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Embedded Systems                                  10 
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Midterm exam Thursday May 31, 16:00-18:00 

 Groups 1 – 12: HS 002 

 All other groups:  Günter Hotz lecture hall 

 

 The exam will be open book. That is, you are allowed to 

use printouts of the lecture slides, books, and any 

handwritten notes during the exam. 

 

 No discussion slots next week 

 Last two problem sets will be discussed  

in Tutorial on Wednesday  
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REVIEW: Overview of simulation 

Initialization 

End of simulation 

Assign new values 

to signals 

Update 

current time 

Evaluate processes 

Resume processes 
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REVIEW: Transaction list and process 

activation list 

 Transaction list 

 For signal assignments 

 Entries of form (s, v, t) meaning 

„signal s is set to value v at time t“ 

 Example: (clock, ´1´, 10 ns) 

 

 Process activation list 

 For reactivating processes 

 Entries of form (pi, t) meaning 

„process pi resumes at time t“. 
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REVIEW: Initialization 

 At the beginning of initialization, the current time, tcurr,  
is assumed to be 0 ns.  

 An initial value is assigned to each signal.  
 Taken from declaration, if specified there, e.g., 

• signal s : std_ulogic := `0`; 

 Otherwise: First value in enumeration for enumeration based data types, e.g. 

• signal s : std_ulogic  
with 
type std_ulogic is (`U`, `X`, `0`, `1`, `Z`, `W`, `L`, `H`, `-`); 
initial value is `Ù` 

 This value is assumed  to have been the value of the signal for an infinite length 
of time prior to the start of the simulation. 

 Initialization phase executes each process exactly once (until it suspends).  

 During execution of processes: Signal assignments are collected in 
transaction list (not executed immediately!) – more details later. 

 If process stops at „wait for“-statement, then update process activation list – 
more details later. 

 After initialization the time of the next simulation cycle (which in this case is 
the first simulation cycle), tnext is calculated: 
 Time tnext of the next simulation cycle = earliest of 

1. time’high (end of simulation time). 
2. Earliest time in transaction list (if not empty) 
3. Earliest time in process activation list (if not empty). 
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REVIEW: Signal assignment phase –  

first part of step 
 Each simulation cycle starts with setting the current time 

to the next time at which changes must be considered: 

 tcurr = tnext 

 This time tnext was either computed during the 
initialization or during the last execution of the simulation 
cycle. Simulation terminates when the current time 
would exceed its maximum, time’high.  

 For all (s, v, tcurr) in transaction list: 
 Remove (s, v, tcurr) from transaction list. 

 s is set to v. 

 For all processes pi which wait on signal s: 
 Insert (pi, tcurr) in process activation list. 

 Similarly, if condition of „wait until“-expression changes 
value. 
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REVIEW: Process execution phase –  

second part of step (1) 

 Resume all processes pi with entries (pi, tcurr)  
in process activation list. 

 Execute all activated processes „in parallel“ (in fact: in arbitrary 
order). 

 Signal assignments  
 are collected in transaction list (not executed immediately!). 

 Examples: 

• s <= a and b; 

– Let v be the conjunction of current value of a and current value 
of b. 

– Insert (s, v, tcurr) in transaction list. 

• s <= ´1´ after 10 ns; 

– Insert (s, ´1´, tcurr + 10 ns) into transaction list. 

 Processes are executed until wait statement is encountered. 

 If process pi stops at „wait for“-statement, then update process 
activation list: 
 Example:  

• pi stops at „wait for 20 ns;“ 

• Insert (pi, tcurr + 20 ns) into process activation list 
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REVIEW: Process execution phase –  

second part of step (2) 

If some process reaches last statement and  
 does not have a sensitivity list and  

 last statement is not a wait statement,  

then it continues with first statement and runs until wait 
statement is reached. 

 

 When all processes have stopped, the time of the next 
simulation cycle tnext is calculated: 
 Time tnext of the next simulation cycle = earliest of 

1.time’high (end of simulation time). 
2.Earliest time in transaction list (if not empty) 
3.Earliest time in process activation list (if not empty). 

