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REVIEW: Embedded System Hardware

Embedded system hardware is frequently used in a loop

(-»hardware in a loop®):

A/D converter

sample-and-hold

information
processing

display -

A

Sensors

'
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REVIEW: Standard layout of sensor systems

Sample A/D

and hold conversion

Sensor —p» Amplifier =

= Sensor: detects/measures entity and converts it to
electrical domain
= May entail ES-controllable actuation: e.g. charge transfer in
CCD
= Amplifier: adjusts signal to the dynamic range of the A/D
conversion

= Often dynamically adjustable gain: e.g. ISO settings at digital
cameras, input gain for microphones (sound or ultrasound),
extremely wide dynamic ranges in seismic data logging

= Sample + hold: samples signal at discrete time instants
= A/D conversion: converts samples to digital domain
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Discretization of time

V, is a mapping R - R

V, is a sequence of values or a mapping Z —> R

Discrete time: sample and hold-devices.
Ideally: width of clock pulse -> 0
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Sample and Hold

Clock — J
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Discretization of values: A/D-converters
1. Flash A/D converter (1)

= Basic element: analog comparator

= OQutput = "1" if voltage at input + exceeds that at input -.
= Qutput = 0" if voltage at input - exceeds that at input +.

= |dea:

= Generate n different voltages by voltage divider (resistors),
€.9. Viet, Y2 Vigr, V2 Vigp, ¥a Vit

= Use n comparators for parallel comparison of input voltage V, to these
voltages.

= Encoder to compute digital output.
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Discretization of values: A/D-converters
1. Flash A/D converter (2)

= Parallel comparison with
reference voltage

= Applications: e.g. in video

processing

Vref
D
L]R—>>% =4
5 —=
R-={ 8 |——= Digital
/_> S |~ oulputs
Ri={3
R

Comparators
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Discretization of values
2. Successive approximation

Vx

control logic

successive approximation register

digital output

D/A-conversion

Key idea: binary search:

= Set MSB="1"

= if too large: reset MSB

= Set MSB-1="1"

= if too large: reset MSB-1
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Successive approximation (2)

1100

1011

: 10107

1000
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Digital-to-Analog (D/A) Converters

= Convert digital value to conductivity proportional to the
digital value

Aggj“Lg{:%:}Jif
Xy
== 2R
X3
] 4R
P 4 XO \—{ rii
L 8R
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Operational amplifier

» Use operational amplifier to convert conductivity to
voltage: V=-V 4R,/ R;
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Digital-to-Analog (D/A) Converters (3)

:]R R
2
X2 |
—= 2R —

ref i

Xy
- L 4R -
Xg +
V, —— 8R
\Y%
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Design Issues with Sensors

= Calibration
= Relating measurements to the physical phenomenon
= Can dramatically increase manufacturing costs
= Nonlinearity
= Measurements may not be proportional to physical phenomenon
= Correction may be required
* Feedback can be used to keep operating point in the linear
region
= Sampling
= Aliasing
= Missed events
* Noise
= Analog signal conditioning
= Digital filtering
= Introduces latency
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Aliasing

"‘ eB(t)zsin(2”q+0.5sin (M—w
\ J \

~

eA(t):sin(ZﬂtW+0.Ssin(2”q+0.ssin (2”;) g L
L8 ) (4 ) L1 )

25 1 2 3 4 5 6 7 8

= Periods of p=8,4,1
= Indistinguishable if sampled at integer times, p;=1
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Aliasing

Nyquist criterion (sampling theory):

Aliasing can be avoided if we restrict the frequencies of
the incoming signal to less than half of the sampling
rate.

p, < %2 py Where p, is the period of the “fastest” sine wave
or f,>2 fy where fy is the frequency of the “fastest” sine wave

fy is called the Nyquist frequency, f.is the sampling rate.

See e.g. [Oppenheim/Schafer, 2009]
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Anti-aliasing filter

A filter is needed to remove high frequencies

5| anti- * | Sample- | =
aliasing & hold
s {3 e,(t) changed into es(t)
0.5}
9® Ideal filter p

e(t) l/ o8

Realizable

filter f, /2 f
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Possible to reconstruct input signal?

1)

-
=

* | anti- * | Sample- AD- | = |proces— | = pa- | = ltiter |
aliasing & hold conv. sing conv. “I L|—\—‘

eft)
hit)
x(t)
¥

......

