
1 

 -  1 - BF - ES 

Embedded Systems                                  11 

 -  2 - BF - ES 

MIDTERM REVIEW: computational models 

Communication/ 

local computations 

Shared memory Asynchronous message 

passing 

Communicating 

finite state 

machines 

Hybrid automata, 

statecharts, 

synchronous 

composition  

 

Data flow Petri nets, 

Kahn process networks, 

SDF 

Discrete event  

model 

VHDL 



2 

 -  3 - BF - ES 

Hybrid automata 

 Motivation 

 The design of an embedded system must consider both  

the continuous evolution of the environment and 

the discrete computation of the controller 

 Major points 

 Modeling with hybrid automata 

 Special cases: 

• (extended) FSMs 

• ODEs 

• Timed Automata 

 Semantics (hybrid time sets, hybrid trajectories) 

 Zenoness 

 

 -  4 - BF - ES 

Hybrid Automata 

 Q: set of modes 

 S: set of state variables, partitioned into 

 C={c1, c2, ..., cn}: continuous signals (with range ) 

 D={d1, d2, ..., dm}: discrete signals (with range {absent}  X) 

 U={u1, u2, ..., uk}: set of input signals,  

 Init  Q  n  ({absent}  X)m : initial condition  

 F: flows, defining differential equations for each 

continuous state variable in each mode 

 J: Q  Guards  Q  Resets: jumps, where 

Guards is a constraint over C and U  

and Resets is a set of assignments of the form  

xi := expr(X,U) for the state variables 

 



3 

 -  5 - BF - ES 

Execution of a Hybrid Automaton 
ti
m

e
 

An execution of a hybrid automaton 

is a hybrid trajectory (, q, x) that 

statisfies the following conditions 

 

 Initial condition: (q0, x0)  Init 

 Discrete evolution: the pair 

((qi(‘i),xi(‘i)), (qi+1(i+1),xi(i+1)) 

satisfies J 

 Continuous evolution: for all i, 

1. qi() is constant over Ii 

2. ci() is the solution to the differential 

equations in F(q(i)) 

3. di() are absent during (i,‘i) 

4. All jumps in J are disabled during 

(i,‘i) 

 

 -  6 - BF - ES 

Q: What‘s wrong with this hybrid automaton? 

 



4 

 -  7 - BF - ES 

Zeno Behavior 
ti
m

e
 

 -  8 - BF - ES 

Statecharts 

 Motivation 

 Concise models of complex systems: 

Statecharts = FSMs + hierarchy + orthogonality (concurrency)  

 Commercial tools (StateMate, StateFlow, …) 

 Major points 

 Semantics 

 Virtual Prototyping ( Stateflow) 



5 

 -  9 - BF - ES 

Statecharts: Hierarchy  

 -  10 - BF - ES 

Statecharts: Default-state mechanism 



6 

 -  11 - BF - ES 

StateMate semantics 

Three phases 

 

1. Effect of external changes on events and conditions is 

evaluated 

 

2. The set of transitions to be made in the current step 

and right-hand side of assignments are computed 

 

3. Transitions become effective, variables obtain new 

values 

 -  12 - BF - ES 

Broadcast mechanism 

 Values of variables are visible to all parts of the StateChart 

model. 

 New values become effective in part 3 of the execution 

stage for the current step and are obtained by all parts of 

the model in the following step. 

 StateCharts implicitly assumes a broadcast mechanism 

for variables. 

 StateCharts is appropriate for local control systems (), 

but not for distributed applications for which updating 

variables might take some time ().  



7 

 -  13 - BF - ES 

Q: Which states are active after e1,e2,e3,e2,e2? 

A 

C D E 

H* 
e1 

e2 

e2 

e3 

e3 

 -  14 - BF - ES 

Synchronous composition 

 Motivation 

 Concurrent composition assuming a global clock and instant 

communication 

 Ensures deterministic system behavior  

 Semantic foundation of synchronous programming languages 

like Esterel, Lustre, Scade  

 Major points 

 Fixed point semantics 

 Wellformedness 

 Constructive semantics 



8 

 -  15 - BF - ES 

Composite machine 

 

 -  16 - BF - ES 

Well-formed feedback 

x y 

s 



9 

 -  17 - BF - ES 

Q: Well-formed? 