 

 Stop if tnext = time’high and transaction list and process 
activation list are empty. 
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Current time Delta delay Event 

0 ns 1 -- evaluation of inverter 

-- (A, 1, 0 ns) 

2 -- evaluation of AND and   

NAND 

-- (B, 0, 0ns), (C, 1, 0ns) 

3 -- evaluation of AND 

-- (C, 0, 0ns) 

 Simulation time does not 

proceed due to delta delays! 

 

  X 

1 

A 

B 

C 
= 1 = 0 

= 1 

= 0 
1→0 

… erklärt an einem kleinen Beispiel 

REVIEW: Delta delay  
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„Write-write-conflicts“ 

 Case 1: 

Write-write-conflicts are restricted to 

the same process 

(i.e. they occur inside the same 

process) 

 Then the second signal assignment 

overwrites the first one. 

 This is the only case of „non-concurrency“ 

of signal assignments 

 Note that writing to different signals 

occurs concurrently, however! 

signal s : bit; 

… 

p : process 

begin 

 … 

 s <= `0`; 

 … 

 s <= `1`; 

 wait for 5 ns; 

end process p; 
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„Write-write-conflicts“ 

 Case 2: 

Write-write-conflicts between different 

processes  

 If there is no „resolution function“ for 

the data type dt, then writing the same 

signal by different processes in the same 

step is forbidden. 

 If there is a resolution function, then the 

resolution function computes the value of s 

at time tcurr: 

• Value for s in the current step is computed 

for each process separately, 

• resolution function is used to compute final 

result. 

 

signal s : dt; 

… 

s<= v1; 

… 

p : process 

begin 

 … 

 s <= v2; 

 … 

end process p; 

 

q : process 

begin 

 … 

 s <= v3; 

 … 

end process q; 
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Abstraction of electrical signals  

 Complete analog simulation at the circuit level would be 

time-consuming 

We try to use digital values and DE simulation as long as possible 

However, using just 2 digital values would be too restrictive  

 

  We introduce the distinction between: 

 the logic level (as an abstraction of the voltage) and 

 the strength (as an abstraction of the current drive capability) of a 

signal. 

 

 The two are encoded in logic values. 
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1 signal strength 

 Logic values '0' and '1'. 

 Both of the same strength. 

 Encoding false and true, respectively. 
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2 signal strengths 

 Many subcircuits 

can effectively 

disconnect 

themselves from 

the rest of the 

circuit (they 

provide “high 

impedance“ values 

to the rest of the 

circuit). 

 Example: 

subcircuits with 

open collector  
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TriState circuits 

 We introduce signal value 'Z', meaning “high impedance“ 
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2 signal strengths (cont’ed) 

 We introduce an operation #, which generates the effective 

signal value whenever two signals are connected by a wire. 

 #('0','Z')='0'; #('1','Z')='1'; '0' and '1' are “stronger“ than 'Z' 

1 strength 

According to the partial order in 

the diagram, # returns the 

smallest element at least as large 

as the two arguments (“Sup”). 

In order to define #('0','1'), we 

introduce 'X', denoting an 

undefined signal level. 

'X' has the same strength as '0' 

and '1'. 
Hasse diagram 
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Application example 

signal value on bus = #(value from left subcircuit, value from right subcircuit) 

 

#('Z', value from right subcircuit) = value from right subcircuit 

“as if left circuit were not there“. 
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3 signal strengths 

Depletion transistor contributes a weak value to be 

considered in the #-operation for signal A 

 Introduction of 'H',  

denoting a weak signal of the same level as '1'. 

#('H', '0')='0';  #('H','Z') = 'H' 
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3 signal strengths 

 There may also be weak signals 

of the same level as '0' 

  Introduction of 'L', denoting a 

weak signal of the same level as 

'0':    #('L', '1')=‘1';     #('L','Z') = 'L'; 

  Introduction of 'W', denoting a 

weak signal of undefined level 'X':    

#('L', 'H')='W';     #('L','W') = 'W'; 

 # reflected by the partial order 

shown. 
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4 signal strengths (1) 

 pre-charging: 

Pre-charged '1'-levels weaker than any of the values 

considered so far, except 'Z'. 

 Introduction of 'h', denoting a very weak signal of the 

same level as '1'. 