= Assuming Nyquist criterion met
= Let{t}, s=..-1,0,1.2, .. be times at which we sample g(t)
= Assume a constant sampling rate of 1/p, (Vs: ps = ty,1—t,).

= According to sampling theory, we can approximate the input signal
using the Shannon-Whittaker interpolation:

, g Weighting factor
B y(t ‘””ﬁ(f — I for influence of
z(r) = z T q,) y(t) at time t
§=—o0 e :

[Oppenheim, Schafer, 2009]
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Weighting factor for influence of y(t,)
attimet

sinc(t —ty)

-04
-8
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Contributions from the various sampling
instances

1.5

-0.5

-1.5
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(Attempted) reconstruction of input signal

(1)
)

=
=
T

J<l anti- | = Sample- g AD- _; proces—
| aliasing [ & hold conv. sing
{ [ [
1 -
0.5+
0
-0.5
-1
* Assuming 0-
order hold -1.5
0 1 2 3 - 5 6
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How to compute the sinc() function?

oo

A1) = Z y(zs)sm%(z—zs)

= %(z —1y)

= Filter theory: The required interpolation is performed by an

ideal low-pass filter (sinc is the Fourier transform of the low-
pass filter transfer function)

z(t)
O = D/A- i filter '_:
| ‘ conv.
| | l |
f, /2 fy
Filter removes high frequencies present in y(t)
BF - ES
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How precisely are we reconstructing the input?

z2(t) = i y(ts)sing (¢ —1;)

. Tl—1)

= Sampling theory:
» Reconstruction using sinc () is precise

= However, it may be impossible to really compute z(t)
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Limitations

Ay = 3 MR

e Tlr—1)

= Actual filters do not compute sinc()
In practice, filters are used as an approximation.
Computing good filters is an art itself!

= All samples must be known to reconstruct e(t) or g(t).
& Waiting indefinitely before we can generate output!
In practice, only a finite set of samples is available.

= Actual signals are never perfectly bandwidth limited.
= Quantization noise cannot be removed.

BF - ES - 24-
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Actuators and output

» Huge variety of actuators and outputs
= Two base types:

* analogue drive
(requires D/A conversion, unless on/off sufficient)

* CRTs, speakers, electrical motors with collector
* electromagnetic (e.g., coils) or electrostatic drives
* piezo drives

« digital drive (requires amplification only)
* LEDs
* stepper motors
* relais, electromagnetic valve (if actuation slope irrelevant)
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Micromotors
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Interfaces

/— JTAG and SWD interface

8 — USB interface

switches o ’
connected ‘e graphics " speaker
toGPIOpins |8 display — connected to
e R GPIO or PWM
analog
(ADC)— = .
inputs -~ | _gontroller il < GPIO connectors
i «—— PWM outputs
removable .,;_.
flash “«— CAN bus interface
memory . ¥
slot
\— Ethernet interface

Stellaris®LM3S8962 evaluation board
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Interfaces

VDD

pullup
resistor

* Pulse width modulation (PWM)

microcontroller
microcontroller  drive ]
transistor [ | f

» General-Purpose Digital I/0 (GPIO)

register

-

= Parallel
= Multiple data lines transmitting data
» Ex: PCI, ATA, CF cards, Bus

=  Serial

= Single data line transmitting data
» Ex: USB, SATA, SD cards,

BF - ES - 28-
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Example Using a Serial Interface

In an Atmel AVR 8-bit microcontroller, to send a byte over
a serial port, the following C code will do:

while (! (UCSROA & 0x20));
UDRO = x;

* X is a variable of type uint8.
* UCSROA and UDRO are variables defined in header.
* They refer to memory-mapped registers.
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Send a Sequence of Bytes

for(i = 0; i < 8; i++) {
while (! (UCSROA & 0x20));
UDRO = x[1];

How long will this take to execute? Assume:
» 57600 baud serial speed.

+ 8/57600 =139 microseconds.

* Processor operates at 18 MHz.

Each while loop will consume 2500 cycles.

BF - ES - 30-
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Input Mechanisms in Software

= Polling = Interrupts

» Main loop checks each = External hardware alerts
I/O device periodically. the processor that input is
= If input is ready, ready.
processor initiates = Processor suspends what
communication. it is doing, invokes an

interrupt service routine
(ISR).

