
1

 - 1 - BF - ES

Embedded Systems 18

 - 2 - BF - ES

REVIEW: Multiprocessor Scheduling

Given

 n equivalent processors,

 a finite set M of aperiodic/periodic tasks

find a schedule such that each task always meets its deadline.

Assumptions:

 Tasks can freely be migrated between processors
 at any integer time instant, without overhead

 however: no task may run on two processors simultaneously

 All tasks are preemptable
 at any integer time instant, without overhead

2

 - 3 - BF - ES

REVIEW: LLF (Least Laxity First)

LLF is optimal.

 - 4 - BF - ES

REVIEW: Schedulability

Within a set M of aperiodic tasks, we identify three classes

with respect to the next k time units starting at time t:

3

 - 5 - BF - ES

REVIEW: Surplus computing power

Lemma: SCP(0,k)0 for all k>0 is a necessary condition

for schedulability.

 - 6 - BF - ES

Surplus computing

power

Theorem: If all tasks are released at time 0, then

SCP(0,k)0 for all k>0 is a necessary and sufficient

condition for schedulability.

4

 - 7 - BF - ES

 - 8 - BF - ES

5

 - 9 - BF - ES

 - 10 - BF - ES

6

 - 11 - BF - ES

Online scheduling?

Theorem: There can be no optimal scheduling algorithm if

the release times are not known a priori.

 - 12 - BF - ES

7

 - 13 - BF - ES

Periodic tasks

Theorem: A necessary and sufficient condition for the

schedulability of periodic tasks is that U n.

 - 14 - BF - ES

Scheduling idea

1. Divide the time line into time slices such that each

period of each process is divided into an integral

number of time slices.

2. Within each time slice, allocate processor time in

proportion to the utilization Ui = Ci / Ti originating from

the various tasks.

8

 - 15 - BF - ES

Example (2 processors) 1 2 3

Ti 4 8 6

Ci 2 8 3

 - 16 - BF - ES

Scheduling idea

9

 - 17 - BF - ES

Rescheduling fractional parts

 Let Xi = T*Ci/Ti - T*Ci/Ti

 In each period,

allocate in Xi * Ti/T slices: T*Ci/Ti+1 units

and in all other slices: T*Ci/Ti units

 This can be done without allowing any task to miss its

deadline: use EDF!

 - 18 - BF - ES

Example (2 processors) 1 2 3

Ti 4 6 4

Ci 2 4 3

10

 - 19 - BF - ES

 - 20 - BF - ES

Extension: Task migration time

Theorem: A necessary and sufficient condition for

scheduling periodic tasks on n processors is

U n, if the task migration time is one unit.

11

 - 21 - BF - ES

Extension: Task migration time

Lemma: If U n, then within each time slice the tasks

can meet the migration time requirement without missing

deadlines, if the task migration time is one unit.

 - 22 - BF - ES

Extension: Task migration time

Lemma: If U n, then between time slices the tasks can

meet the migration time requirement without missing

deadlines, if the task migration time is one unit.

12

 - 23 - BF - ES

