
1

 - 1 - BF - ES

Embedded Systems 15

 - 2 - BF - ES

REVIEW: Aperiodic scheduling

 Given:
 A set of non-periodic tasks {J1, …, Jn} with

• arrival times ai, deadlines di, computation times Ci

• precedence constraints

• resource constraints

 Class of scheduling algorithm:

• Preemptive, non-preemptive

• Off-line / on-line

• Optimal / heuristic

• One processor / multi-processor

• …

 Cost function:

• Minimize maximum lateness

• …

 Find:
 Feasible schedule

 Optimal schedule according to given cost function

Ji
ai si fi di

Ci

0

2

 - 3 - BF - ES

REVIEW: EDD – Earliest Due Date

EDD: execute the tasks in order of non-decreasing deadlines

 Lemma:

If arrival times are synchronous, then preemption does not help, i.e.

if there is a preemptive schedule with maximum lateness Lmax, then

there is also a non-preemptive schedule with maximum lateness Lmax.

 Theorem (Jackson ’55):

Given a set of n independent tasks with synchronous arrival times,

any algorithm that executes the tasks in order of non-decreasing

deadlines is optimal with respect to minimizing the maximum lateness.

 - 4 - BF - ES

REVIEW: EDF – Earliest Deadline First

 EDF: At every instant execute the task with the earliest

absolute deadline among all the ready tasks.

 Theorem (Horn ’74):

Given a set of n independent task with arbitrary arrival

times, any algorithm that at every instant executes the

task with the earliest absolute deadline among all the

ready tasks is optimal with respect to minimizing the

maximum lateness.

3

 - 5 - BF - ES

REVIEW: Non-preemptive version

 Theorem (Jeffay et al. ’91): EDF is an optimal non-idle

scheduling algorithm also in a non-preemptive task

model.

 Non-preemptive scheduling with idle schedules allowed
is NP-hard

 Possible approaches:
 Heuristics

 Bratley’s algorithm: Branch-and-bound

 - 6 - BF - ES

REVIEW: Scheduling with precedence constraints

 Non-preemptive scheduling with non-synchronous

arrival times, deadlines and precedence constraints is

NP-hard.

 LDF for synchronous arrival times

(all tasks arrive at 0)

4

 - 7 - BF - ES

REVIEW: LDF – Latest Deadline First

J2 J3

J4 J5 J6

J1 2

5 4

3 5 6

0 1 2 3 4 5 6 7

t

d1 d5 d3 d4 d2 d6

 - 8 - BF - ES

LDF

Theorem (Lawler 73):

LDF is optimal wrt. maximum lateness.

5

 - 9 - BF - ES

 - 10 - BF - ES

Preemptive

 Non-preemptive scheduling with non-synchronous

arrival times, deadlines and precedence constraints is

NP-hard.

 Modified EDF for preemptive scheduling,

arbitrary arrival times

6

 - 11 - BF - ES

EDF with precedence constraints

1. Modify arrival times

 For any initial node Ji of the precedence graph,

set ai* := ai.

 For any task Ji such that all predecessors have been processed,

set ai* := max {ai, ah*+Ch  Jh  Ji}

2. Modify deadlines

 For any terminal node Ji of the precedence graph,

set di* := di.

 For any task Ji such that all successors have been processed,

set di* := min {di, dh*-Ch  Ji  Jh}

(Jh  Ji : Jh is a direct predecessor of Ji)

 - 12 - BF - ES

Example J1 J2 J3 J4 J5 J6

Ai

1

0

3

1

1

1

Ci 1 1 1 1 1 1

di

5

5

6

7

4

6

J2 J3

J4 J5 J6

J1

J3

J4

J6

J2

J1

0 1 2 3 4 5 6 7 8 9 10

J5

7

 - 13 - BF - ES

EDF with precedence constraints

Theorem: The given task set is schedulable such that the

precedence constraints are met if and only if the modified

task set is schedulable under EDF.

 - 14 - BF - ES

8

 - 15 - BF - ES

Optimal scheduling algorithms for

periodic tasks

 - 16 - BF - ES

Periodic scheduling

 Given:

 A set of periodic tasks  = {1, …, n} with

• phases i (arrival times of first instances of tasks),

• periods Ti (time difference between two consecutive activations)

• relative deadlines Di (deadline relative to arrival times of instances)

• computation times Ci

  j th instance i, j of task i with

• arrival time ai, j = i + (j-1) Ti,

• deadline di, j = i + (j-1) Ti + Di,

 Find a feasible schedule

• start time si, j and

• finishing time fi, j

i
i

Ci

Ti

Di

i+(j-1)Ti

Instance i, j Instance i, 1

0

9

 - 17 - BF - ES

Assumptions

A.1. Instances of periodic task i are regularly activated with constant
period Ti.