 -  18 - BF - ES 

Petri Nets 

 Motivation 

 Modeling causal dependencies 

 Distributed systems 

 Major points 

 Boundedness, coverability graph 

 Liveness, deadlock 

 Place invariants 



10 

 -  19 - BF - ES 

Place/transition nets 

Def.: (P, T, F, K, W, M0) is called a place/transition net (P/T net) iff 

1. N=(P,T,F) is a net with places P and transitions T 

2. K: P  (N0  {}) \{0} denotes the capacity of places 

( symbolizes infinite capacity) 

3. W: F (N0 \{0}) denotes the weight of graph edges 

4. M0: P  N0 {} represents the initial marking of places 

W 

M0 

(Segment of some net) 
default: 

K =   

W = 1 

multiple tokens per place 

 -  20 - BF - ES 

Boundedness 

 A place is called k-bounded or k-safe if it contains in all 

reachable markings at most k tokens 

 A net is bounded if each place is bounded 

 

Application: places represent buffers and registers 

 avoid buffer overflow 

p1 

p2 

p3 

t1 t2 

2 

2 

2 



11 

 -  21 - BF - ES 

Coverability graph 

 

Example from Wolfgang Reisig: Petrinetze, Springer 2010 

 -  22 - BF - ES 

Liveness  

 A transition is live if in every reachable marking there 

exists a firing sequence such that the transition 

becomes enabled 

 A net is live if all its transitions are live 

 

   



12 

 -  23 - BF - ES 

Deadlock 

 A dead marking (deadlock) is a marking where no 

transition can fire 

 A net is deadlock-free if no dead marking is reachable 

 -  24 - BF - ES 

 

Place invariants 

NT cR = 0, with 

 

 

 

NT= 

p p p p p p p p p p p p p 



13 

 -  25 - BF - ES 

Q: Is this net bounded? 

 0000000111111
1,


R

c

 0100011000000
2,


R

c

 1001100000000
3,


R

c

 0011100110001
4,


R

c

s 

CR,2 

CR,3 CR,1 CR,4 

 

 -  26 - BF - ES 

Kahn process networks & SDF 

 Motivation 

 Many applications can be specified in the form of a set of  

  communicating processes 

 Communication exclusively through FIFOs 

 Describe local behavior + dependencies  

without worrying about global control 

 Major points 

 Kahn process networks 

• Park‘s runtime scheduling algorithm 

 Synchronous data flow (SDF) 

• Lee/Messerschmitt‘s static scheduling algorithm 

 

 



14 

 -  27 - BF - ES 

Kahn process networks 

 Each node 

corresponds to one 

program/task; 

 Communication is only 

via channels; 

 Channels include 

FIFOs as large as 

needed; 

 Send operations are 

non-blocking, reads 

are blocking. 

 -  28 - BF - ES 

Kahn process networks are deterministic 

 There is only one sender per channel. 

 A process cannot check whether data is available before 

attempting a read. 

 A process cannot wait for data for more than one port at a time. 

 Therefore, the order of reads depends only on data, not on the 

arrival time. 

 Therefore, Kahn process networks are deterministic (!);  for a 

given input, the result will always the same, regardless of the 

speed of the nodes. 

 



15 

 -  29 - BF - ES 

Scheduling Kahn Networks 

A 
(always  

produces  
token) 

C 
(only  

consumes  
from A) 

B 
(always  

produces  
token) 

Problem: run processes with finite buffer 

D 
(always  

consumes  
token) 

 -  30 - BF - ES 

Parks’ Scheduling Algorithm (1995) 

 Set a capacity on each channel 

 Block a write if the channel is full 

 Repeat 

 Run until deadlock occurs 

 If there are no blocking writes  terminate 

 Among the channels that block writes,  

select the channel with least capacity  

and increase capacity until producer can fire. 



16 

 -  31 - BF - ES 

 Asynchronous message passing= 

tasks do not have to wait until output is accepted. 

 Synchronous data flow = 

all tokens are consumed at the same time. 

Synchronous data flow (SDF) 

1 1 2 3 2 7 8 7 5 1 

 -  32 - BF - ES 

PASS example: 1) firing rates 

B 

D 

1 

2 
3 

2 

C 

A 

3 

4 1 

3 

2 

1 

d(AB)=6 

Smallest solution: a=2; b=3; d=4; c=1 



17 

 -  33 - BF - ES 

PASS example: 2) Simulation 

B 

D 

1 

2 
3 

2 

C 

A 

3 

4 1 

3 

2 

1 

d(AB)=6 

Possible schedules: 

BBBCDDDDAA 

BDBDBCADDA 

BBDDBDDCAA 

(and many more) 

 

BC... not valid 

 

Smallest solution:  

a=2; b=3; d=4; c=1 

 -  34 - BF - ES 

Q: Schedule? 

