
1

 - 1 - BF - ES

Embedded Systems 17

 - 2 - BF - ES

REVIEW: scheduling independent and

preemptable periodic tasks

 Earliest deadline first:

 Optimal solution among all dynamic-priority schedulers

 Schedulability guaranteed if processor utilization U 1.

 Rate monotonic scheduling:

 Optimal solution among all fixed-priority schedulers

 Schedulability of n tasks guaranteed, if processor utilization

 Schedulability check:

 i: Ri
(0) = Ci

repeat

 i: Ri
(j+1) = Ci + k=1

i-1 Ri
(j) / Tk Ck

until (i with Ri
(j+1) > Di) or (i Ri

(j+1) = Ri
(j));

if (i Ri
(j+1) = Ri

(j)) then

 report (“RM schedulable”);

2

 - 3 - BF - ES

REVIEW: Wait state caused by resource

constraints

ready run

wait

activation termination

signal wait

• Each mutually exclusive resource Ri

is protected by a semaphore Si.

• Each critical section operating on Ri

must begin with a wait(Si) primitive

and end with a signal(Si) primitive.

• wait primitive on locked semaphore

 wait state until another task executes signal primitive

dispatching

preemption

 - 4 - BF - ES

REVIEW: The priority inversion problem

 normal execution critical region
 priority(J1) > priority(J2) > priority(J3)

 Blocking time equal to length of critical section +
computation time of J2.

 Unbounded time of priority inversion, if J3 is interrupted
by tasks with priority between J1 and J3 during its critical
region.

J1

J2

J1 blocked

J3

3

 - 5 - BF - ES

REVIEW:

The priority inheritance protocol

Idea of priority inheritance protocol:

 If a task Jh blocks, since another task Jl with lower priority owns

the requested resource, then Jl inherits the priority of Jh.

 When Jl releases the resource, the priority inheritance from Jh is

undone.

 Rule: Tasks always inherit the highest priority

of tasks blocked by it.

 - 6 - BF - ES

REVIEW: Direct vs. push-through blocking

 Direct blocking: High-priority job tries to acquire resource already

held by lower-priority job

 Push-through blocking: Medium-priority job is blocked by lower-

priority job that has inherited a higher priority.

J1

J2

J3

4

 - 7 - BF - ES

REVIEW: Transitive priority inheritance

J1

J2

J3

Priority of J3

 - 8 - BF - ES

REVIEW:

The MARS Pathfinder problem

 normal execution critical region

 priority(J1) > priority(J2) > priority(J3)

J1

J2

J1 blocked

J3

Reset by watchdog timer

5

 - 9 - BF - ES

Priority inheritance for the Pathfinder example

 normal execution critical region

 priority(J1) > priority(J2) > priority(J3)

J1

J2

J1 blocked

J3

NO reset by watchdog timer

J3 inherits priority of J1

 - 10 - BF - ES

Schedulability check

Let Bi be the maximum blocking time due to lower-priority

jobs that a job Ji may experience.

 i: Ri
(0) = Ci

repeat

 i: Ri
(j+1) = Ci + Bi + k=1

i-1 Ri
(j) / Tk Ck

until (i with Ri
(j+1) > Di) or (i Ri

(j+1) = Ri
(j));

if (i Ri
(j+1) = Ri

(j)) then

 report(“RM schedulable”);

6

 - 11 - BF - ES

Blocking Time Computation

 Precise algorithm based on exhaustive search: exponential cost

 Here: approximative solution

 Assumption: no nested critical sections

Lemma: Transitive priority inheritance can only occur in the presence

of nested critical sections.

 - 12 - BF - ES

Blocking Time

priority ceiling C(S)=priority of the highest-priority job that can lock S

Theorem: In the absence of nested critical sections,

a critical section of job J guarded by semaphore S

can only block job J‘

if priority(J) < priority(J‘) C(S).

7

 - 13 - BF - ES

Blocking Time

 Dj,k: duration of longest critical section of task j,

guarded by semaphore Sk

 Blocking Time

 Bi n
j=i+1 maxk[Dj,k : C(Sk)Pi]

 Bi m
k=1 maxj>i[Dj,k : C(Sk)Pi]

where the task set consists of n periodic tasks that

use m distinct semaphores.

 - 14 - BF - ES

Example Dik = * : task I does not

use semaphore Sk

Dik Sa Sb Sc

1 1 1 *

2 * 8 2

3 7 6 *

4 5 4 3

8

 - 15 - BF - ES

Problem: Chained Blocking

J1

J2

J3

 - 16 - BF - ES

Problem: Deadlock

J1

J2

J1:

wait(Sa)

signal(Sa)

wait(Sb)

signal(Sb)

J2:

wait(Sb)

signal(Sb)

wait(Sa)

signal(Sa)

9

 - 17 - BF - ES

Priority Ceiling Protocol

 The processor is assigned to a ready job J with highest priority.