#('h', '0')='0';  #('h','Z') = 'h' 
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4 signal strengths (2) 

 There may also be weak signals 

of the same level as '0' 

  Introduction of 'l', denoting a 

very weak signal of the same level 

as '0':    #('l', '0')='0';     #('l,'Z') = 'l'; 

  Introduction of 'w', denoting a 

very weak signal of the same level 

as 'W':    #('l', 'h')='w';     #('h','w') = 

'w'; ... 

 # reflected by the partial order 

shown. 
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IEEE 1164 

 VHDL allows user-defined value sets. 

 Each model could use different value sets (unpractical) 

 Definition of standard value set according to standard 

IEEE 1164: 

              {'0', '1', 'Z', 'X', 'H', 'L', 'W', 'U', '-'}  

 First seven values as discussed previously. 

 'U': un-initialized signal; used by simulator to initialize all 

not explicitly initialized signals: 

type std_ulogic is (`U`, `X`, `0`, `1`, `Z`, `W`, `L`, `H`, `-`);  

 '-': is used to specify don’t cares: 

 Example: if a /= ‘1’ or b/=‘1’ then f <= a exor b; else f <= ‘-’;  

 ‘-’ may be replaced by arbitrary value by synthesis tools. 
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Outputs tied together 

In hardware, connected outputs can be used: 

bus 
'Z' 'Z' 'h' '0' 

resolved signal 

unresolved 

signals 

Modeling in VHDL: resolution functions 

type std_ulogic is ('U', 'X', '0', '1', 'Z', 'W', 'L', 'H', '-'); 

subtype std_logic is resolved std_ulogic; 

outputs 
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Resolution function for IEEE 1164 

type std_ulogic_vector is array(natural range<>)of std_ulogic; 

 

function resolved (s:std_ulogic_vector) return std_logic is 

  variable result: std_ulogic:='Z';   --weakest value is default 

  begin 

    if (s'length=1) then return s(s'low) --no resolution 

    else for i in s'range loop 

      result:=resolution_table(result,s(i))  

    end loop 

    end if; 

   return result; 

  end resolved; 
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Resolution function for IEEE 1164 

constant resolution_table : stdlogic_table := ( 

--U    X    0  1     Z   W  L     H   – 

('U',  'U',  'U', 'U', 'U', 'U', 'U', 'U', 'U'),  --| U | 

('U',  'X',  'X', 'X', 'X', 'X',   'X', 'X', 'X'),  --| X | 

('U',  'X',  '0', 'X', '0', '0',   '0', '0', 'X'),  --| 0 | 

('U',  'X',  'X', '1', '1', '1',   '1', '1', 'X'),  --| 1 | 

('U',  'X',  '0', '1', 'Z', 'W',   'L', 'H', 'X'),  --| Z | 

('U',  'X',  '0', '1', 'W', 'W',   'W', 'H', 'X'),  --| W | 

('U',  'X',  '0', '1', 'L', 'W',   'L', 'W', 'X'),  --| L | 

('U',  'X',  '0', '1', 'H', 'W',   'W', 'H', 'X'),  --| H | 

('U',  'X',  'X', 'X', 'X', 'X',   'X', 'X', 'X')  --| - | 

); 
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Inertial and transport delay model 

 Signal assignment: 

 
  signal_assignment ::=  
   target <= [ delay_mechanism ] waveform_element  
                     { , waveform_element } 
  waveform_element ::=  
   value_expression [ after  time_expression ] 
 
 delay_mechanism ::=  
   transport | [ reject  time_expression ] inertial 
 

 
 

 Example: 
 Inpsig <= ´0´, ´1´after 5 ns, ´0´ after 10 ns, ´1´ after 20 ns; 
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Inertial and transport delay model 

 Example for signal assignment: 

  outp <= not inp after 10 ns; 

outp?? 

inp 

5 10 15 20 25 30 35 

outp?? 
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Two delay models in VHDL: 

 Inertial delay („träge Verzögerung“) 

 Transport delay („nichtträge Verzögerung“) 

Inverter 
Input Output 

Inertial and transport delay model 

 Inertial delay model is motivated by the fact that physical 

gates absorb short pulses (spikes) at their inputs (due to 

internal capacities) 
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 … is the default model 

 

