #('l', '0')='0'; #('l,'Z') = 'l';

  Introduction of 'w', denoting a

very weak signal of the same level

as 'W': #('l', 'h')='w'; #('h','w') =

'w'; ...

 # reflected by the partial order

shown.

 - 22 - BF - ES

IEEE 1164

 VHDL allows user-defined value sets.

 Each model could use different value sets (unpractical)

 Definition of standard value set according to standard

IEEE 1164:

 {'0', '1', 'Z', 'X', 'H', 'L', 'W', 'U', '-'}

 First seven values as discussed previously.

 'U': un-initialized signal; used by simulator to initialize all

not explicitly initialized signals:

type std_ulogic is (`U`, `X`, `0`, `1`, `Z`, `W`, `L`, `H`, `-`);

 '-': is used to specify don’t cares:

 Example: if a /= ‘1’ or b/=‘1’ then f <= a exor b; else f <= ‘-’;

 ‘-’ may be replaced by arbitrary value by synthesis tools.

12

 - 23 - BF - ES

Outputs tied together

In hardware, connected outputs can be used:

bus
'Z' 'Z' 'h' '0'

resolved signal

unresolved

signals

Modeling in VHDL: resolution functions

type std_ulogic is ('U', 'X', '0', '1', 'Z', 'W', 'L', 'H', '-');

subtype std_logic is resolved std_ulogic;

outputs

 - 24 - BF - ES

Resolution function for IEEE 1164

type std_ulogic_vector is array(natural range<>)of std_ulogic;

function resolved (s:std_ulogic_vector) return std_logic is

 variable result: std_ulogic:='Z'; --weakest value is default

 begin

 if (s'length=1) then return s(s'low) --no resolution

 else for i in s'range loop

 result:=resolution_table(result,s(i))

 end loop

 end if;

 return result;

 end resolved;

13

 - 25 - BF - ES

Resolution function for IEEE 1164

constant resolution_table : stdlogic_table := (

--U X 0 1 Z W L H –

('U', 'U', 'U', 'U', 'U', 'U', 'U', 'U', 'U'), --| U |

('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X'), --| X |

('U', 'X', '0', 'X', '0', '0', '0', '0', 'X'), --| 0 |

('U', 'X', 'X', '1', '1', '1', '1', '1', 'X'), --| 1 |

('U', 'X', '0', '1', 'Z', 'W', 'L', 'H', 'X'), --| Z |

('U', 'X', '0', '1', 'W', 'W', 'W', 'H', 'X'), --| W |

('U', 'X', '0', '1', 'L', 'W', 'L', 'W', 'X'), --| L |

('U', 'X', '0', '1', 'H', 'W', 'W', 'H', 'X'), --| H |

('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X') --| - |

);

 - 26 - BF - ES

Inertial and transport delay model

 Signal assignment:

 signal_assignment ::=
 target <= [delay_mechanism] waveform_element
 { , waveform_element }
 waveform_element ::=
 value_expression [after time_expression]

 delay_mechanism ::=
 transport | [reject time_expression] inertial

 Example:
 Inpsig <= ´0´, ´1´after 5 ns, ´0´ after 10 ns, ´1´ after 20 ns;

14

 - 27 - BF - ES

Inertial and transport delay model

 Example for signal assignment:

 outp <= not inp after 10 ns;

outp??

inp

5 10 15 20 25 30 35

outp??

 - 28 - BF - ES

Two delay models in VHDL:

 Inertial delay („träge Verzögerung“)

 Transport delay („nichtträge Verzögerung“)

Inverter
Input Output

Inertial and transport delay model

 Inertial delay model is motivated by the fact that physical

gates absorb short pulses (spikes) at their inputs (due to

internal capacities)

15

 - 29 - BF - ES

 … is the default model

 Absorbs pulses at the

inputs which are shorter

than the delay specified

for the gate / operation

Inverter
Input Output

-- INERTIAL is the default

Output <= NOT input AFTER 10 ns;

