Embedded Systems

BF -ES

15

REVIEW: Aperiodic scheduling

J“I E—

0 & Si fi

= Given:
= A set of non-periodic tasks {J, ..., J,,} with
« arrival times a;, deadlines d,, computation times C;
» precedence constraints
* resource constraints
= Class of scheduling algorithm:
* Preemptive, non-preemptive
» Off-line / on-line
« Optimal / heuristic
* One processor / multi-processor
= Cost function:
* Minimize maximum lateness
= Find:
= Feasible schedule
= Optimal schedule according to given cost function

BF - ES

REVIEW: EDD - Earliest Due Date

EDD: execute the tasks in order of non-decreasing deadlines

= Lemma:
If arrival times are synchronous, then preemption does not help, i.e.
if there is a preemptive schedule with maximum lateness L,,,, then
there is also a non-preemptive schedule with maximum lateness L.

= Theorem (Jackson ’55):
Given a set of n independent tasks with synchronous arrival times,
any algorithm that executes the tasks in order of non-decreasing
deadlines is optimal with respect to minimizing the maximum lateness.

BF - ES -3-

REVIEW: EDF — Earliest Deadline First

= EDF: At every instant execute the task with the earliest
absolute deadline among all the ready tasks.

* Theorem (Horn '74):
Given a set of n independent task with arbitrary arrival
times, any algorithm that at every instant executes the
task with the earliest absolute deadline among all the
ready tasks is optimal with respect to minimizing the
maximum lateness.

BF -ES - 4-

REVIEW: Non-preemptive version

= Theorem (Jeffay et al. '91): EDF is an optimal non-idle
scheduling algorithm also in a non-preemptive task
model.

» Non-preemptive scheduling with idle schedules allowed
is NP-hard

» Possible approaches:
» Heuristics
= Bratley's algorithm: Branch-and-bound

BF - ES -5-

REVIEW: Scheduling with precedence constraints

» Non-preemptive scheduling with non-synchronous
arrival times, deadlines and precedence constraints is
NP-hard.

» LDF for synchronous arrival times
(all tasks arrive at 0)

BF -ES - 6-

d, d, d; dgd, dg
’})A|¢\JL%(‘)L&%})3 %g\)g {\\C ‘l L\M”\/K’L(b
{ 1 1 1 1 1 1 1 t
0 1 2 3 4 5 6 7

BF -ES -7-

LDF

Theorem (Lawler 73):
LDF is optimal wrt. maximum lateness.

ek = Ll ol

Tel st vt A\Accﬂim
' c ot Akt deaddin
bt v Je

W

Q [~ (B Tl e e o it
oo Bk we com W de
S Cad -M(’,\ 4 {’(——L— (LCL—A"'“‘S
we vl P Mw«
A AT (heasme e weeX-
BF - ES ?/\ -

e

/L) Fruulaa howet welehyl
((\L doer wof Lo SMLcmof\)

L) L'u_o\x = X { L|WAX (A)/ LLex (%)/ UL\ J Llﬁ—l

L!:«w (A)= [/u,x-,-x(/‘\') MSKM\-J AAa_JA_J\ \
Lo (B) ¢ Luaax (B) shodo !;z,-o‘h N
s}edh 4,(/\,9Q ul-r('«k,i

Ll\(¢ L\r\
<Y G- A = L
et

{

Le

1

h
Y Ci ™ 0&2.
12t

R
Ren yr oot ©

BF - ES -9-

Preemptive

» Non-preemptive scheduling with non-synchronous
arrival times, deadlines and precedence constraints is
NP-hard.

» Modified EDF for preemptive scheduling,
arbitrary arrival times

BF - ES - 10 -

EDF with precedence constraints

1. Modify arrival times
= For any initial node J; of the precedence graph,
set a* ;= a.
= For any task J; such that all predecessors have been processed,
set a* := max {a;, a,*+C,, | J, > J;}

2. Modify deadlines

= For any terminal node J; of the precedence graph,
set d* := d.