 Absorbs pulses at the 

inputs which are shorter 

than the delay specified 

for the gate / operation 

Inverter 
Input Output 

-- INERTIAL is the default 

Output <= NOT input AFTER 10 ns; 

Output 

Input 

5 10 15 20 25 30 35 

Inertial delay model 
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Inverter 
Input Output 

-- TRANSPORT must be specified 

Output <= TRANSPORT NOT input AFTER 10 ns; 

Output 

Input 

5 10 15 20 25 30 35 

Transport delay model 

 Transmits all pulses at the 

inputs ideally 
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entity DELAY is 

end DELAY; 

 

architecture RTL of DELAY is 

  signal A, B, X, Y: bit; 

begin 

  p0: process (A, B) 

  begin 

    Y <= A nand B after 10 ns; 

    X <= transport A nand B after 10 ns; 

  end process; 

 

 

  p1: process 

  begin 

 A <= '0', '1' after 20 ns, '0'   

 after 40 ns, '1' after 60 ns; 

 B <= '0', '1' after 30 ns, '0'  

 after 35 ns, '1' after 50 ns; 

 wait for 80 ns; 

  end process 

end RTL; 

0 100 200 

A 

B 

X 

Y 

[ns] 

Inertial and transport delay model 
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Semantics of transport delay model 

 

Signal assignments change transaction list. 

 

 Before transaction (s, t1, v1) is inserted into transaction 

list, all transactions in the transaction list (s, t2, v2)  

with t2  t1 are removed from transaction list. 
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Example for transport delay model 

 Transaction list: 

 At 5ns: 

(outp, 25ns, `0`) 

 At 10 ns: 

(outp, 22.5ns, `1`), (outp, 25ns, `0`) 

Remove (outp, 25ns, `0`)! 

 (outp, 22.5ns, `1`) 

 

Inverter 
inp outp 

inv : process(inp) 

begin 

 if inp=`1` then 

  outp <= transport `0` after 20 ns; 

 elsif inp=`0` then 

  outp <= transport `1` after 12.5 ns 

 end if; 

end process inv; 

outp 

inp 

5 10 15 20 25 30 35 
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Semantics of inertial delay model 

 Semantics for more general version of inertial delay 

statement: 

 Inertial delay absorbs pulses at the inputs which are shorter than 

the delay specified for the gate / operation. 

 Key word reject permits absorbing only pulses which are shorter 

than specified delay: 

• Example:  

– outp <= reject 3 ns inertial not inp after 10 ns; 

– Only pulses smaller than 3 ns are absorbed. 

– outp <= reject 10 ns inertial not inp after 10 ns;  

  and 

outp <= not inp after 10 ns;  

are equivalent. 
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Semantics of inertial delay model 

 

 Rule 1 as for transport delay model: 
Before transaction (s, t1, v1) is inserted into transaction list, all 
transactions in the transaction list (s, t2, v2) with t2  t1 are removed 
from transaction list. 

 Rule 2 removes also some transactions with times < t1: 

 Suppose the time limit for reject is rt. 

 Transactions for signal s with time stamp in the intervall (t1 – rt, t1) are 
removed. 

 Exception:  
If there is in (t1 – rt, t1) a subsequence of transactions for s immediately 
before (s, t1, v1) which also assign value v1 to s, then these transactions 
are preserved. 
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Example 

 Transaction list until „wait for 15 ns“: 
(o1, 0ns, `0`), (o1, 5ns, `0`), (o1, 15ns, `1`), (o1, 20ns, `0`), (o1, 25ns, `1`), (o1, 30ns, `1`), (o1, 45ns, `1`), (o1, 50ns, `0`), 

(o2, 0ns, `0`), (o2, 5ns, `0`), (o2, 15ns, `1`), (o2, 20ns, `0`), (o2, 25ns, `1`), (o2, 30ns, `1`), (o2, 45ns, `1`), (o2, 50ns, `0`) 

 Transaction list when process is reactivated at time 15ns: 
 (o1, 20ns, `0`), (o1, 25ns, `1`), (o1, 30ns, `1`), (o1, 45ns, `1`), (o1, 50ns, `0`), 

 (o2, 20ns, `0`), (o2, 25ns, `1`), (o2, 30ns, `1`), (o2, 45ns, `1`), (o2, 50ns, `0`) 