A.2. All instances have same worst case execution time Ci.

A.3. All instances have same relative deadline Di, here in most cases
equal to Ti (i.e., di, j = i + j  Ti)

A.4. All tasks in  are independent.

A.5. Overhead for context switches is neglected, i.e. assumed to be 0
in the theory.

 Basic results based on these assumptions form the core of
scheduling theory.

 For practical applications, assumptions A.3. and A.4. can be
relaxed, but results have to be extended.

 - 18 - BF - ES

Examples for periodic scheduling (1)

1 2

i 0 0

Ti 2 4

Ci 1 2

Di 1 4

1

2
0 1 2 3 4 5 6 7 8 9 10 11 12

 Schedulable, but only preemptive schedule possible.

10

 - 19 - BF - ES

Examples for periodic scheduling (2)

1 2

i 0 0

Ti 2 4

Ci 1 2

Di 2 4

1

2
0 1 2 3 4 5 6 7 8 9 10 11 12

 Schedulable with non-preemptive schedule.

 - 20 - BF - ES

Examples for periodic scheduling (3)

1 2

i 0 0

Ti 3 4

Ci 2 2

Di 3 4

 No feasible schedule for single processor.

11

 - 21 - BF - ES

Processor utilization

Definition:

Given a set  of n periodic tasks, the processor

utilization U is given by

 - 22 - BF - ES

Processor utilization as a schedulability criterion

 Given: a scheduling algorithm A

 Define Ubnd(A) = inf {U() |  is not schedulable by algorithm A}.

 If Ubnd(A) > 0 then a simple, sufficient criterion for schedulability by

A can be based on processor utilization:

 If U() < Ubnd(A) then  is schedulable by A.

 However, if Ubnd(A) < U() ≤ 1, then  may or may not be schedulable

by A.

 Question:

Does a scheduling algorithm A exist with Ubnd(A) = 1?

12

 - 23 - BF - ES

Processor utilization

 Question:

Does a scheduling algorithm A exist with Ubnd(A) = 1?

 Answer:

 No, if Di < Ti allowed.

 Example:

 Yes, if Di = Ti (or Di ≥ Ti)) Earliest Deadline First (EDF)

 In the following: assume Di = Ti

1 2

i 0 0

Ti 2 2

Ci 1 1

Di 1 1

 - 24 - BF - ES

Earliest Deadline First (EDF)

 EDF is applicable to both periodic and aperiodic tasks.

 If there are only periodic tasks, priority-based schemes

like “rate monotonic scheduling (RM)” (see later) are

often preferred, since

 They are simpler due to fixed priorities

 use in “standard OS” possible

 sorting wrt. to deadlines at run time is not needed

13

 - 25 - BF - ES

EDF and processor utilization factor

 Theorem: A set of periodic tasks 1, ..., n with Di = Ti is

schedulable with EDF iff U  1.

 - 26 - BF - ES

14

 - 27 - BF - ES

 - 28 - BF - ES

15

 - 29 - BF - ES

Rate monotonic scheduling (RM)

 Rate monotonic scheduling (RM) (Liu, Layland ’73):
 Assign fixed priorities to tasks i:

• priority(i) = 1/Ti

• I.e., priority reflects release rate

 Always execute ready task with highest priority

 Preemptive: currently executing task is preempted by newly
arrived task with shorter period.

 - 30 - BF - ES

Example for RM (1)

2

3

0 1 2 3 4 5 6 7 8 9 10 11 12

1 2 3

i 0 0 0

Ti 4 6 12

Ci 2 1 4

Di 4 6 12

1

16

 - 31 - BF - ES

Example for RM (2)

1 2 3

i 0 0 0

Ti 4 5 10

Ci 2 2 1

Di 4 5 10

2

3

0 1 2 3 4 5 6 7 8 9 10 11 12

1

 - 32 - BF - ES

Optimality of Rate Monotonic Scheduling

 Theorem (Liu, Layland, 1973):

RM is optimal among all fixed-priority scheduling

algorithms.

 Def.: The response time Ri, j of an instance j of task i is

the time (measured from the arrival time) at which the

instance is finished: Ri, j = fi, j – ai, j.

 The critical instant of a task is the time at which the

arrival of the task will produce the largest response time.

17

 - 33 - BF - ES

Response times and critical instants

 Observation:

For RM, the critical instant t of a task i is given by the

time when i, j arrives together with all tasks 1, ..., i-1

with higher priority.

