
1 

 -  1 - BF - ES 

Embedded Systems                                  12 

 -  2 - BF - ES 

REVIEW: Embedded System Hardware 

Embedded system hardware is frequently used in a loop 

(„hardware in a loop“): 

actuators 



2 

 -  3 - BF - ES 

REVIEW: Standard layout of sensor systems  

 Sensor: detects/measures entity and converts it to 
electrical domain 
 May entail ES-controllable actuation: e.g. charge transfer in 

CCD 

 Amplifier: adjusts signal to the dynamic range of the A/D 
conversion 
 Often dynamically adjustable gain: e.g. ISO settings at digital 

cameras, input gain for microphones (sound or ultrasound), 
extremely wide dynamic ranges in seismic data logging 

 Sample + hold: samples signal at discrete time instants 

 A/D conversion: converts samples to digital domain 

Sensor Amplifier 
Sample 

and hold 

A/D 

conversion 

 -  4 - BF - ES 

Discretization of time 

Vx is a sequence of values or a mapping ℤ  ℝ 

 

Discrete time: sample and hold-devices. 

Ideally: width of clock pulse -> 0 

Ve is a mapping ℝ  ℝ 



3 

 -  5 - BF - ES 

Sample and Hold  

Input 

Output 

Clock 

 -  6 - BF - ES 

Discretization of values: A/D-converters 

1. Flash A/D converter (1) 

 Basic element: analog comparator 

 

 

 

 

 Output = ´1´ if voltage at input + exceeds that at input -. 

 Output = ´0´ if voltage at input - exceeds that at input +. 

 

 Idea: 

 Generate n different voltages by voltage divider (resistors),  

e.g. Vref, ¾ Vref, ½ Vref, ¼ Vref. 

 Use n comparators for parallel comparison of input voltage Vx to these 

voltages. 

 Encoder to compute digital output. 

 



4 

 -  7 - BF - ES 

Discretization of values: A/D-converters 

1. Flash A/D converter (2) 

Parallel comparison with 

reference voltage 

Applications: e.g. in video 

processing 

 -  8 - BF - ES 

Discretization of values 

2. Successive approximation  

Key idea: binary search: 

 Set MSB='1' 

 if too large: reset MSB 

 Set MSB-1='1' 

 if too large: reset MSB-1 



5 

 -  9 - BF - ES 

Successive approximation (2) 

1100 

1000 

1010 

1011 

t 

V 

Vx 

V- 

 -  10 - BF - ES 

Digital-to-Analog (D/A) Converters  

 Convert digital value to conductivity proportional to the 

digital value 

 

 

 

 

 

 

 

 

x3 

x2 

x1 

x0 

R 

2 R 

4 R 

8 R I0 

I1 

I2 

I3 



6 

 -  11 - BF - ES 

Operational amplifier 

• Use operational amplifier to convert conductivity to 

voltage: V = - Vref R2 / R1 

 

 

 

 

 

 

 

 

- 

+ 

R1 

R2 

Vref V 

I 

 -  12 - BF - ES 

Digital-to-Analog (D/A) Converters (3) 

- 

+ 

R2 

Vref 
V 

x3 

x2 

x1 

x0 

R 

2 R 

4 R 

8 R 



7 

 -  13 - BF - ES 

Design Issues with Sensors 

 Calibration 
 Relating measurements to the physical phenomenon 

 Can dramatically increase manufacturing costs 

 Nonlinearity 
 Measurements may not be proportional to physical phenomenon 

 Correction may be required 

 Feedback can be used to keep operating point in the linear 
region 

 Sampling 
 Aliasing 

 Missed events 

 Noise 
 Analog signal conditioning 

 Digital filtering 

 Introduces latency 

 -  14 - BF - ES 

Aliasing 

 Periods of p=8,4,1 

 Indistinguishable if sampled at integer times, ps=1 





























1

 2
sin5.0

4

 2
sin5.0

8

 2
sin)(

4

ttt
te






















4

 2
sin5.0

8

 2
sin)(

3

tt
te





8 

 -  15 - BF - ES 

Aliasing 

 

Nyquist criterion (sampling theory): 

Aliasing can be avoided if we restrict the frequencies of 

the incoming signal to less than half of the sampling 

rate. 