 … 

 
 

process 

begin 

 o1 <= transport `0`, `0` after 5ns, `1` after 15 ns, `0` after 20ns,          

`1` after 25 ns, `1` after 30ns, `1` after 45 ns,  

          `0` after 50 ns;  

 -- same signal assignment for o2 

 o2 <= transport `0`, `0` after 5ns, `1` after 15 ns, `0` after 20ns,          

`1` after 25 ns, `1` after 30ns, `1` after 45 ns,  

          `0` after 50 ns;  

 wait for 15 ns; 

  o2 <= reject 22 ns inertial `1` after 25 ns;  

 wait; 

end process; 
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Example 

 At time 15ns:  

 insert transaction (o2, 40ns, `1`). 

 Remove transactions with time stamp  40ns. 

 Results in preliminary transaction list: 
 (o1, 20ns, `0`), (o1, 25ns, `1`), (o1, 30ns, `1`), (o1, 45ns, `1`), (o1, 50ns, `0`), 
 (o2, 20ns, `0`), (o2, 25ns, `1`), (o2, 30ns, `1`), (o2, 40ns, `1`) 

 … 

 
 

process 

begin 

 o1 <= transport `0`, `0` after 5ns, `1` after 15 ns, `0` after 20ns,          

`1` after 25 ns, `1` after 30ns, `1` after 45 ns,  

          `0` after 50 ns;  

 -- same signal assignment for o2 

 o2 <= transport `0`, `0` after 5ns, `1` after 15 ns, `0` after 20ns,          

`1` after 25 ns, `1` after 30ns, `1` after 45 ns,  

          `0` after 50 ns;  

 wait for 15 ns; 

  o2 <= reject 22 ns inertial `1` after 25 ns;  

 wait; 

end process; 
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process 

begin 

 o1 <= transport `0`, `0` after 5ns, `1` after 15 ns, `0` after 20ns,          

`1` after 25 ns, `1` after 30ns, `1` after 45 ns,  

          `0` after 50 ns;  

 -- same signal assignment for o2 

 o2 <= transport `0`, `0` after 5ns, `1` after 15 ns, `0` after 20ns,          

`1` after 25 ns, `1` after 30ns, `1` after 45 ns,  

          `0` after 50 ns;  

 wait for 15 ns; 

  o2 <= reject 22 ns inertial `1` after 25 ns;  

 wait; 

end process; 

Example 

 Results in preliminary transaction list: 
 (o1, 20ns, `0`), (o1, 25ns, `1`), (o1, 30ns, `1`), (o1, 45ns, `1`), (o1, 50ns, `0`), 
 (o2, 20ns, `0`), (o2, 25ns, `1`), (o2, 30ns, `1`), (o2, 40ns, `1`) 

 Rule 2:  
 (o2, 25ns, `1`), (o2, 30ns, `1`) are preserved,  

 (o2, 20ns, `0`)  is removed. 

 Resulting transaction list: 
(o1, 20ns, `0`), (o1, 25ns, `1`), (o1, 30ns, `1`), (o1, 45ns, `1`), (o1, 50ns, `0`), 
(o2, 25ns, `1`), (o2, 30ns, `1`), (o2, 40ns, `1`) 

Rule 2: 

 Transactions for signal o2 with 

time stamp in the intervall (40ns – 

22ns, 40ns) = (18ns, 40ns) are 

removed. 

 Exception:  

If there is in (18ns, 40ns) a 

subsequence of transactions for 

o2 immediately before  

(o2, 40ns, `1`) which also assign 

value `1` to o2, then these 

transactions are preserved. 
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process 

begin 

 o1 <= transport `0`, `0` after 5ns, `1` after 15 ns, `0` after 20ns,          

`1` after 25 ns, `1` after 30ns, `1` after 45 ns,  

          `0` after 50 ns;  

 -- same signal assignment for o2 

 o2 <= transport `0`, `0` after 5ns, `1` after 15 ns, `0` after 20ns,          

`1` after 25 ns, `1` after 30ns, `1` after 45 ns,  

          `0` after 50 ns;  

 wait for 15 ns; 

  o2 <= reject 22 ns inertial `1` after 25 ns;  

 wait; 

end process; 

Example 

 Resulting wave form: 

o1 

o2 

5 10 15 20 25 30 35 40 45 50 55 
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Functions and procedures 

 Apart from entities / architectures there are also 

functions and procedures in the usual (software) sense.  