Processor Setup Code
Processor Setup Code
Processor checks I/O control register et Processor services IfO 1
for status of peripheral 1
Not Ready¥ v Register the Interrupt Service Routine I

Processor checks /O control register | pecacal  processor senvices 10 2
—ye

for status of peripheral 2

Not Read*

- Processor executes task code Run Interrupt Service Routine
Processor checks I/O control register Resume
for status of peripheral 3 Processor senices /03 ‘

J
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Timed Interrupt

Processor Setup
l Reset timer

Timer

’ Register Interrupt Service Routine

When timer expires,
interrupt processor

’ Initialize Timer

‘'ocessor jumps to ISR

Execute Task Code > Update Tick / Sample
-
Resumes

BF - ES - 32-




Example:
Do something for 2 seconds then stop

volatile)uint timer count = 0; } static variable: declared outside
voTd TOR (v { B main() puts them in statically

If (timer allocated memory (not on the

. stack
timer coun )

}

}
int main (void) {
// initialization code
SysTickIntRegister (&ISR);

/7 other—init

volatile: C keyword to tell the
compiler that this variable may
change at any time, not (entirely)

Interrupt service routine

under the control of this program.

timer count = 2000;
while (timer count != 0) {
code to run for 2 seconds Registering the ISR to be invoked
} on every SysTick interrupt
}
BF - ES - 33-
— -
variables: timerCount: uint " her inic i
input: assert: pure .'lmfrCnum:O,’ Fm e
timerCount := 2000 "'l-'-.’imerCmmI #0/ -
assert | assert | assert [
: /
. i / : /
5"’""('1”""!" {timerCount-- i timerCount--
timerCount # 0 /
timerCount # 0/ timerCount # O /
BF - ES - 34-
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Embedded System Hardware

Embedded system hardware is frequently used
in a loop (“hardware in a loop“):

A/D converter

sample—and-hold

information
processing

= disp

Sensors

-

(physical)
environment

@& cyber-physical systems

BF - ES

%’| D/A converter |

!

actuators |

Microcontrollers

» Integrate several components of a microprocessor
system onto one chip

CPU, Memory, Timer, 10 5

= | ow cost,

small packaging
= Easy integration

with circuits

» Single-purpose

BF - ES

EEPROMROM
Program
hiemor:

PICIBCEMRES

x
PICIGC3484ARTS
1Kx14

8 Lewel Smek

Data Bus &

Frogram
Bus

ile Regi

PICIGCET/Ra2E4
Fxs

PICTBCE4ARES
6855

EEFROM Data Memory

EEPROM

&

05 CHCLKOUT
GSTICLKIN

PIC16C8X

o] ReaRA

g-@ REF:RE1
How[d] ReoanT

- 36 -
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Application Specific Circuits (ASICS)

or Full Custom Circuits

= Approach suffers from
= Jong design times,

= lack of flexibility
(changing standards) and

= high costs
(e.g. Mill. $ mask costs).
= Custom-designed circuits
necessary
= jf ultimate speed or
= energy efficiency is the goal and
= large numbers can be sold.

BF - ES . 37-
1000
Energy
PG
100 e
_.-‘.::’,..""’ ?)GP‘
10
=2
D‘ -
o] e
S [ ,
0.1
0.01 o—
e + " ASIC x cell
LT ° FPGA © MPU
o A DSP + RISC
0.001
© Hugo De Man, § ! § 8 g
IMEC, Philips, 2007 = = & & &

BF - ES
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Low Power vs. Low Energy
Consumption

= Minimizing power consumption important for
« the design of the power supply
« the design of voltage regulators
« the dimensioning of interconnect
 short term cooling
= Minimizing energy consumption important due to
* restricted availability of energy (mobile systems)
— limited battery capacities (only slowly improving)
— very high costs of energy (solar panels, in space)
* cooling
— high costs
— limited space
» dependability
* long lifetimes, low temperatures
BF - ES

2,
@
Nz
o
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Dynamic power management (DPM)

Example: STRONGARM SA1100

= RUN: operational

= |IDLE: a SW routine
may stop the CPU
when not in use, while
monitoring interrupts