= For any task Ji such that all successors have been processed,
set d* := min {d;, d,*-C,, | J; = J;.}

(3, —> J;: J, is a direct predecessor of J))

BF -ES 11 -
Example Ji|J2|J5]Ja]J5 | Js (3)
Al 2313 |7 |W
Al1lo0|3|1]1]1
Cli|1l1]|1|1]1 @ @
23| S| |6
d|5|5|6|7|4]|6 @ @ @
L
1 T T T T T
N CZEEE
2 T T T T T T T T
J 1 1 /(l\ l(%;/ 1 1
3 T T T T T T T T
J | | /\(\ | I \M/
4 T T T T T T T T
Ml
Js —t— fi\ ‘(_/Jl
‘]6 f f ?%\\/ f f f f

0 1
BF - ES - 12-

EDF with precedence constraints

Theorem: The given task set is schedulable such that the
precedence constraints are met if and only if the modified
task set is schedulable under EDF.
I -1 u l(‘\ {—(_ﬂ.jl‘ gLLcLLG Gk weeh Ho q?\'(—“h—k
et | L Lﬁm\fikf /
{Q(SL - & -z
S; % maxX

st Mc;oh—ckléi’" ol
fe = Ko
—y € 1 &MMFJ@MP
tom
‘e e Jo <y v (”;"‘ (L
[
0\1; < ﬁi‘; a4 ”AL ¢ AQ
U & 075 ft] T
oo eredy &
=)) conrl M L»Jrj :
wott)¢
ot
: (Ve Mo o saified
e EF
=) () £,). _ d{vut: CMWL’O
g e i ®)
OLXL el L Coy e

BF - ES - 14 -

Optimal scheduling algorithms for
periodic tasks

BF -ES - 15-

Periodic scheduling

Instance 7, ; D Instance T, ;
C'
- L | -'l - /— l
0 &
' T, DAG-1)T,

= Given: !
= A set of periodic tasks I = {t4, ..., 7} with
+ phases @; (arrival times of first instances of tasks),
+ periods T; (time difference between two consecutive activations)
+ relative deadlines D; (deadline relative to arrival times of instances)
+ computation times C;
= jthinstance g ; of task t; with
* arrival time a; ; = ©; + (j-1) T,
* deadlined, ;= @ + (j-1) T, + D,
= Find afeasible schedule
* starttime s; ; and

+ finishing time f; ;
BF - ES - 16 -

Assumptions

A.1. Instances of periodic task t; are regularly activated with constant
period T;.

A.2. All instances have same worst case execution time C,.

A.3. All instances have same relative deadline D;, here in most cases
equalto T;(i.e., d; j=@;+j - T))

A.4. All tasks in T are independent.

A.5. Overhead for context switches is neglected, i.e. assumed to be 0
in the theory.

" Basic results based on these assumptions form the core of
scheduling theory.

" For practical applications, assumptions A.3. and A.4. can be
relaxed, but results have to be extended.

BF - ES -17-

Examples for periodic scheduling (1)

T T
@ | 0|0
T 12| 4
Cl|1l]2
Di|1]| 4

e B O S
) B Bl B e W B S

0 10 11 12

= Schedulable, but only preemptive schedule possible.

BF - ES - 18-

Examples for periodic scheduling (2)

T %
® |00
T2 | 4
Cl|1]|2
Di| 2| 4

= Schedulable with non-preemptive schedule.

BF -ES -19-

Examples for periodic scheduling (3)

T.T. =L
T | T2 5 ¢
® |00 Litoe AL boch>
LI Ay exeshiond Ty
cl2]2 3
D |34 Ar _ peesttor h T

» No feasible schedule for single processor.
b \ Tq
rL = g Uan L\
kL= Loy T o
3L

—

BF - ES - 20-

10

Processor utilization

Definition:
Given a set I" of n periodic tasks, the processor
utilization U is given by

=

BF -ES - 21-

Processor utilization as a schedulability criterion

= Given: a scheduling algorithm A
= Define U,4(A) =inf {U(I') | T" is not schedulable by algorithm A}.

= If Uppg(A) > 0 then a simple, sufficient criterion for schedulability by
A can be based on processor utilization:
= |f U(T) < Up4(A) then T is schedulable by A.

= However, if U, 4(A) < U(') < 1, then I" may or may not be schedulable
by A.

= Question:
Does a scheduling algorithm A exist with U, 4(A) = 1?

BF - ES - 22.-

11

Processor utilization

= Question:
Does a scheduling algorithm A exist with U, ,4(A) = 1?