 Functions are typically used for providing conversion 

between data types or for defining operators on user-

defined data types. 

 Procedures may have parameters of directions in, out 

and inout. 

 in comparable to call by value, 

 out for providing results, 

 inout comparable to call by reference. 

 



21 

 -  42 - BF - ES 

 
architecture RTL of TEST is  

   function BOOL2BIT (BOOL: boolean) return bit is 
   begin 
      if BOOL then return '1'; else return '0'; end if; 
   end BOOL2BIT; 
 
   procedure EVEN_PARITY ( 
         signal D: in bit_vector(7 downto 0); 
         signal PARITY : out bit ) is 

      variable temp : bit; 

   begin 

      .... 

   end; 

 
   signal DIN : bit_vector(7 downto 0); 
   signal BOOL1 : boolean; 
   signal BIT1, PARITY : bit; 

  begin 

    do_it: process (BOOL1, DIN) 
    begin 
      BIT1 <= BOOL2BIT(BOOL1); 
      EVEN_PARITY(DIN, PARITY); 
    end process; 
    .... 
  end; 

 
 

Example 
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Parameterized hardware 

 Conditional component instantiation with if … generate 

construct. 

 Iterative component instantiation with for … generate 

construct. 

 Parameterized design with generic parameters. 



22 

 -  44 - BF - ES 

RSTn 

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 

CLK 

    SO SI 
T(6) T(5) T(4) T(3) T(2) T(1) T(0) 

entity SHIFT8 is  

port ( RSTn, CLK, SI : in std_logic; 

       SO : out std_logic ); 

end SHIFT8; 

Example: 8-bit shift register 
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architecture RTL1 of SHIFT8 is 

       

     

   

   

 

begin 

  

 

 

 

 

 

 

 

 

 

 

end RTL1; 

component DFF  

port ( RSTn, CLK, D: in std_logic;  

          Q            : out std_logic ); 

end component; 

signal T: std_logic_vector(6 downto 0); 

bit7 : DFF 

       port map (RSTn => RSTn, CLK => CLK,  

        D => SI, Q => T(6) ); 

bit6 : DFF 

       port map (RSTn => RSTn, CLK => CLK, 

        D => T(6), Q => T(5) ); 

bit5 : DFF 

       port map (RSTn, CLK, T(5), T(4) ); 

...  

bit1 : DFF 

       port map (RSTn, CLK, T(1), T(0) ); 

bit0 : DFF 

       port map (RSTn, CLK, T(0), S0 ); 

RSTn 

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 

CLK 

    SO SI 
T(6) T(5) T(4) T(3) T(2) T(1) T(0) 
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architecture RTL2 of SHIFT1024 is 

       

     

   

   

 

begin 

  

 

 

 

 

 

 

 

 

end RTL2; 

component DFF  

port ( RSTn, CLK, D: in std_logic;  

          Q            : out std_logic ); 

end component; 

signal T: std_logic_vector(1022 downto 0); 

g0: for i in 1023 downto 0 generate 

        g1: if (i = 1023) generate 

                 bit1023 : DFF port map (RSTn,CLK,SI,T(1022)); 

              end generate; 

        g2: if (i>0) and (i<1023) generate 

                 bitm : DFF port map (RSTn,CLK,T(i),T(i-1));     

              end generate; 

        g3: if (i=0) generate 

                 bit0 : DFF port map (RSTn,CLK,T(0),S0); 

              end generate; 

      end generate; 

Example: 1024-bit shift register 
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entity SHIFTn is 

generic ( n : positive);  

port ( RSTn, CLK, SI : in std_logic; 

          SO : out std_logic ); 

end SHIFTn; 

architecture RTL3 of SHIFTn is 

       

     

   

   

 

begin 

  

 

 

 

 

 

 

 

 

end RTL3; 

component DFF  

port ( RSTn, CLK, D: in std_logic;  

