
1

 - 1 - BF - ES

Embedded Systems 19

 - 2 - BF - ES

REVIEW: multiprocessor

scheduling, periodic tasks
1 2 3

Ti 4 8 6

Ci 2 8 3

2

 - 3 - BF - ES

REVIEW: Task migration time

Lemma: If U  n, then within each time slice the tasks

can meet the migration time requirement without missing

deadlines, if the task migration time is one unit.

 - 4 - BF - ES

REVIEW: Task migration time

Lemma: If U  n, then between time slices the tasks can

meet the migration time requirement without missing

deadlines, if the task migration time is one unit.

3

 - 5 - BF - ES

 - 6 - BF - ES

Example (4 processors)

Computation block

1 10

2 9

3 9

4 9

5 3

T=10

1

2

3

4

10 20

4

 - 7 - BF - ES

Extension: Task migration time

Theorem: Let T=gcd(T1, …, Tm) and let R be the task

migration time. A sufficient condition for scheduling

the m periodic tasks is that U  n  (T-R+1)/T.

 - 8 - BF - ES

Example (4 processors)

i Computation block

1 10

2 9

3 9

4 9

5 3

T=12,

R=3

1

2

3

4

10 12 22 24

1

2

3

4

10 12 22 24

5

 - 9 - BF - ES

Hardware/Software Codesign

 - 10 - BF - ES

Hardware/software codesign

Processor
P1

Processor
P2 Hardware

Specification

Mapping

6

 - 11 - BF - ES

Objective function

 Cost depends on components selected to implement the

application

 Software Processors: PowerPC, ARM, Pentium,...

 Hardware: FPGAs, ASIC blocks, ...

 Communication Infrastructure: buses, networks-on-chip, p2p

links, ...

 Multiple metrics, such as cost, power, and performance

are weighed against one another

 A function combining multiple metric values into a single

value that defines the quality of a partition is called an

Objective Function, the value returned is called cost.

 - 12 - BF - ES

The Partitioning Problem

The partitioning problem is to assign

n objects O={o1, …, on} to

m blocks (also called partitions) P={p1, …, pm}

such that

 p1  p2 …  pm = O

 pi  pj =  for all ij, and

 cost c(P) is minimized.

7

 - 13 - BF - ES

Partitioning Methods

 Heuristic methods

 Constructive methods

• Random mapping

• Hierarchical clustering

 Iterative methods

• Kernighan-Lin Algorithm

• Simulated Annealing

 Exact methods

 Enumeration

 Integer Linear Programming (ILP)

 - 14 - BF - ES

Constructive Methods

 Random mapping

 Each object randomly assigned to some block

 Used to find starting partition for iterative methods

 Hierarchical clustering

 Assumes closeness function: determines how desirable it is to group

two objects

 Start with singleton blocks

 Repeat until termination criterion (e.g., desired number of blocks

reached)

• Compute closeness of blocks (average closeness of object pairs)

• Find pair of closest blocks

• Merge blocks

 Difficulty: find proper closeness function

8

 - 15 - BF - ES

Example: Hierarchical Clustering

1

4

2 3

30 25

15

10

10 10

Average

closeness;

Termination:

2 blocks

 - 16 - BF - ES

Hw/Sw Partitioning

 Special case: Bi-partitioning P={pSW, pHW}

 Software-oriented approach: P={O,}

 In software, all functions can be realized

 Performance might be too low  migrate objects to HW

 Hardware-oriented approach: P={,O}

 In hardware, performance is OK

 Cost might be too high  migrate objects to SW

9

 - 17 - BF - ES

Greedy Hw/Sw Partitioning

Migration of objects to the other block (HW/SW) until no
more improvement

repeat

 begin

 P’=P;

 for i=1 to n
 begin
 if (cost(move(P,oi) < cost(P))
 then P’:=move(P,oi);

 end;

 end;
until (P==P‘)

 - 18 - BF - ES

Iterative Methods: Kernighan-Lin (K-L)
An iterative balanced partitioning (bi-sectioning) heuristic

Given: Two sets A and B, such that |A|=|B|=n and AB=
cost of edge (a,b) in cut: cab