= SLEEP: Shutdown of
on-chip aCtiVity Power fault
signal

BF - ES

- 40 -
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Fundamentals of dynamic voltage
scaling (DVS)

50 50
® e
& g
g 40 40 E
& g
30 30 2
=) -
= —_
20 Energy Consumption 20 £
g

10 10

25 30 35 40 45 50
Power consumption of CMOS
circuits (ignoring leakage):

P=a C_V, f with

[Courtesy,
Yasuura, 2000]

Delay for CMOS circuits:

dd

R . r=kC with
a @ switching  activity L v, _V')z
C, :load capacitanc e
V, :threshhold  voltage
V _ :supply vol tage
BF - ES “ (Vt < than Vg ) .41 -
f : clock frequency
Variable-voltage/frequency example:
INTEL Xscale
POWER-PERFORMANCE COMPARISON
. y OS should
....... A N,:ir;t:;laé?ifgéfum wernane Schedule
12 . . .
1200.8 2 - | distribution
" g of the
§ energy
=
E budget.
%
E
233 MHz 175 MHz 150 MHz 400 MHz 600 MHz BOO MHz 1GHz %
2.0V 1.5V @(0.75V @1.0v @1.3v @16V @1.8v <
BEmes  Pwans E
BF - ES - 42 -
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Low voltage, parallel operation more efficient
than high voltage, sequential operation

Basic equations

Power: P~Vpp?,

Maximum clock frequency: f~Vop

Energy to run a program: E =P x t, with: t = runtime
Time to run a program: t~ 1/f

Changes due to parallel processing, with a operations per clock:

Clock frequency reduced to: f=fla,
Voltage can be reduced to: Voo =Vpp ! a,
Power for parallel processing: P° =P/ a2 per operation,
Power for o operations per clock: P'=axP°=P/aq,
Time to run a program is still: t'=t,
Energy required to run program: E'=P'xt=Ela
Rough
& Argument in favour of voltage scaling, approxi-
VLIW processors, and multi-cores mations!

BF -ES - 43 -

Application: VLIW processing and vol-tage
scaling in the Crusoe processor

Vpp: 32 levels (1.1V - 1.6V)

Clock: 200MHz - 700MHz in increments of 33MHz
Scaling is triggered when CPU load change is detected
by software (~1/2 ms).

More load: Increase of supply voltage (~20 ms/step),
followed by scaling clock frequency

Less load: reduction of clock frequency, followed by
reduction of supply voltage

Worst case (1.1V to 1.6V Vyp, 200MHz to 700MHz) takes
280 ms

BF - ES - 44 -

22



Result (as published by transmeta)

Pentium Crusoe

Crusos I8 of [ 1 MS400)
Max Tem |
48.2

Running the same multimedia application.
[www.transmeta.com]
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Digital Signal Processing (DSP)

Example: Filtering

S| anti- |_%|sample- | = |AD- | = |proces- [
aliasing & hold conv. sing
Xy = Ws | *kdf
k=0
Signal at t=t; (sampling points)
BF - ES - 46 -
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Filtering in digital signal processing

(P |« ADSP 2100

Address-
registers
AO, A1, A1

Address
generation
unit (AGU)

BF - ES

n—1

Xy =3 Wepxa

k=0

outer loop over
sampling times

{MR:=0; Al:=1; A2:=s-1,
MX:=w[s]; MY:=a[0];
for (k=0; k <= (n—-1); k++)
{MR:=MR + MX * MY;
MX:=w[A2]; MY:=a[A1l];
Al++; A2--;
}
X[s]:=MR;
}

- 47 -

DSP-Processors: multiply/accumulate (MAC)
and zero-overhead loop (ZOL) instructions

MR:=0; Al:=1; A2:=n-2; MX:=x[n-1]; MY:=a[0];

for (j:=1to n)

| {MR:=MR+MX*MY; MY:=a[Al]; MX:=x[A2]; Al++; A2--} |
bl

Multiply/accumulate (MAC) instruction

BF - ES

Zero-overhead loop (ZOL)
instruction preceding MAC
instruction.

Loop testing done in parallel to
MAC operations.