       Q            : out std_logic ); 

end component; 

signal T: std_logic_vector(n-2 downto 0); 

g0: for i in n-1 downto 0 generate 

        g1: if (i = n-1) generate 

                 bit_high : DFF port map (RSTn,CLK,SI,T(n-2));   

              end generate; 

        g2: if (i>0) and (i<n-1) generate 

                 bitm : DFF port map (RSTn,CLK,T(i),T(i-1)); 

              end generate; 

        g3: if (i=0) generate 

                 bit0 : DFF port map (RSTn,CLK,T(0),S0); 

              end generate; 

      end generate; 

Example: n-bit shift register 
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… 

  component SHIFTn is 

  generic ( n : positive);  

  port ( RSTn, CLK, SI : in std_logic; 

            SO : out std_logic ); 

  end component; 

Example: n-bit shift register 

 Component instantiation 

 

 

 

… 

begin 

  … 

  Shift32comp : SHIFTn 

    generic map (n => 32) 

    port map(RSTn => …, 

   CLK => …, 

   SI => …, 

   SO => …); 

  … 

end; 
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VHDL: Evaluation 

 Hierarchical specification by entities / architectures / 
components, (procedures and functions) 

 no nested processes 

 Static number of processes 

 Complicated simulation semantics 

 May be too low level for initial, abstract specification of 
very large systems 

 Mainly used for hardware simulation+synthesis 
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REVIEW: computational models 

Communication/ 

local computations 

Shared memory Asynchronous message 

passing 

Communicating 

finite state 

machines 

Statecharts, 

hybrid automata, 

synchronous 

composition  

 

Data flow Petri nets, 

Kahn process networks, 

SDF 

Discrete event (DE) 

model 

Simulink, VHDL Distributed DE 
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Combinations of computational models 
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Ptolemy 

 discrete-event systems 

 SDF 

 process networks 

 Petri nets 

 priority-based schedules  

 synchronous/reactive  

 Finite-state machines 

 continuous-time  

 modal systems 

 Graphics, 3D animations 

 

 Ptolemy (UC Berkeley) is an environment for 

simulating multiple models of computation. 

http://ptolemy.berkeley.edu/ 
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Ptolemy 

 A model is a set of interconnected actors and one director 

 Actor 

 Input & output ports, states, & parameters  

 Models of computation 

 Define the interaction semantics 

 Implemented in Ptolemy II by a domain 

• Director + Receiver 

 Director 

 Manages the data flow and the scheduling of the actors 

 The director fires the actors  

 Receiver  

 Defines the semantics of the  

port buffers 
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 -  55 - BF - ES 

Example: Inverted Pendulum 

 Classic control problem 

 Swing up the pendulum and then keep it in the upright 

position 

Heterogeneous Modeling and Design of 

Control Systems, Liu/Liu/Eker/Lee, 2003 
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The Ptolemy II Model 

discrete controller 

director 

composite 

actor 

atomic 

actor 

model 

continuous process 
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Controller Logic in FSM - Finite State Machine 
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Subcontrollers in SDF - Synchronous Data flow 
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Visualization in GR - Graphics Domain 
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UML 2.0 diagram hierarchy 

Diagram 

Structure 

Diagram 

Class 

Diagram 

Component 

Diagram 
Object 

Diagram 

Composite 

structure 

Diagram 

Deployment 

Diagram 
Package 

Diagram 

Activity 

Diagram 

Behavior

Diagram 

Use case 

Diagram 
State 

Machine 

Diagram 

Interaction 

Diagram 

Sequence 

Diagram 

Interaction 

Overview 

Diagram 

Communication 

Diagram 

Timing 

Diagram 
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UML  
(Focus on support of early design phases) 

Communication/ 

local computations 

Shared memory Asynchronous message 

passing 

Communicating 

finite state 

machines 

State diagrams 

Data flow Activity diagrams, 

sequence diagrams, 

timing diagrams 
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UML for embedded systems 

 Initially not designed for real-time. 

 Initially lacking features: 

 Partitioning of software into tasks and processes 

 specifying timing 

 specification of hardware components 

 Projects on defining profiles for embedded/real-time 

systems 

 Schedulability, Performance and Timing Analysis 

 SysML (System Modeling Language) 

 UML Profile for SoC 

 Modeling and Analysis of Real-Time Embedded Systems 

 UML/SystemC, … 

 Profiles may be incompatible 