 

ps < ½ pN  where pN is the period of the “fastest” sine wave 

or  fs > 2 fN  where fN is the frequency of the “fastest” sine wave 

 

fN is called the Nyquist frequency, fs is the sampling rate. 

See e.g. [Oppenheim/Schafer, 2009] 

 -  16 - BF - ES 

Graphics 

(Wikimedia Commons) 



9 

 -  17 - BF - ES 

Anti-aliasing filter 

A filter is needed to remove high frequencies 

fs 

)(

)(

te

tg
Ideal filter 

fs /2 

e4(t) changed into e3(t)  

Realizable 

filter 

 -  18 - BF - ES 

Possible to reconstruct input signal? 

 Assuming Nyquist criterion met 

 Let {ts}, s = ...,−1,0,1,2, ... be times at which we sample g(t) 

 Assume a constant sampling rate of 1/ps (∀s: ps = ts+1−ts). 

 According to sampling theory, we can approximate the input signal 

using the Shannon-Whittaker interpolation: 

[Oppenheim, Schafer, 2009] 

Weighting factor 

for influence of 

y(ts) at time t 



10 

 -  19 - BF - ES 

Weighting factor for influence of y(ts) 

at time t 

No influence at ts+n 

 -  20 - BF - ES 

Contributions from the various sampling 

instances 



11 

 -  21 - BF - ES 

(Attempted) reconstruction of input signal 

* 

* Assuming 0-

order hold 

 -  22 - BF - ES 

How to compute the sinc( ) function? 

 Filter theory: The required interpolation is performed by an 

ideal low-pass filter (sinc is the Fourier transform of the low-

pass filter transfer function) 

fs 

)(

)(

ty

tz

fs /2 

Filter removes high frequencies present in y(t)  



12 

 -  23 - BF - ES 

How precisely are we reconstructing the input? 

 Sampling theory: 

• Reconstruction using sinc () is precise 

 However, it may be impossible to really compute z(t)  

 -  24 - BF - ES 

Limitations 

 Actual filters do not compute sinc( ) 

In practice, filters are used as an approximation. 

Computing good filters is an art itself! 

 All samples must be known to reconstruct e(t) or g(t). 

 Waiting indefinitely before we can generate output! 

In practice, only a finite set of samples is available.  

 Actual signals are never perfectly bandwidth limited. 

 Quantization noise cannot be removed. 



13 

 -  25 - BF - ES 

Actuators and output 

 Huge variety of actuators and outputs 

 Two base types: 

• analogue drive  
  (requires D/A conversion, unless  on/off sufficient) 

• CRTs, speakers, electrical motors with collector 

• electromagnetic (e.g., coils) or electrostatic drives 

• piezo drives 

• digital drive (requires amplification only) 

• LEDs 

• stepper motors 

• relais, electromagnetic valve (if actuation slope irrelevant) 

 -  26 - BF - ES 

Micromotors 

(© MCNC) (TU Berlin) 



14 

 -  27 - BF - ES 

Interfaces 

 -  28 - BF - ES 

Interfaces 

 Pulse width modulation (PWM) 

 

 General-Purpose Digital I/O (GPIO) 

 

  Parallel 

  Multiple data lines transmitting data 

 Ex: PCI, ATA, CF cards, Bus  

 

  Serial 

 Single data line transmitting data 

 Ex: USB, SATA, SD cards,  



15 

 -  29 - BF - ES 

Example Using a Serial Interface 

In an Atmel AVR 8-bit microcontroller, to send a byte over 

a serial port, the following C code will do: 

 

 while(!(UCSR0A & 0x20)); 

 UDR0 = x; 

 

• x is a variable of type uint8. 

• UCSR0A and UDR0 are variables defined in header. 