- 48 -
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Heterogeneous registers

Example (ADSP 210x):

Address-
registers
A0, A1, A2

Address
generation
unit (AGU)

Different functionality of registers An, AX, AY, AF,MX, MY, MF, MR

BF - ES
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Separate address generation units (AGUS)

Example (ADSP 210x):

= Data memory can only be
fetched with address cont

| inA,

instruction ‘b

modify (takes effectively 0 time).
register

address
register

data requires extra instruction

memory @

BF - ES

ained

= but this can be done in parallel
with operation in main data path

A=A =1 also takes O time,

file A file M = sameforA:=A+M,
= A :=<immediate in instruction>

- 50 -
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Modulo addressing

Modulo addressing:
Am++ = Am:=(Am+1) mod n

(implements ring or circular N

buffer in memory)

n most X LN Y N N Ay
x[t1] ANV 20
recent | ri il .‘./ ...........

values X[tl-n+2] [

Memory, t=t1
BF - ES

X[t1-1
X[t1]

X[t1+1]
X[t1-n+2]

sliding window

Memory, t2=t1+1
- 51-

Saturating arithmetic

* Returns largest/smallest number in case of over/underflows

= Example:
a 0111
b 1001
standard wrap around arithmetic (1)0000
saturating arithmetic 1111
(atb)/2:  correct 1000
wrap around arithmetic 0000

saturating arithmetic + shifted

= Appropriate for DSP/multimedia applications:
* No timeliness of results if interrupts are generated for overflows

* Precise values less important
» Wrap around arithmetic would be worse.

BF - ES

0111 -almost correct”

- 52 -
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Multimedia-Instructions/Processors

= Multimedia instructions exploit that many registers,
adders etc are quite wide (32/64 bit),
= whereas most multimedia data types are narrow
(e.g. 8 bit per color, 16 bit per audio sample per channel)
@ 2-8 values can be stored per register and added. E.qg.:

64 bits 64 bits ——MM =
‘ wordS‘ word 2 \ word 1 ‘ word 0 ‘ ‘ wordS‘ word 2 | word 1 ‘ word 0 ‘

+

/ 4 additions per instruction;

carry disabled at word
boundaries.
BF - ES - 53-

- 64 bits

‘ word3‘ word 2 \ word 1 ‘ word 0 ‘

Key idea of very long instruction word
(VLIW) computers

= Instructions included in long instruction packets.
Instruction packets are assumed to be executed in
parallel.

» Fixed association of packet bits with functional
units.

instruction packet

instruction 1 instruction 2 instruction 3 instruction 4

floating point | |integer integer memory
unit unit unit unit

BF - ES - 54-




Very long instruction word (VLIW) architectures

= Very long instruction word
(“instruction packet”) contains several instructions, all of which are
assumed to be executed in parallel.

= Compiler is assumed to generate these “parallel” packets

= Complexity of finding parallelism is moved from the hardware
(RISC/CISC processors) to the compiler;
Ideally, this avoids the overhead (silicon, energy, ..) of identifying
parallelism at run-time.

@& A lot of expectations into VLIW machines

= Explicitly parallel instruction set computers (EPICs) are an
extension of VLIW architectures: parallelism detected by compiler,
but no need to encode parallelism in 1 word.

BF -ES - 55-

Large # of delay slots,
a problem of VLIW processors

add sub and or
sub dafiltsloeor  div

pipeline = 1d7 ) ét/ | \\ﬁ\V 1. Beq | instruction fetch

\ A
stages §| F 1 VT YV T N ] instruction decode

| | | | | instruction execute

| | [ ] | register writeback

BF - ES - 56 -
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Large # of delay slots,
a problem of VLIW processors

add_dgapsiotand or

Syl 1 ~ _
pipeline = sdb|” "mult \?%or {1 div |

1/

stages\’ d7 T st ] ﬁ]V | beq |
\| [ | | |

instruction fetch

instruction decode

instruction execute

| | [ ] | register writeback t
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Large # of delay slots,
a problem of VLIW processors
delay slots
sl NN
pipeline = i . - instruction fetch
stages i[ sub] %mﬂ Yor " div | instruction decode
[ Id | st [ mv | beqg]| instruction execute
| | | | | register writeback t

The execution of many instructions has been started before it is

realized that a branch was required.

Nullifying those instructions would waste compute power
& Executing those instructions is declared a feature, not a bug.
< How to fill all “delay slots“ with useful instructions?

& Avoid branches wherever possible.
BF - ES
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