Output

Input

5 10 15 20 25 30 35

Inertial delay model

 - 30 - BF - ES

Inverter
Input Output

-- TRANSPORT must be specified

Output <= TRANSPORT NOT input AFTER 10 ns;

Output

Input

5 10 15 20 25 30 35

Transport delay model

 Transmits all pulses at the

inputs ideally

16

 - 31 - BF - ES

entity DELAY is

end DELAY;

architecture RTL of DELAY is

 signal A, B, X, Y: bit;

begin

 p0: process (A, B)

 begin

 Y <= A nand B after 10 ns;

 X <= transport A nand B after 10 ns;

 end process;

 p1: process

 begin

 A <= '0', '1' after 20 ns, '0'

 after 40 ns, '1' after 60 ns;

 B <= '0', '1' after 30 ns, '0'

 after 35 ns, '1' after 50 ns;

 wait for 80 ns;

 end process

end RTL;

0 100 200

A

B

X

Y

[ns]

Inertial and transport delay model

 - 32 - BF - ES

Semantics of transport delay model

Signal assignments change transaction list.

 Before transaction (s, t1, v1) is inserted into transaction

list, all transactions in the transaction list (s, t2, v2)

with t2  t1 are removed from transaction list.

17

 - 33 - BF - ES

Example for transport delay model

 Transaction list:

 At 5ns:

(outp, 25ns, `0`)

 At 10 ns:

(outp, 22.5ns, `1`), (outp, 25ns, `0`)

Remove (outp, 25ns, `0`)!

 (outp, 22.5ns, `1`)

Inverter
inp outp

inv : process(inp)

begin

 if inp=`1` then

 outp <= transport `0` after 20 ns;

 elsif inp=`0` then

 outp <= transport `1` after 12.5 ns

 end if;

end process inv;

outp

inp

5 10 15 20 25 30 35

 - 34 - BF - ES

Semantics of inertial delay model

 Semantics for more general version of inertial delay

statement:

 Inertial delay absorbs pulses at the inputs which are shorter than

the delay specified for the gate / operation.

 Key word reject permits absorbing only pulses which are shorter

than specified delay:

• Example:

– outp <= reject 3 ns inertial not inp after 10 ns;

– Only pulses smaller than 3 ns are absorbed.

– outp <= reject 10 ns inertial not inp after 10 ns;

 and

outp <= not inp after 10 ns;

are equivalent.

18

 - 35 - BF - ES

Semantics of inertial delay model

 Rule 1 as for transport delay model:
Before transaction (s, t1, v1) is inserted into transaction list, all
transactions in the transaction list (s, t2, v2) with t2  t1 are removed
from transaction list.

 Rule 2 removes also some transactions with times < t1:

 Suppose the time limit for reject is rt.

 Transactions for signal s with time stamp in the intervall (t1 – rt, t1) are
removed.

 Exception:
If there is in (t1 – rt, t1) a subsequence of transactions for s immediately
before (s, t1, v1) which also assign value v1 to s, then these transactions
are preserved.

 - 36 - BF - ES

Example

 Transaction list until „wait for 15 ns“:
(o1, 0ns, `0`), (o1, 5ns, `0`), (o1, 15ns, `1`), (o1, 20ns, `0`), (o1, 25ns, `1`), (o1, 30ns, `1`), (o1, 45ns, `1`), (o1, 50ns, `0`),

(o2, 0ns, `0`), (o2, 5ns, `0`), (o2, 15ns, `1`), (o2, 20ns, `0`), (o2, 25ns, `1`), (o2, 30ns, `1`), (o2, 45ns, `1`), (o2, 50ns, `0`)

 Transaction list when process is reactivated at time 15ns:
 (o1, 20ns, `0`), (o1, 25ns, `1`), (o1, 30ns, `1`), (o1, 45ns, `1`), (o1, 50ns, `0`),

 (o2, 20ns, `0`), (o2, 25ns, `1`), (o2, 30ns, `1`), (o2, 45ns, `1`), (o2, 50ns, `0`)