While the cost keeps decreasing

 Mark all objects as „unlocked“

 While there are unlocked pairs left
 Select pair of unlocked objects (a,b) which give the largest

decrease or the smallest increase in cut size

 Mark a and b as „locked“

 Exchange a and b

 Record resulting partition and cost

 Continue with the partition with least cost

10

 - 19 - BF - ES

Example

a

d

b

c

e

h

f

g

 - 20 - BF - ES

Computing the cost reduction

 External cost of aA: Ea=vB cav

 Internal cost of aA: Ia=vA cav

 Cost reduction for moving a : Da=Ea-Ia

 Cost reduction for swapping a and b: gab=Da+Db-2cab

 Update to D-values when a and b are swapped:

D‘x = Dx + 2cxa – 2cxb for all xA-{a}

D‘y = Dy + 2cyb – 2cya for all yB-{b}

11

 - 21 - BF - ES

Weighted Example

a b c d e f

a 0 1 2 3 2 4

b 1 0 1 4 2 1

c 2 1 0 3 2 1

d 3 4 3 0 4 3

e 2 2 2 4 0 2

f 4 1 1 3 2 0

A={a,b,c}

B={d,e,f}

 - 22 - BF - ES

Weighted Example

a b c d e f

a 0 1 2 3 2 4

b 1 0 1 4 2 1

c 2 1 0 3 2 1

d 3 4 3 0 4 3

e 2 2 2 4 0 2

f 4 1 1 3 2 0

D

6

5

3

3

0

1

A={a,b,c}

B={d,e,f}

12

 - 23 - BF - ES

Weighted Example

a b c d e f

a 0 1 2 3 2 4

b 1 0 1 4 2 1

c 2 1 0 3 2 1

d 3 4 3 0 4 3

e 2 2 2 4 0 2

f 4 1 1 3 2 0

D

6

5

3

3

0

1

A={a,b,c}

B={d,e,f}

 - 24 - BF - ES

Weighted Example

a b c d e f

a 0 1 2 3 2 4

b 1 0 1 4 2 1

c 2 1 0 3 2 1

d 3 4 3 0 4 3

e 2 2 2 4 0 2

f 4 1 1 3 2 0

D

6

5

3

3

0

1

A={a,b,c}

B={d,e,f}

13

 - 25 - BF - ES

 - 26 - BF - ES

Kernighan-Lin

 Repeat
 Compute Dv für all objects

 Mark all vertices as unlocked

 For i=1 to n/2 do

• Compute gab for all pairs a,b

• Pick unlocked ai,bi with largest gab,i

• Mark ai,bi as locked

• Store gain

• Update Dv für all objects

 Find k such that Gk=
k
i=1 gab,i is maximal

 If Gk>0, then move a1,…,ak from A to B
and b1,…,bk from B to A.

 Until Gk0

14

 - 27 - BF - ES

Extensions to K-L

 Different block sizes

 If |A|<|B|, add |B|-|A| dummy objects to A.

Dummy objects are connected to each other with infinite weight

 Apply K-L

 Remove dummies

 Objects with size > 1

 Replace each object of size s with s objects of size 1

new objects are connected with edges of infinite weight

 Apply K-L

 More than 2 blocks

 Apply K-L to each pair of blocks

 - 28 - BF - ES

Hypergraphs

A B C D

E F

A B C D

E F

net1

net2 net3 net4 net5

15

 - 29 - BF - ES

Fiduccia-Mattheyses Heuristic (F-M)

 Objects have size s(o)

 Size of block: sum of size of objects

 Balanced two-way partition:

Given a fraction r, 0 < r < 1,

partition a graph into two blocks A and B such that

|A| / (|A|+|B|)  r

and cutset is minimized

 Linear complexity

Terminology: object=„cell“, hyperedges=„net“

 - 30 - BF - ES

Single pass of the F-M heuristic

 Select the cell with the

greatest gains that

satisfies balance

conditions

 Move the cell and lock it

 Update gains

 Repeat until all cells are

locked or will dissatisfy

balance conditions

16

 - 31 - BF - ES

Overall F-M heuristic

 Create an initial partition

 Execute a pass of the F-M

heuristic

 Start again using the resulting

partition as the initial partition

 Continue until the resulting gain

is no longer greater than zero

 - 32 - BF - ES

Calculating Gain

 g(i) = FS(i) - TE(i)

 FS(i): The number of nets which contain cell i but no other object in
the same partition as i

 TE(i): The number of nets that consist only of i and other cells
currently in the same partition as i

object FS TE gain

A

B

C

D

A B C D