= Answer:
= No, if D; < T, allowed.

= Example:
T T
® (0|0
T12]|2
Cl1l|1
D;|1]1

* Yes, if D;=T, (or D;2 T,)) Earliest Deadline First (EDF)
= In the following: assume D; =T,

BF -ES - 23-

Earliest Deadline First (EDF)

= EDF is applicable to both periodic and aperiodic tasks.

= |f there are only periodic tasks, priority-based schemes
like “rate monotonic scheduling (RM)” (see later) are
often preferred, since

= They are simpler due to fixed priorities
= use in “standard OS” possible

= sorting wrt. to deadlines at run time is not needed

BF - ES - 24-

12

EDF and processor utilization factor

= Theorem: A set of periodic tasks 1y, ..., T, with D, = T, is
schedulable with EDF iff U < 1.

5t DLt U T
i T ¢ e e b“ -
0 ol sk Ll !
% 0T = WT
= Tc
s Lo | Tlaew utT>T aAh
/w&: b s
BF - ES - 25-

Yet Ame IA&(@AAK.FQM;BM
IS ~SchedrlaH. .
: N (ST S L e BOE.
bj;_if\& Lubu\l\ e Yk wltiw ih desdlita
s

t
/{:" Y (\\ |L Lk E)C,.(tJ
[\ - be G Loyt
l(B i} ‘(bk 0.t
//_ .
W N
{\.A\(‘D~w\
- a(;\t Aea iy

L & o™

MU”H'

BF - ES - 26-

13

\'G..LU\ exces hd o C&a | f,.,‘}
&,\/\/\‘V'Qk "\w)/ -{:/‘

C,Q_Dw\""‘ B '_(-(’"‘

(<M :
“ =) No MwM L"\’(M UYL\
otk &6 €
A RNt
S (abeteh™ fe W
— C(:xxltd vk Lfen t/)
Tw b PR 0T
(pusx \ L & og\!_;f)g_jugbw? L(A s o_,\mrmké@
Das o Bl et KK

BF - ES - 27-

g okl iy Dby) Lae dedhn
o) Wk bele O T8 L e 26

Ti e W\,},uu a,a' {37,"

(t,_"t'\) < 2 C

O\L‘/}-7/t’\
ok[ljé'kv,
W) og, -6 J (:
= ft_//_ v\L
“ ¢ =l e — &L
Y é—;{ (T (tfm‘?: e
1= ¢ _ (- £.)-h

BF - ES ___/—Z_Mi‘ - 28-

Rate monotonic scheduling (RM)

= Rate monotonic scheduling (RM) (Liu, Layland ’73):
= Assign fixed priorities to tasks t;:
* priority(t) = 1T,
* l.e., priority reflects release rate
= Always execute ready task with highest priority

= Preemptive: currently executing task is preempted by newly
arrived task with shorter period.

BF -ES

- 29-

Example for RM (1)

T | 1o | T3 .
o|olofo R (’n\w\}\‘ (5)
T | 4612

clal1]a

D | 4612

BF -ES

- 30-

15

Example for RM (2)

Z
AR (AZ E- - 4//1_ -
®|0]|0]0 koS (e
T.|4|5]|10
cl2lz2]1
D|4|5]|10
’Cll | il Il L\W‘\ Il /]\L\Wl 1\\
A q
o U
T T T T T T I I I I I I I \(I
3 4 5 6 7 8 10 11 g2 O
NON_ WVS%‘\ ((k/&
BF - ES - 31-

Optimality of Rate Monotonic Scheduling

» Theorem (Liu, Layland, 1973):
RM is optimal among all fixed-priority scheduling
algorithms.

= Def.: The response time R, ; of an instance j of task i is
the time (measured from the arrlval time) at which the
instance is finished: R, ; =f, ;- & ;.

= The critical instant of a task is the time at which the

arrival of the task will produce the largest response time.

BF - ES - 32-

16

Response times and critical instants

= Observation:
For RM, the critical instant t of a task r; is given by the
time when 1 ; arrives together with all tasks 1, ..., 74

with higher priority.
\

¢, +2¢,

Y,) — 1 4]1_\
o B (|

)2
f — (/’, AR
(=

o1 A—

f

Nl

BF -ES - 33-

17