C 

2 

2 

A 

B 

1 

1 

2 

1 

d(AB)=2 



18 

 -  35 - BF - ES 

VHDL 

 Motivation 

 Describing, simulating, synthesizing hardware 

 Standard in (European) industry 

 

 Major points 

 Entities, architectures 

 Multi-valued logic 

 Discrete event semantics 

 Inertial and transport delay model 

 Parameterized hardware 

 -  36 - BF - ES 

entity full_adder is 

  port(a, b, carry_in: in Bit;  -- input ports 

       sum,carry_out: out Bit); --output ports 

 end full_adder; 

 

architecture behavior of full_adder is 

 begin 

  sum         <= (a xor b) xor carry_in after 10 Ns; 
  carry_out <= (a and b) or (a and carry_in) or 

                       (b and carry_in)         after 10 Ns; 

 end behavior; 

 
architecture structure of full_adder is 

component half_adder 
     port (in1,in2:in Bit; carry:out Bit; sum:out Bit); 
   end component; 

component or_gate 
     port (in1, in2:in Bit; o:out Bit); 
  end component; 
 signal x, y, z: Bit;      -- local signals 
  begin                        -- port map section 
    i1: half_adder port map (a, b, x, y); 
    i2: half_adder port map (y, carry_in, z, sum); 
    i3: or_gate      port map (x, z, carry_out); 
  end structure; 

 

 

 

 

 Architectures describe  

implementations of entities. 

 
 
 Architectures and their  

components can define a  
hierarchy of arbitrary depth. 



19 

 -  37 - BF - ES 

Resolution function for IEEE 1164 

constant resolution_table : stdlogic_table := ( 

--U    X    0  1     Z   W  L     H   – 

('U',  'U',  'U', 'U', 'U', 'U', 'U', 'U', 'U'),  --| U | 

('U',  'X',  'X', 'X', 'X', 'X',   'X', 'X', 'X'),  --| X | 

('U',  'X',  '0', 'X', '0', '0',   '0', '0', 'X'),  --| 0 | 

('U',  'X',  'X', '1', '1', '1',   '1', '1', 'X'),  --| 1 | 

('U',  'X',  '0', '1', 'Z', 'W',   'L', 'H', 'X'),  --| Z | 

('U',  'X',  '0', '1', 'W', 'W',   'W', 'H', 'X'),  --| W | 

('U',  'X',  '0', '1', 'L', 'W',   'L', 'W', 'X'),  --| L | 

('U',  'X',  '0', '1', 'H', 'W',   'W', 'H', 'X'),  --| H | 

('U',  'X',  'X', 'X', 'X', 'X',   'X', 'X', 'X')  --| - | 

); 

 -  38 - BF - ES 

Semantics 

Initialization 

End of simulation 

Assign new values 

to signals 

Update 

current time 

Evaluate processes 

Resume processes 



20 

 -  39 - BF - ES 

Inertial vs. transport delay model 

Inverter 
Input Output 

-- INERTIAL is the default 

Output <= NOT input AFTER 10 ns; 

-- TRANSPORT must be specified 

Output <= TRANSPORT NOT input AFTER 10 ns; 

Output 

Input 

5 10 15 20 25 30 35 

Output 

Input 

5 10 15 20 25 30 35 

 -  40 - BF - ES 

Q: What is the resulting wave form? 

o <= transport '0', '1' after 5 ns,  

           '0' after 10 ns, ‘0' after 20 ns;     

wait for 5 ns;     

o <= '1' after 7 ns;     

wait; 



21 

 -  41 - BF - ES 

Actor model 

 Motivation 

 Combining components into larger systems 

 Combining different computational models 

 Major points 

 Continuous actors, discrete actors 

 Ptolemy 

 Virtual Prototyping ( Matlab/Simulink/Stateflow) 

 -  42 - BF - ES 

Actor Model of Continuous-Time Systems 

A system is a function that 

accepts an input signal and 

yields an output signal. 

 

The domain and range of the 

system function are sets of 

signals, which themselves are 

functions. 

 

Parameters may affect the 

definition of the function S. 



22 

 -  43 - BF - ES 

Discrete Signals 

Let e be a signal                            X 

where X is any set of values. 

 

 

Let 

 

Then e is discrete iff there exists a one-to-one function 

 

that is order-preserving, i.e., for all t1≤t2, f(t1)≤f(t2). 

 

 -  44 - BF - ES 

Actor Model for State Machines 

Expose inputs and outputs, enabling composition: 



23 

 -  45 - BF - ES 

Ptolemy 

 A model is a set of interconnected actors and one director 

 Actor 

 Input & output ports, states, & parameters  

 Models of computation 

 Define the interaction semantics 

 Implemented in Ptolemy II by a domain 

• Director + Receiver 

 Director 

 Manages the data flow and the scheduling of the actors 

 The director fires the actors  

 Receiver  

 Defines the semantics of the  

port buffers 

 

 -  46 - BF - ES 

Q: Is the output discrete? 