• They refer to memory-mapped registers. 

 -  30 - BF - ES 

Send a Sequence of Bytes 

for(i = 0; i < 8; i++) { 

 while(!(UCSR0A & 0x20)); 

 UDR0 = x[i]; 

} 

 

How long will this take to execute? Assume: 

• 57600 baud serial speed. 

• 8/57600 =139 microseconds.  

• Processor operates at 18 MHz. 

Each while loop will consume 2500 cycles. 



16 

 -  31 - BF - ES 

Input Mechanisms in Software 

  Polling 

 Main loop checks each  

I/O device periodically. 

 If input is ready,  

processor initiates  

communication. 

 

 

  Interrupts 

 External hardware alerts 

the processor that input is 

ready. 

 Processor suspends what 

it is doing, invokes an 

interrupt service routine 

(ISR). 
Processor Setup Code 

Processor checks I/O control register  

for status of peripheral 1 
Processor services I/O 1 

Processor checks I/O control register  

for status of peripheral 2 

Processor checks I/O control register  

for status of peripheral 3 

Processor services I/O 2 

Processor services I/O 3 

Ready 

Ready 

Ready 

Not Ready 

Not Ready 

Not Ready 

Processor Setup Code 

Register the Interrupt Service Routine 

Processor executes task code Run Interrupt Service Routine 

Interrupt! 

Context switch 

Resume 

 -  32 - BF - ES 

Timed Interrupt 

Timer 

Update Tick / Sample 

When timer expires,  

interrupt processor 

Reset timer 

Processor jumps to ISR 

Resumes 

Processor Setup 

Register Interrupt Service Routine 

Initialize Timer 

Execute Task Code 



17 

 -  33 - BF - ES 

volatile uint timer_count = 0; 

void ISR(void) { 

  if(timer_count != 0) {  

    timer_count--; 

  } 

} 

int main(void) { 

  // initialization code 

  SysTickIntRegister(&ISR);   

  ... // other init 

  timer_count = 2000; 

  while(timer_count != 0) { 

    ... code to run for 2 seconds 

  } 

} 

Example:  

Do something for 2 seconds then stop 

volatile: C keyword to tell the 

compiler that this variable may 

change at any time, not (entirely) 

under the control of this program. 

static variable: declared outside 

main() puts them in statically 

allocated memory (not on the 

stack) 

Interrupt service routine 

Registering the ISR to be invoked 

on every SysTick interrupt 

 -  34 - BF - ES 

Example 

 



18 

 -  35 - BF - ES 

Embedded System Hardware 

Embedded system hardware is frequently used 

in a loop (“hardware in a loop“): 

 cyber-physical systems 

 -  36 - BF - ES 

Microcontrollers 

 Integrate several components of a microprocessor 

system onto one chip 
CPU, Memory, Timer, IO 

 Low cost,  

small packaging 

 Easy integration  

with circuits 

 Single-purpose 

 

 

PIC16C8X 



19 

 -  37 - BF - ES 

Application Specific Circuits (ASICS) 

or Full Custom Circuits  

 Approach suffers from 

 long design times, 

 lack of flexibility 

(changing standards) and 

 high costs 

(e.g. Mill. $ mask costs).  

 Custom-designed circuits 

necessary 

 if ultimate speed or 

 energy efficiency is the goal and 

 large numbers can be sold. 

 -  38 - BF - ES 

Energy 

© Hugo De Man, 

IMEC, Philips, 2007 



20 

 -  39 - BF - ES 

Low Power vs. Low Energy 

Consumption 

 Minimizing power consumption important for 

• the design of the power supply 

• the design of voltage regulators 

• the dimensioning of interconnect 

• short term cooling 

 Minimizing energy consumption important due to 

• restricted availability of energy (mobile systems) 

– limited battery capacities (only slowly improving) 

– very high costs of energy (solar panels, in space)  

• cooling 

– high costs 

– limited space 

• dependability  

• long lifetimes, low temperatures 

 -  40 - BF - ES 

Dynamic power management (DPM) 