 To enter a critical section, J needs priority > C(S*),

where S* is the currently locked semaphore with max C.

 otherwise J „blocks on semaphore“ and

 priority of J is inherited by job J‘ holding S*.

 When J‘ exits critical section, its priority is updated to the highest

priority of some job that is blocked by J‘ (or to the nominal priority if

no such job exists).

 - 18 - BF - ES

Example

J1

J2

J3

Priority of J3

S1

S2

S3

10

 - 19 - BF - ES

Priority Ceiling Protocol

Theorem (Sha/Rajkumar/Lehoczky): Under the Priority

Ceiling Protocol, a job can be blocked for at most the

duration of one critical section.

 - 20 - BF - ES

Priority Ceiling Protocol

The Priority Ceiling Protocol prevents deadlocks.

11

 - 21 - BF - ES

Incorporating aperiodic tasks

 In real systems, not all tasks are periodic

 Environmental events to be processed

 Exceptions raised

 Background tasks running whenever CPU time budget permits

 Thus, real systems tend to be a combination of

 periodic and

 aperiodic tasks

and of

 hard real-time and

 soft real-time tasks.

 - 22 - BF - ES

Aperiodic and periodic tasks together (1)

 Aperiodic and periodic tasks together
 can be handled by dynamic-priority schedulers like EDF

 Problem:
 Off-line guarantees can not be given without assumptions on

aperiodic tasks.

 If deadlines for aperiodic tasks are hard, aperiodic tasks need to
be characterized by a minimum interarrival time between
consecutive instances
 bounds on the aperiodic load

 Aperiodic tasks with maximum arrival rate may be modeled as
periodic tasks with this rate

 periodic scheduling

 Aperiodic tasks with maximum arrival rate are called sporadic
tasks.

12

 - 23 - BF - ES

Aperiodic and periodic tasks together (2)

 Other solutions for the case that periodic tasks have

hard deadlines, aperiodic tasks have soft deadlines.

 Simplest solution: Background scheduling

• Aperiodic tasks are only executed when no periodic task is

ready

• Guarantees for periodic tasks do not change

• Only applicable when load is not too high

 Other solutions:

• Define new periodic tasks, a so-called server

• Aperiodic tasks are executed during “execution time” of

server process

• Independent scheduling strategies possible for periodic

tasks and aperiodic tasks “inside the server”

 - 24 - BF - ES

Multiprocessor scheduling

13

 - 25 - BF - ES

EDF with multiple processors?

 - 26 - BF - ES

Multiprocessor Scheduling

Given

 n equivalent processors,

 a finite set M of aperiodic/periodic tasks

find a schedule such that each task always meets its deadline.

Assumptions:

 Tasks can freely be migrated between processors
 at any integer time instant, without overhead

 however: no task may run on two processors simultaneously

 All tasks are preemptable
 at any integer time instant, without overhead

14

 - 27 - BF - ES

Game-theoretic problem formulation

 Associate possible states of the system with positions

on a game board.

 Associate choices one can influence in order to solve

the problem with own moves on the game board.

 Associate choices one cannot influence with

opponent‘s moves.

 Identify feasible solutions with winning positions.

Problem solution: find a winning strategy

 - 28 - BF - ES

Game-board representation

15

 - 29 - BF - ES

Game-board representation

 - 30 - BF - ES

Game-board representation

16

 - 31 - BF - ES

Game-board representation

 - 32 - BF - ES

Game-board representation

17

 - 33 - BF - ES

Game-board representation

 - 34 - BF - ES

Game-board representation

18

 - 35 - BF - ES

Extensions

 Resource conflicts: restricted move rules

 Precedence constraints: restricted move rules

 Periodic tasks: opponent‘s moves insert new nodes;

game won if no task ever reaches second quadrant

 - 36 - BF - ES

Game-theoretic solution

Theorem: In games with

 finitely many positions on the game board, and

 complete information

there is a always a winning strategy for one of the two players;
it can be constructed effectively.

However: high complexity predefined strategies preferred.

19

 - 37 - BF - ES

LLF (Least Laxity First)

LLF is optimal.

 - 38 - BF - ES

Schedulability

Within a set M of aperiodic tasks, we identify three classes

with respect to the next k time units starting at time t:

20

 - 39 - BF - ES

Surplus computing power

Lemma: SCP(0,k)0 for all k>0 is a necessary condition

for schedulability.