 …

process

begin

 o1 <= transport `0`, `0` after 5ns, `1` after 15 ns, `0` after 20ns,

`1` after 25 ns, `1` after 30ns, `1` after 45 ns,

 `0` after 50 ns;

 -- same signal assignment for o2

 o2 <= transport `0`, `0` after 5ns, `1` after 15 ns, `0` after 20ns,

`1` after 25 ns, `1` after 30ns, `1` after 45 ns,

 `0` after 50 ns;

 wait for 15 ns;

 o2 <= reject 22 ns inertial `1` after 25 ns;

 wait;

end process;

19

 - 37 - BF - ES

Example

 At time 15ns:

 insert transaction (o2, 40ns, `1`).

 Remove transactions with time stamp  40ns.

 Results in preliminary transaction list:
 (o1, 20ns, `0`), (o1, 25ns, `1`), (o1, 30ns, `1`), (o1, 45ns, `1`), (o1, 50ns, `0`),
 (o2, 20ns, `0`), (o2, 25ns, `1`), (o2, 30ns, `1`), (o2, 40ns, `1`)

 …

process

begin

 o1 <= transport `0`, `0` after 5ns, `1` after 15 ns, `0` after 20ns,

`1` after 25 ns, `1` after 30ns, `1` after 45 ns,

 `0` after 50 ns;

 -- same signal assignment for o2

 o2 <= transport `0`, `0` after 5ns, `1` after 15 ns, `0` after 20ns,

`1` after 25 ns, `1` after 30ns, `1` after 45 ns,

 `0` after 50 ns;

 wait for 15 ns;

 o2 <= reject 22 ns inertial `1` after 25 ns;

 wait;

end process;

 - 38 - BF - ES

process

begin

 o1 <= transport `0`, `0` after 5ns, `1` after 15 ns, `0` after 20ns,

`1` after 25 ns, `1` after 30ns, `1` after 45 ns,

 `0` after 50 ns;

 -- same signal assignment for o2

 o2 <= transport `0`, `0` after 5ns, `1` after 15 ns, `0` after 20ns,

`1` after 25 ns, `1` after 30ns, `1` after 45 ns,

 `0` after 50 ns;

 wait for 15 ns;

 o2 <= reject 22 ns inertial `1` after 25 ns;

 wait;

end process;

Example

 Results in preliminary transaction list:
 (o1, 20ns, `0`), (o1, 25ns, `1`), (o1, 30ns, `1`), (o1, 45ns, `1`), (o1, 50ns, `0`),
 (o2, 20ns, `0`), (o2, 25ns, `1`), (o2, 30ns, `1`), (o2, 40ns, `1`)

 Rule 2:
 (o2, 25ns, `1`), (o2, 30ns, `1`) are preserved,

 (o2, 20ns, `0`) is removed.

 Resulting transaction list:
(o1, 20ns, `0`), (o1, 25ns, `1`), (o1, 30ns, `1`), (o1, 45ns, `1`), (o1, 50ns, `0`),
(o2, 25ns, `1`), (o2, 30ns, `1`), (o2, 40ns, `1`)

Rule 2:

 Transactions for signal o2 with

time stamp in the intervall (40ns –

22ns, 40ns) = (18ns, 40ns) are

removed.

 Exception:

If there is in (18ns, 40ns) a

subsequence of transactions for

o2 immediately before

(o2, 40ns, `1`) which also assign

value `1` to o2, then these

transactions are preserved.

20

 - 39 - BF - ES

process

begin

 o1 <= transport `0`, `0` after 5ns, `1` after 15 ns, `0` after 20ns,

`1` after 25 ns, `1` after 30ns, `1` after 45 ns,

 `0` after 50 ns;

 -- same signal assignment for o2

 o2 <= transport `0`, `0` after 5ns, `1` after 15 ns, `0` after 20ns,

`1` after 25 ns, `1` after 30ns, `1` after 45 ns,

 `0` after 50 ns;

 wait for 15 ns;

 o2 <= reject 22 ns inertial `1` after 25 ns;

 wait;

end process;

Example

 Resulting wave form:

o1

o2

5 10 15 20 25 30 35 40 45 50 55

 - 41 - BF - ES

Functions and procedures

 Apart from entities / architectures there are also

functions and procedures in the usual (software) sense.