 RUN: operational 

 IDLE: a SW routine 

may stop the CPU 

when not in use, while 

monitoring interrupts 

 SLEEP: Shutdown of 

on-chip activity 

RUN 

SLEEP IDLE 

400mW 

160µW 50mW 

90µs 

10µs 

10µs 
160ms 

Example: STRONGARM SA1100 

Power fault    

signal 



21 

 -  41 - BF - ES 

Fundamentals of dynamic voltage 

scaling (DVS) 

Power consumption of CMOS 

circuits (ignoring leakage): 

frequencyclock :

tagesupply vol:

ecapacitanc load:

activity switching:

with
2

f

V

C

fVCP

dd

L

ddL





 

) than  

voltage threshhold

  with

ddt

t

tdd

dd

L

VV

V

VV

V
Ck






(

:

2


Delay for CMOS circuits: 

[Courtesy, 

Yasuura, 2000] 

 -  42 - BF - ES 

Variable-voltage/frequency example: 

 INTEL Xscale 

F
ro

m
 I

n
te

l’s
 W

e
b

 S
it
e

 

OS should 

schedule 

distribution 

of the 

energy 

budget. 



22 

 -  43 - BF - ES 

Low voltage, parallel operation more efficient 

than high voltage, sequential operation 

Basic equations 

Power:      P ~ VDD² , 

Maximum clock frequency:   f ~ VDD , 

Energy to run a program:  E = P  t, with: t = runtime 

Time to run a program:   t ~ 1/f 

Changes due to parallel processing, with  operations per clock: 

Clock frequency reduced to:   f ’ = f / , 

Voltage can be reduced to:  VDD’ =VDD / , 

Power for parallel processing:  P° = P / ² per operation, 

Power for  operations per clock:  P’ =   P° = P / ,  

Time to run a program is still:   t’ = t, 

Energy required to run program:  E’ = P’  t = E /  

Argument in favour of voltage scaling, 

VLIW processors, and multi-cores  

Rough 

approxi-

mations! 

 -  44 - BF - ES 

Application: VLIW processing and vol-tage 

scaling in the Crusoe processor 

 VDD:   32 levels (1.1V - 1.6V) 

 Clock: 200MHz - 700MHz in increments of 33MHz 

 

Scaling is triggered when CPU load change is detected 

by software (~1/2 ms). 

 More load: Increase of supply voltage (~20 ms/step), 

followed by scaling clock frequency 

 Less load: reduction of clock frequency, followed by 

reduction of supply voltage 

Worst case (1.1V to 1.6V VDD, 200MHz to 700MHz) takes 

280 ms 



23 

 -  45 - BF - ES 

Result (as published by transmeta) 

[www.transmeta.com] 

Pentium Crusoe 

Running the same multimedia application. 

 -  46 - BF - ES 

Digital Signal Processing (DSP) 

Example: Filtering 

Signal at t=ts (sampling points) 



24 

 -  47 - BF - ES 

Filtering in digital signal processing 

outer loop over  

sampling times ts 

 

{ MR:=0; A1:=1; A2:=s-1; 

  MX:=w[s]; MY:=a[0]; 

  for (k=0; k <= (n−1); k++) 

   { MR:=MR + MX * MY; 

     MX:=w[A2]; MY:=a[A1]; 
     A1++; A2--; 

    } 

  x[s]:=MR; 

 } 

ADSP 2100 

 -  48 - BF - ES 

DSP-Processors:  multiply/accumulate (MAC) 

and zero-overhead loop (ZOL) instructions 

MR:=0; A1:=1; A2:=n-2; MX:=x[n-1]; MY:=a[0]; 

for ( j:=1 to n) 

  {MR:=MR+MX*MY; MY:=a[A1]; MX:=x[A2]; A1++; A2--} 

Multiply/accumulate (MAC) instruction Zero-overhead loop (ZOL) 

instruction preceding MAC 

instruction. 

Loop testing done in parallel to 

MAC operations. 