Assume that arrival and departure are discrete 

signals. Is count a discrete signal? 



24 

 -  47 - BF - ES 

Sensors & Actuators 

 -  48 - BF - ES 

Embedded System Hardware 

 Embedded system hardware is frequently used in a loop 

(„hardware in a loop“): 

actuators 



25 

 -  49 - BF - ES 

Sensors and Actuators 

Sensors: 

 Cameras 

 Accelerometers 

 Rate gyros 

 Strain gauges 

 Microphones 

 Magnetometers 

 Radar/Lidar 

 Chemical sensors 

 Pressure sensors 

Actuators: 
 Motor controllers 

 Solenoids 

 LEDs, lasers 

 LCD and plasma displays 

 Loudspeakers 

 

Modeling Issues: 
 Physical dynamics 

 Noise 

 Bias 

 Sampling 

 Interactions 

 -  50 - BF - ES 

E-puck 

 



26 

 -  51 - BF - ES 

Acceleration Sensor 

Courtesy & ©: S. Bütgenbach, TU Braunschweig 

 -  52 - BF - ES 

Spring-Mass-Damper Accelerometer 

By Newton’s second law, F=ma. 

 

For example, F could be the 

earth’s gravitational force. 

 

The force is balanced by the 

restoring force of the spring. 



27 

 -  53 - BF - ES 

Spring-Mass-Damper System 

x 

 -  54 - BF - ES 

Measuring tilt 

q 



28 

 -  55 - BF - ES 

Difficulties Using Accelerometers 

 Separating tilt from acceleration 

 Integrating twice to get position: Drift 

 Vibration 

 Nonlinearities in the spring or damper 

 -  56 - BF - ES 

Measuring Changes in Orientation: 

Gyroscopes 

Optical gyros: Leverage the Sagnac effect, where a laser light is sent 
around a loop in opposite directions and the interference is measured. 
When the loop is rotating, the distance the light travels in one direction is 
smaller than the distance in the other. This shows up as a change in the 
interference. 

Images from the Wikipedia Commons 



29 

 -  57 - BF - ES 

Inertial Navigation Systems 

Combinations of: 

 GPS (for initialization and periodic correction) 

 Three axis gyroscope measures orientation 

 Three axis accelerometer, double integrated for position 
after correction for orientation 

 

 -  58 - BF - ES 

Magnetometers 

 A very common type is the 

Hall Effect magnetometer. 

 Charge particles (electrons) 

flow through a conductor 

(2) serving as a Hall 

sensor. Magnets (3) induce 

a magnetic field (4) that 

causes the charged 

particles to accumulate on 

one side of the Hall sensor, 

inducing a measurable 

voltage difference from top 

to bottom. 

 The four drawings at the 

right illustrate electron 

paths under different 

current and magnetic field 

polarities. Image source: Wikipedia Commons 

Edwin Hall discovered this effect in 1879. 



30 

 -  59 - BF - ES 

Charge-coupled devices (CCD) image sensors 

Based on charge transfer to next pixel cell 

 Mature technology 

 Medium to high-end compact digital cameras 

 

 

 -  60 - BF - ES 

CMOS image sensors 

 Based on standard 
production process 
for CMOS chips, 
allows integration 
with other 
components 

 

 Lower power 
consumption 

 Lower cost 

 low cost devices 

 Automotive 

 medical  

 

 

http://en.wikipedia.org/wiki/Image:Aps_pd_pixel_schematic.svg


31 

 -  61 - BF - ES 

Example: Biometrical Sensors 

Example: Fingerprint sensor (© Siemens, VDE): 

Matrix of 256 x 

256 elem. 

Voltage ~ 

distance. 

Resistance also 

computed 

 -  62 - BF - ES 

Standard layout of sensor systems  

 Sensor: detects/measures entity and converts it to 
electrical domain 
 May entail ES-controllable actuation: e.g. charge transfer in 

CCD 

 Amplifier: adjusts signal to the dynamic range of the A/D 
conversion 
 Often dynamically adjustable gain: e.g. ISO settings at digital 

cameras, input gain for microphones (sound or ultrasound), 
extremely wide dynamic ranges in seismic data logging 

 Sample + hold: samples signal at discrete time instants 

 A/D conversion: converts samples to digital domain 

Sensor Amplifier 
Sample 

and hold 

A/D 

conversion 