 Functions are typically used for providing conversion

between data types or for defining operators on user-

defined data types.

 Procedures may have parameters of directions in, out

and inout.

 in comparable to call by value,

 out for providing results,

 inout comparable to call by reference.

21

 - 42 - BF - ES

architecture RTL of TEST is

 function BOOL2BIT (BOOL: boolean) return bit is
 begin
 if BOOL then return '1'; else return '0'; end if;
 end BOOL2BIT;

 procedure EVEN_PARITY (
 signal D: in bit_vector(7 downto 0);
 signal PARITY : out bit) is

 variable temp : bit;

 begin

 end;

 signal DIN : bit_vector(7 downto 0);
 signal BOOL1 : boolean;
 signal BIT1, PARITY : bit;

 begin

 do_it: process (BOOL1, DIN)
 begin
 BIT1 <= BOOL2BIT(BOOL1);
 EVEN_PARITY(DIN, PARITY);
 end process;

 end;

Example

 - 43 - BF - ES

Parameterized hardware

 Conditional component instantiation with if … generate

construct.

 Iterative component instantiation with for … generate

construct.

 Parameterized design with generic parameters.

22

 - 44 - BF - ES

RSTn

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

CLK

 SO SI
T(6) T(5) T(4) T(3) T(2) T(1) T(0)

entity SHIFT8 is

port (RSTn, CLK, SI : in std_logic;

 SO : out std_logic);

end SHIFT8;

Example: 8-bit shift register

 - 45 - BF - ES

architecture RTL1 of SHIFT8 is

begin

end RTL1;

component DFF

port (RSTn, CLK, D: in std_logic;

 Q : out std_logic);

end component;

signal T: std_logic_vector(6 downto 0);

bit7 : DFF

 port map (RSTn => RSTn, CLK => CLK,

 D => SI, Q => T(6));

bit6 : DFF

 port map (RSTn => RSTn, CLK => CLK,

 D => T(6), Q => T(5));

bit5 : DFF

 port map (RSTn, CLK, T(5), T(4));

...

bit1 : DFF

 port map (RSTn, CLK, T(1), T(0));

bit0 : DFF

 port map (RSTn, CLK, T(0), S0);

RSTn

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

CLK

 SO SI
T(6) T(5) T(4) T(3) T(2) T(1) T(0)

23

 - 46 - BF - ES

architecture RTL2 of SHIFT1024 is

begin

end RTL2;

component DFF

port (RSTn, CLK, D: in std_logic;

 Q : out std_logic);

end component;

signal T: std_logic_vector(1022 downto 0);

g0: for i in 1023 downto 0 generate

 g1: if (i = 1023) generate

 bit1023 : DFF port map (RSTn,CLK,SI,T(1022));

 end generate;

 g2: if (i>0) and (i<1023) generate

 bitm : DFF port map (RSTn,CLK,T(i),T(i-1));

 end generate;

 g3: if (i=0) generate

 bit0 : DFF port map (RSTn,CLK,T(0),S0);

 end generate;

 end generate;

Example: 1024-bit shift register

 - 47 - BF - ES

entity SHIFTn is

generic (n : positive);

port (RSTn, CLK, SI : in std_logic;

 SO : out std_logic);

end SHIFTn;

architecture RTL3 of SHIFTn is

begin

end RTL3;

component DFF

port (RSTn, CLK, D: in std_logic;

 Q : out std_logic);

end component;

signal T: std_logic_vector(n-2 downto 0);

g0: for i in n-1 downto 0 generate

 g1: if (i = n-1) generate

 bit_high : DFF port map (RSTn,CLK,SI,T(n-2));

 end generate;

 g2: if (i>0) and (i<n-1) generate

 bitm : DFF port map (RSTn,CLK,T(i),T(i-1));

 end generate;

 g3: if (i=0) generate

 bit0 : DFF port map (RSTn,CLK,T(0),S0);

 end generate;

 end generate;

