
1

 - 1 - BF - ES

Embedded Systems 16

 - 2 - BF - ES

Info

 Midterm exam inspection

tomorrow Friday June 22 2-3pm

in room 528, E1.3

 Lecture on Tuesday June 26

in HS 1 / Mathematics

2

 - 3 - BF - ES

REVIEW: Periodic scheduling

 Given:

 A set of periodic tasks  = {1, …, n} with

• phases i (arrival times of first instances of tasks),

• periods Ti (time difference between two consecutive activations)

• relative deadlines Di (deadline relative to arrival times of instances)

• computation times Ci

  j th instance i, j of task i with

• arrival time ai, j = i + (j-1) Ti,

• deadline di, j = i + (j-1) Ti + Di,

 Find a feasible schedule

• start time si, j and

• finishing time fi, j

i
i

Ci

Ti

Di

i+(j-1)Ti

Instance i, j Instance i, 1

0

 - 4 - BF - ES

REVIEW: Processor utilization

 Define Ubnd(A) = inf {U() |  is not schedulable by algorithm A}.

 If Ubnd(A) > 0 then a simple, sufficient criterion for schedulability by

A can be based on processor utilization:

 If U() < Ubnd(A) then  is schedulable by A.

 However, if Ubnd(A) < U() ≤ 1, then  may or may not be schedulable

by A.

 Theorem: A set of periodic tasks 1, ..., n with Di = Ti is

schedulable with EDF iff U  1.

3

 - 5 - BF - ES

REVIEW: Rate monotonic scheduling (RM)

 Rate monotonic scheduling (RM) (Liu, Layland ’73):
 Assign fixed priorities to tasks i:

• priority(i) = 1/Ti

• I.e., priority reflects release rate

 Always execute ready task with highest priority

 Preemptive: currently executing task is preempted by newly
arrived task with shorter period.

 - 6 - BF - ES

Optimality of Rate Monotonic Scheduling

 Theorem (Liu, Layland, 1973):

RM is optimal among all fixed-priority scheduling

algorithms.

 Def.: The response time Ri, j of an instance j of task i is

the time (measured from the arrival time) at which the

instance is finished: Ri, j = fi, j – ai, j.

 The critical instant of a task is the time at which the

arrival of the task will produce the largest response time.

4

 - 7 - BF - ES

REVIEW: Response times and critical instants

 Observation:

For RM, the critical instant t of a task i is given by the

time when i, j arrives together with all tasks 1, ..., i-1

with higher priority.

 - 8 - BF - ES

Response times and critical instants

 For our “worst case task sets” we focus on the critical

instants where an instance of a task arrives together

with all higher priority tasks.

 A task set is schedulable, if the response time at these

critical instants is not larger than the relative deadline.

5

 - 9 - BF - ES

Non-RM Schedule

2

1

0 T2

Schedule feasible iff C1 + C2  T1

 - 10 - BF - ES

RM-Schedule

 Let F = T2 / T1 be the number of periods of 1 entirely

contained in T2.

 Case 1:

• The computation time C1 is short enough, so that all

requests of 1 within period of 2 are completed before

second request of 2.

• I.e. C1 ≤ T2 – F T1

Schedule feasible if (F+1)C1 + C2  T2

2

1

0 FT1 T2

6

 - 11 - BF - ES

RM-Schedule

 Case 2:

• The second request of 2 arrives when 1 is running.

• I.e. C1 ≥ T2 – F T1

Schedule feasible if FC1 + C2  FT1

2

1

0 FT1 T2

 - 12 - BF - ES

Proof of Liu/Layland

7

 - 13 - BF - ES

 - 14 - BF - ES

Computation of Ubnd(RM)

 We focus on task sets with 2 tasks (general case: n tasks)

 Computation of

Ubnd(RM, 2) = inf {U() |  is not schedulable by RM, || = 2}.

 Idea:

 Construct set of tasks with following properties:

1. Set of tasks is schedulable by RM.

2. Any increase of computation times makes

the set of tasks non-schedulable.

3. Processor utilization is minimal under properties 1. and 2.

8

 - 15 - BF - ES

Computation of Ubnd(RM, 2)

Worst case situation constructed for 2 processes:

0

2

1

idle times

 - 16 - BF - ES

Computation of Ubnd(RM, 2)

 Consider a set of 2 periodic tasks 1 and 2 with T1 ≤ T2

 priority(1) > priority(2).

 We consider the critical instant when 1 and 2 arrive at

the same time.

 We construct a worst case scenario where any increase

of computation times destroys schedulability

and minimize the processor utilization.

This is done by manipulating

 computation times C1 and C2 and

 T1 and T2 (more precisely T2 / T1)

9

 - 17 - BF - ES

Case 1: C1 ≤ T2 – F T1

2

1

0 FT1 T2

 - 18 - BF - ES

10

 - 19 - BF - ES

Case 2: C1 ≥ T2 – F T1

2

1

0 FT1 T2

 - 20 - BF - ES

11

 - 21 - BF - ES

Manipulating T2/T1

 - 22 - BF - ES

12

 - 23 - BF - ES

 - 24 - BF - ES

13

 - 25 - BF - ES

Computation of Ubnd(RM)

 Result for two processes:

Any set of two periodic tasks with a processor utilization

factor ≤ can be scheduled by RM.

