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Overview of embedded systems design 
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Scheduling 

Scheduling: determine the order  

in which tasks are to be executed 

 

 Task ( process  thread): computation to be executed 

by the CPU in sequential fashion 

 Resources: processor(s) (also: memory, disks, busses, 

communcitation channels, ...) 

 Scheduler assigns resources to tasks  

for durations of time 

 Other shared resources with exclusive access may 

complicate scheduling 
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Point of departure: 

Scheduling general IT systems 

 In general IT systems, not much is known about the 

computational processes a priori 

 The set of processes to be scheduled is open: 

• New software may be inserted into the running system 

• Software is run with “random” activation patterns 

 The power of schedulers thus is inherently limited by lack of 

knowledge  only online scheduling is possible 
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Scheduling processes in ES: 

The difference in process charaterization 

 Most ES are “closed shops” 
 Task set of the system is known 

 at least part of their activation pattern is known 

• Periodic activation in, e.g., signal processing 

• Maximum activation frequencies of asynchronous events 
determinable from environment dynamics 
 minimal inter-arrival times 

 Possible to determine bounds on their execution time (WCET) 

(If they are well-built and we invest enough analysis effort) 

 

 

 Much better prospects for guaranteeing response times! 
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Scheduling processes in ES: 

The difference in goals 

 In classical OS, quality of scheduling is normally 

measured in terms of performance (throughput, reaction 

times) in the average case 

 In embedded real-time systems the schedules often 

have to meet stringent quality criteria under all possible 

execution scenarios: 

 Tasks are often connected with hard deadlines, which must be 

met under all circumstances  

 Real-time systems have to be designed for peak load. 

Scheduling should work for all anticipated situations. 
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Schedules 

Def.: Given a set of tasks J={J1, …, Jn},  

a schedule is a function  : R+ → {0..n} such that  

 t  R+,  t1, t2  R+.  t  [t1, t2)   t’  [t1, t2) (t) = (t’). 

 

In other words:  is an integer step function  

(t) = k, with k > 0, means that task Jk is executed at time t,  

(t) = 0 means that the CPU is idle. 

J1 J2 J3 

1 

2 

3 

(t) 

t1 t2 t3 t4 

t 
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Preemptive schedules 

Preemption: the running task is interrupted 

J1 

J2 

J3 

1 

2 

3 

(t) 

t 
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Timing constraints of an aperiodic task Ji 

 Arrival time ai: time at which task becomes ready for 
execution 

 Computation time Ci: time necessary to the processor 
for executing the task without interruption 

 Deadline di: time before which a task should be 
complete to avoid damage to the system 

 

 Slack time Xi: Xi = di – ai – Ci, maximum time a task can 
be delayed on its activation to complete within its 
deadline 

 

Ji 
ai di 

Ci 

0 
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Timing parameters of Ji in schedule 

 

 Start time si: time at which a tasks starts its execution 

 Finishing time fi: time at which task finishes its 
execution 

 Lateness Li: Li = fi – di, delay of task completion with 
respect to deadline 

 Exceeding time Ei: Ei = max(0, Li) 

Ji 
ai si fi di 

Ci 

0 
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Timing constraints of periodic task i 

 Phase i: activation time of first periodic instance 

 Period Ti: time difference between two consecutive 

activations 

 Relative deadline Di: time after activation time of an 

instance at which it should be complete 

i 
i 

Ci 

Ti 

Di 

i+(k-1)Ti 

Instance k Instance 1 

0 

 -  12 - BF - ES 

Precedence constraints 

Precedence constraints 

describe a partial order  

in which the tasks can 

be executed: 

 

J1  J2    J1  J3   

J2  J4    J2  J5 

J3  J6 

 

 

J1  J2 : J1 is a predecessor of J2  

 J1 must be executed before J2  

J2 J3 

J4 J5 J6 

J1 
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Schedulability 

A schedule is feasible, if all tasks can be completed 

according to a set of specified constraints. 

 

A set of tasks is schedulable if there exists at least one 

feasible schedule. 