25 

 -  49 - BF - ES 

Heterogeneous registers 

MR 

MF 

MX MY 

* 
+,- 

AR 

AF 

AX AY 

+,-,.. 

D 
P 

Address 

generation 

unit (AGU) 

Address- 

registers 

A0, A1, A2 

.. 

 

Different functionality of registers An, AX, AY, AF,MX, MY, MF, MR 

Example (ADSP 210x): 

 -  50 - BF - ES 

Separate address generation units (AGUs) 

 Data memory can only be 

fetched with address contained 

in A, 

 but this can be done in parallel 

with operation in main data path 

(takes effectively 0 time). 

 A := A ± 1 also takes 0 time, 

 same for A := A ± M; 

 A := <immediate in instruction> 

requires extra instruction 

 

Example (ADSP 210x): 



26 

 -  51 - BF - ES 

Modulo addressing 

Modulo addressing: 

Am++  Am:=(Am+1) mod n 

(implements ring or circular 

buffer in memory) 

 

 

.. 

x[t1-1] 

x[t1] 

x[t1-n+1] 

x[t1-n+2] 

.. 

Memory, t=t1 Memory, t2=t1+1 

sliding window 
x 

t1 
t 

n most 

recent 

values 

.. 

x[t1-1] 

x[t1] 

x[t1+1] 

x[t1-n+2] 

.. 

 -  52 - BF - ES 

Returns largest/smallest number in case of over/underflows 

Example: 

a       0111 

b      +  1001 

standard wrap around arithmetic       (1)0000 

saturating arithmetic    1111 

(a+b)/2:  correct    1000 

  wrap around arithmetic  0000 

  saturating arithmetic + shifted 0111 

Appropriate for DSP/multimedia applications: 
• No timeliness of results if interrupts are generated for overflows 

• Precise values less important 

• Wrap around arithmetic would be worse. 

Saturating arithmetic 

„almost correct“ 



27 

 -  53 - BF - ES 

Multimedia-Instructions/Processors 

 Multimedia instructions exploit that many registers, 

adders etc are quite wide (32/64 bit), 

 whereas most multimedia data types are narrow 

(e.g. 8 bit per color, 16 bit per audio sample per channel) 

 2-8 values can be stored per register and added. E.g.: 

+ 

4 additions per instruction; 

carry disabled at word 

boundaries. 

 -  54 - BF - ES 

Key idea of very long instruction word 
(VLIW) computers 

 Instructions included in long instruction packets. 

Instruction packets are assumed to be executed in 

parallel. 

 Fixed association of packet bits with functional 

units. 



28 

 -  55 - BF - ES 

Very long instruction word (VLIW) architectures 

 Very long instruction word 

(“instruction packet”) contains several instructions, all of which are 

assumed to be executed in parallel. 

 Compiler is assumed to generate these “parallel” packets 

 Complexity of finding parallelism is moved from the hardware 

(RISC/CISC processors) to the compiler; 

Ideally, this avoids the overhead (silicon, energy, ..) of identifying 

parallelism at run-time. 

A lot of expectations into VLIW machines 

 Explicitly parallel instruction set computers (EPICs) are an 

extension of VLIW architectures: parallelism detected by compiler, 

but no need to encode parallelism in 1 word. 

 -  56 - BF - ES 

Large # of delay slots, 

a problem of VLIW processors 

add sub and or 

sub mult xor div 

ld st mv beq 



29 

 -  57 - BF - ES 

Large # of delay slots, 

a problem of VLIW processors 

add sub and or 

sub mult xor div 

ld st mv beq 

 -  58 - BF - ES 

Large # of delay slots, 

a problem of VLIW processors 

The execution of many instructions has been started before it is 

realized that a branch was required. 

Nullifying those instructions would waste compute power 

 Executing those instructions is declared a feature, not a bug. 

 How to fill all “delay slots“ with useful instructions? 

 Avoid branches wherever possible. 

add sub and or 

sub mult xor div 

ld st mv beq 