Example: n-bit shift register

24

 - 48 - BF - ES

…

 component SHIFTn is

 generic (n : positive);

 port (RSTn, CLK, SI : in std_logic;

 SO : out std_logic);

 end component;

Example: n-bit shift register

 Component instantiation

…

begin

 …

 Shift32comp : SHIFTn

 generic map (n => 32)

 port map(RSTn => …,

 CLK => …,

 SI => …,

 SO => …);

 …

end;

 - 49 - BF - ES

VHDL: Evaluation

 Hierarchical specification by entities / architectures /
components, (procedures and functions)

 no nested processes

 Static number of processes

 Complicated simulation semantics

 May be too low level for initial, abstract specification of
very large systems

 Mainly used for hardware simulation+synthesis

25

 - 50 - BF - ES

REVIEW: computational models

Communication/

local computations

Shared memory Asynchronous message

passing

Communicating

finite state

machines

Statecharts,

hybrid automata,

synchronous

composition

Data flow Petri nets,

Kahn process networks,

SDF

Discrete event (DE)

model

Simulink, VHDL Distributed DE

 - 51 - BF - ES

Combinations of computational models

26

 - 52 - BF - ES

Ptolemy

 discrete-event systems

 SDF

 process networks

 Petri nets

 priority-based schedules

 synchronous/reactive

 Finite-state machines

 continuous-time

 modal systems

 Graphics, 3D animations

 Ptolemy (UC Berkeley) is an environment for

simulating multiple models of computation.

http://ptolemy.berkeley.edu/

 - 53 - BF - ES

Ptolemy

 A model is a set of interconnected actors and one director

 Actor

 Input & output ports, states, & parameters

 Models of computation

 Define the interaction semantics

 Implemented in Ptolemy II by a domain

• Director + Receiver

 Director

 Manages the data flow and the scheduling of the actors

 The director fires the actors

 Receiver

 Defines the semantics of the

port buffers

27

 - 54 - BF - ES

 - 55 - BF - ES

Example: Inverted Pendulum

 Classic control problem

 Swing up the pendulum and then keep it in the upright

position

Heterogeneous Modeling and Design of

Control Systems, Liu/Liu/Eker/Lee, 2003

28

 - 56 - BF - ES

The Ptolemy II Model

discrete controller

director

composite

actor

atomic

actor

model

continuous process

 - 57 - BF - ES

Controller Logic in FSM - Finite State Machine

29

 - 58 - BF - ES

Subcontrollers in SDF - Synchronous Data flow

 - 59 - BF - ES

Visualization in GR - Graphics Domain

30

 - 60 - BF - ES

UML 2.0 diagram hierarchy

Diagram

Structure

Diagram

Class

Diagram

Component

Diagram
Object

Diagram

Composite

structure

Diagram

Deployment

Diagram
Package

Diagram

Activity

Diagram

Behavior

Diagram

Use case

Diagram
State

Machine

Diagram

Interaction

Diagram

Sequence

Diagram

Interaction

Overview

Diagram

Communication

Diagram

Timing

Diagram

 - 61 - BF - ES

UML
(Focus on support of early design phases)

Communication/

local computations

Shared memory Asynchronous message

passing

Communicating

finite state

machines

State diagrams

Data flow Activity diagrams,

sequence diagrams,

timing diagrams

31

 - 62 - BF - ES

UML for embedded systems

 Initially not designed for real-time.

 Initially lacking features:

 Partitioning of software into tasks and processes

 specifying timing

 specification of hardware components

 Projects on defining profiles for embedded/real-time

systems

 Schedulability, Performance and Timing Analysis

 SysML (System Modeling Language)

 UML Profile for SoC

 Modeling and Analysis of Real-Time Embedded Systems

 UML/SystemC, …

 Profiles may be incompatible