 

Optimal schedule: Scheduling algorithms often aim at an 

optimal schedule with respect to a cost function 

Example: Maximum lateness (maxi Li) 
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Spectrum of scheduling algorithms 

 preemptive vs. non-preemptive: 

Preemptive: tasks may be interrupted  

Non-preemptive: tasks always run to completion 

 

 static vs. dynamic: 

Static scheduling: takes decisions at compile time 

Dynamic scheduling: takes decisions at runtime 

 

 uniprocessor vs. multiprocessor 

 

 optimal vs. heuristic 
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Uniprocessor aperiodic task scheduling 

 -  16 - BF - ES 

Aperiodic tasks with synchronous release 

 A set of (aperiodic) tasks {J1, …, Jn} with 

 arrival times ai = 0  1  i  n, i.e. “synchronous” arrival times 

 deadlines di,  

 computation times Ci 

 no precedence constraints, i.e. “independent tasks” 

 non-preemptive 

 single processor 

 optimal 

 find schedule which minimizes maximum lateness 

(variant: find feasible solution) 
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Preemption 

 Lemma:  

If arrival times are synchronous, then preemption does not help, i.e. if 

there is a preemptive schedule with maximum lateness Lmax, then 

there is also a non-preemptive schedule with maximum lateness Lmax.  
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Proof 

 Consider a preemptive schedule with maximum 

lateness Lmax. 

 If there is a task which is preempted, then choose the 

last point t of preemption. Let Jl be the task 

preempted in the schedule. Reshuffle the schedule 

by postponing all of Jl‘s runtime allocated immediately 

before t s.t. that it happens immediately before the 

time t’ of resumption of Jl, thus removing the 

preemption at t. This will not change the lateness of  

Jl and will at most reduce lateness of all other tasks, 

as those are unaffected or shuffled forward. 

 Repeat this reshuffling until there is no further 

preemption. 
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EDD – Earliest Due Date  

EDD: execute the tasks in order of non-decreasing deadlines  

Example 1: 

J1 J2 J3 J4 J5 

Ci 1 1 1 3 2 

di 3 10 7 8 5 

0    1    2     3    4    5     6    7    8     9   10   11  12  13   14  15 

t 
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EDD 

Example 2: 

J1 J2 J3 J4 J5 

Ci 1 2 1 4 2 

di 2 5 4 8 6 

0    1    2     3    4    5     6    7    8     9   10   11  12  13   14  15 

t 
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EDD 

 Theorem (Jackson ’55): 

Given a set of independent tasks with synchronous arrival times, 

any algorithm that executes the tasks in order of non-decreasing 

deadlines is optimal with respect to minimizing the maximum 

lateness. 

 

 Remark: Minimizing maximum lateness includes finding a feasible 

schedule, if it exists. The reverse is not necessarily true. 
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EDD  

 Complexity of EDD scheduling: 

 Sorting n tasks by increasing deadlines 

 O(n log n)  

 

 Test of Schedulability: 
If the conditions of the EDD algorithm are fulfilled,  
schedulability can be checked in the following way: 

 Sort task wrt. non-decreasing deadline.  
Let w.l.o.g. J1, …, Jn be the sorted list. 

 Check whether in an EDD schedule fi  di  i = 1, …, n. 
Since fi = k=1

i Ck, we have to check 
 
     i = 1, …, n   k=1

i Ck  di 

 

 Since EDD is optimal, non-schedulability by EDD  
implies non-schedulability in general. 
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Aperiodic tasks with asynchronous release 

 A set of (a-periodic) tasks {J1, …, Jn} with 

 arbitrary arrival times ai  

 deadlines di,  

 computation times Ci 

 no precedence constraints, i.e., “independent tasks” 

 preemptive  

 Single processor 

 Optimal 

 Find schedule which minimizes maximum lateness 

(variant: find feasible solution) 
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EDF – Earliest Deadline First 

 At every instant, execute the task with the earliest 

deadline among all the ready tasks. 

 

 Remark: 

1. If a new task arrives with an earlier deadline than the running 

task, the running task is immediately preempted. 

2. Here we assume that the time needed for context switches is 

negligible (we’ll later see that this is unrealistic). 
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EDF - Example 

J1 J2 J3 J4 J5 

ai 0 0 2 3 6 

Ci 1 2 2 2 2 

di 2 5 4 10 9 

J3 

J4 

J5 

J2 

J1 

0     1      2      3     4      5     6      7     8      9     10 
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EDF  

 Theorem (Horn ’74): 

Given a set of independent task with arbitrary arrival times, any 

algorithm that at every instant executes the task with the earliest 

deadline among all the ready tasks is optimal with respect to 

minimizing the maximum lateness. 
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Non-preemptive version 

 Changed problem: 