 Similarly, for the general case of n processes the

following can be shown:

Any set of n periodic tasks with a processor utilization

factor ≤ can be scheduled by RM. Ubnd

Ubnd

 - 26 - BF - ES

Computation of Ubnd(RM)

 Any set of n periodic tasks with a processor utilization

factor ≤ can be scheduled by RM.

 Ubnd is decreasing with n and converges to ln 2  0.69

for n  

Ubnd

14

 - 27 - BF - ES

Schedulability check

 Hence, a set of tasks can be scheduled by RM if

U < Ubnd(RM) = ln 2  0.69

 But what can we say about schedulability when

processor utilization factor is larger than ?

 We can compute a more precise result, if we make use

of the knowledge of periods Ti and computation times Ci.

 - 28 - BF - ES

Schedulability check

 Compute an upper bound Ri on the response time:

 Suppose that 1, ..., n are ordered with increasing

periods (i.e. decreasing priorities).

 Consider an arbitrary periodic task i.

 At a critical instant t, when an instance of i arrives

together with all higher priority tasks, we have:

• Ri = Ci + k=1
i-1 (# activations of k during [t, t + Ri])  Ck

 = Ci + k=1
i-1 Ri/Tk  Ck

15

 - 29 - BF - ES

Schedulability check

 Compute the following sequence:

 Ri
(0) = Ci.

 Ri
(j+1) = Ci + k=1

i-1 Ri
(j) / Tk  Ck.

 It is easy to see that this sequence is monotonically

increasing, i.e., f(x) = Ci + k=1
i-1 x / Tk  Ck is

monotonically increasing.

  If a least fixed point of f(x) exists, then the sequence

converges to this fixed point.

 - 30 - BF - ES

Schedulability check

Algorithm:

 i: Ri
(0) = Ci

repeat

  i: Ri
(j+1) = Ci + k=1

i-1  Ri
(j) / Tk   Ck

until ( i with Ri
(j+1) > Di) or ( i Ri

(j+1) = Ri
(j));

if ( i Ri
(j+1) = Ri

(j)) then

 report (“RM schedulable”);

16

 - 31 - BF - ES

Example
1 2 3 4

Ti 4 5 6 11

Ci 1 1 2 1

Di 3 4 5 10

 - 32 - BF - ES

Summary

 Problem of scheduling independent and preemptable

periodic tasks

 Rate monotonic scheduling:

 Optimal solution among all fixed-priority schedulers

 Schedulability of n tasks guaranteed, if processor utilization

 Earliest deadline first:

 Optimal solution among all dynamic-priority schedulers

 Schedulability guaranteed if processor utilization U  1.

17

 - 33 - BF - ES

Rate Monotonic Scheduling

in Presence of Task Dependencies

 - 34 - BF - ES

Wait state caused by resource constraints

ready run

wait

activation termination

signal wait

• Each mutually exclusive resource Ri

is protected by a semaphore Si.

• Each critical section operating on Ri

must begin with a wait(Si) primitive

and end with a signal(Si) primitive.

• wait primitive on locked semaphore

 wait state until another task executes signal primitive

dispatching

preemption

18

 - 35 - BF - ES

The priority inversion problem

 Priority inversion can occur due to resource conflicts

(exclusive use of shared resources) in fixed priority

schedulers like RM:

 normal execution critical region

 priority(J1) > priority(J2)

 Here: Blocking time equal to length of critical section.

J1

J2

J1 blocked

 - 36 - BF - ES

The priority inversion problem

 normal execution critical region
 priority(J1) > priority(J2) > priority(J3)

 Blocking time equal to length of critical section +
computation time of J2.

 Unbounded time of priority inversion, if J3 is interrupted
by tasks with priority between J1 and J3 during its critical
region.

J1

J2

J1 blocked

J3

19

 - 37 - BF - ES

Priority inversion in real life:

The MARS Pathfinder problem (1)

“But a few days into the mission, not long

after Pathfinder started gathering

meteorological data, the spacecraft

began experiencing total system resets,

each resulting in losses of data. The

press reported these failures in terms

such as "software glitches" and "the

computer was trying to do too many

things at once".” …

 - 38 - BF - ES

Priority inversion in real life:

The MARS Pathfinder problem

 normal execution critical region

 priority(J1) > priority(J2) > priority(J3)

J1

J2

J1 blocked

J3

Reset by watchdog timer

20

 - 39 - BF - ES

Coping with priority inversion:

The priority inheritance protocol

Idea of priority inheritance protocol:

 If a task Jh blocks, since another task Jl with lower priority owns

the requested resource, then Jl inherits the priority of Jh.

 When Jl releases the resource, the priority inheritance from Jh is

undone.

 Rule: Tasks always inherit the highest priority

of tasks blocked by it.

 - 40 - BF - ES

Direct vs. push-through blocking

 Direct blocking: High-priority job tries to acquire resource already

held by lower-priority job

 Push-through blocking: Medium-priority job is blocked by lower-

priority job that has inherited a higher priority.

J1

J2

J3

21

 - 41 - BF - ES

Transitive priority inheritance

J1

J2

J3

Priority of J3