 A set of (a-periodic) tasks {J1, …, Jn} with 

• arbitrary arrival times ai  

• deadlines di,  

• computation times Ci 

• no precedence constraints, i.e., “independent tasks” 

 Non-preemptive instead of preemptive scheduling 

 Single processor 

 Optimal 

 Find schedule which minimizes maximum lateness (variant: find 

feasible solution) 
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 Non-preemptive EDF schedule: 

 

 

 

 

 Optimal schedule: 

Example J1 J2 

ai 0 1 

Ci 4 2 

di 7 5 

J1 

J2 
0     1      2      3     4      5     6      7     8      9     10 

J1 

J2 
0     1      2      3     4      5     6      7     8      9     10 
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Example 

 Observation: 

 In the optimal schedule the processor remains idle in intervall 

[0,1) although task J1 is ready to execute. 

 If arrival times are not known a-priori, then no on-line 

algorithm is able to decide whether to stay idle at time 0 

or to execute J1. 

 

 Theorem (Jeffay et al. ’91): EDF is an optimal non-idle 

scheduling algorithm also in a non-preemptive task 

model. 
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Non-preemptive scheduling: better schedules through 

introduction of idle times 

 Assumptions: 
 Arrival times known a priori. 

 Non-preemptive scheduling 

 “Idle schedules” are allowed.  

 Goal: 
 Find feasible schedule  

 

 Problem is NP-hard. 

 

 Possible approaches: 
 Heuristics  

 Branch-and-bound 
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Bratley’s algorithm 

 Bratley’s algorithm 

 Finds feasible schedule by branch-and-bound, if there exists one 

 Schedule derived from appropriate permutation of tasks J1, …, Jn 

 Starts with empty task list 

 Branches: Selection of next task (one not scheduled so far) 

 Bound: 

• Feasible schedule found at current path -> search path 

successful 

• There is some task not yet scheduled whose addition causes 

a missed deadline -> search path is blind alley 
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Bratley’s algorithm 

 Example: 

 J1 J2 J3 J4 

ai 4 1 1 0 

Ci 2 1 2 2 

di 7 5 6 4 
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Bratley’s algorithm 

 Due to exponential worst-case complexity only 

applicable as off-line algorithm. 

 

 Resulting schedule stored in task activation list. 

 At runtime: dispatcher simply extracts next task from 

activation list. 
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Case 3: Scheduling with precedence constraints 

 Non-preemptive scheduling with non-synchronous 

arrival times, deadlines and precedence constraints is 

NP-hard. 

 

 Here restriction:  synchronous arrival times  

(all tasks arrive at 0)  
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Example 

J1 J2 J3 J4 J5 J6 

ai 0 0 0 0 0 0 

Ci 1 1 1 1 1 1 

di 2 5 4 3 5 6 

J2 J3 

J4 J5 J6 

J1 
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Example 

One of the following algorithms is optimal. Which one? 

Algorithm 1: 

1. Among all sources in the 

precedence graph select the 

task T with earliest deadline. 

Schedule T first. 

2. Remove T from G. 

3. Repeat.  

Algorithm 2: 

1. Among all sinks in the 

precedence graph select the 

task T with latest deadline. 

Schedule T last. 

2. Remove T from G. 

3. Repeat.  
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Example (continued) 

 Algorithm 1: 

0          1           2          3           4           5           6          7 

t 

d1 d5 d3 d4 d2 

J2 J3 

J4 J5 J6 

J1 2 

5 4 

3 5 6 

d6 
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Example (continued) 

 Algorithm 2: 

J2 J3 

J4 J5 J6 

J1 2 

5 4 

3 5 6 

0          1           2          3           4           5           6          7 

t 

d1 d5 d3 d4 d2 d6 
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Example (continued) 

 Algorithm 1 is not optimal. 

 Algorithm 1 is the generalization of EDF to the case with 

precedence conditions. 

 

 Is Algorithm 2 optimal? 

 Algorithm 2 is called Latest Deadline First (LDF). 

 

 Theorem (Lawler 73):  

LDF is optimal wrt. maximum lateness. 
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LDF 

 LDF is optimal. 

 LDF can be applied only as off-line algorithm. 

 

 Complexity of LDF: 

 O(|E|) for repeatedly computing the current set  of tasks with no 

successors in the precedence graph G = (V, E). 

 O(log n) for inserting tasks into the ordered set  (ordering wrt. di). 

 Overall cost: O(n * max(|E|,log n)) 

 


