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REVIEW: multiprocessor 

scheduling, periodic tasks 
1 2 3 

Ti 4 8 6 

Ci 2 8 3 
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REVIEW: Task migration time 

Lemma: If U  n, then within each time slice the tasks 

can meet the migration time requirement without missing 

deadlines, if the task migration time is one unit.  
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REVIEW: Task migration time 

Lemma: If U  n, then between time slices the tasks can 

meet the migration time requirement without missing 

deadlines, if the task migration time is one unit.  
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Example (4 processors) 

Computation block 

1 10 

2 9 

3 9 

4 9 

5 3 

T=10 

1 

2 

3 

4 

10 20 
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Extension: Task migration time 

Theorem: Let T=gcd(T1, …, Tm) and let R be the task 

migration time. A sufficient condition for scheduling 

the m periodic tasks is that U  n  (T-R+1)/T. 
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Example (4 processors) 

i Computation block 

1 10 

2 9 

3 9 

4 9 

5 3 

T=12, 

R=3 

1 

2 

3 

4 

10 12 22 24 
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4 

10 12 22 24 



5 

 -  9 - BF - ES 

Hardware/Software Codesign 
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Hardware/software codesign 

Processor 
P1 

Processor 
P2 Hardware 

Specification 

Mapping 
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Objective function 

 Cost depends on components selected to implement the 

application 

 Software Processors: PowerPC, ARM, Pentium,... 

 Hardware: FPGAs, ASIC blocks, ... 

 Communication Infrastructure: buses, networks-on-chip, p2p 

links, ... 

 Multiple metrics, such as cost, power, and performance 

are weighed against one another 

 A function combining multiple metric values into a single 

value that defines the quality of a partition is called an 

Objective Function, the value returned is called cost. 
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The Partitioning Problem 

The partitioning problem is to assign 

n objects O={o1, …, on} to 

m blocks (also called partitions) P={p1, …, pm} 

such that 

 p1  p2 …  pm = O 

 pi  pj =  for all ij, and  

 cost c(P) is minimized.  
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Partitioning Methods 

 Heuristic methods 

 Constructive methods 

• Random mapping 

• Hierarchical clustering 

 Iterative methods 

• Kernighan-Lin Algorithm 

• Simulated Annealing 

 Exact methods 

 Enumeration 

 Integer Linear Programming (ILP) 
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Constructive Methods 

 Random mapping 

 Each object randomly assigned to some block 

 Used to find starting partition for iterative methods 

 Hierarchical clustering 

 Assumes closeness function: determines how desirable it is to group 

two objects 

 Start with singleton blocks 

 Repeat until termination criterion (e.g., desired number of blocks 

reached) 

• Compute closeness of blocks (average closeness of object pairs) 

• Find pair of closest blocks 

• Merge blocks 

 Difficulty: find proper closeness function 
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Example: Hierarchical Clustering 

1 

4 

2 3 

30 25 

15 

10 

10 10 

Average 

closeness; 

Termination:  

2 blocks 
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Hw/Sw Partitioning 

 Special case: Bi-partitioning P={pSW, pHW} 

 

 Software-oriented approach: P={O,} 

 In software, all functions can be realized 

 Performance might be too low  migrate objects to HW 

 

 Hardware-oriented approach: P={,O} 

 In hardware, performance is OK  

 Cost might be too high  migrate objects to SW 
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Greedy Hw/Sw Partitioning  

Migration of objects to the other block (HW/SW) until no 
more improvement 

 
repeat 

   begin 

   P’=P; 

   for i=1 to n 
   begin 
     if (cost(move(P,oi) < cost(P)) 
     then P’:=move(P,oi); 

        end; 

  end;   
until (P==P‘)  
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Iterative Methods: Kernighan-Lin (K-L) 
An iterative balanced partitioning (bi-sectioning) heuristic 

 

Given: Two sets A and B, such that |A|=|B|=n and AB= 
cost of edge (a,b) in cut: cab  
 

While the cost keeps decreasing 

 Mark all objects as „unlocked“ 

 While there are unlocked pairs left 
 Select pair of unlocked objects (a,b) which give the largest 

decrease or the smallest increase in cut size  

 Mark a and b as „locked“ 

 Exchange a and b 

 Record resulting partition and cost 

 Continue with the partition with least cost 
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Example 

a 

d 

b 

c 

e 

h 

f 

g 
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Computing the cost reduction 

 External cost of aA: Ea=vB cav 

 Internal cost of aA: Ia=vA cav 

 Cost reduction for moving a : Da=Ea-Ia 

 Cost reduction for swapping a and b: gab=Da+Db-2cab 

 Update to D-values when a and b are swapped: 

D‘x = Dx + 2cxa – 2cxb for all xA-{a} 

D‘y = Dy + 2cyb – 2cya for all yB-{b} 
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Weighted Example 

a b c d e f 

a 0 1 2 3 2 4 

b 1 0 1 4  2  1 

c 2 1 0 3 2 1 

d 3 4 3 0 4 3 

e 2 2 2 4 0  2 

f 4 1 1 3 2 0 

A={a,b,c} 

B={d,e,f} 
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Weighted Example 

a b c d e f 

a 0 1 2 3 2 4 

b 1 0 1 4  2  1 

c 2 1 0 3 2 1 

d 3 4 3 0 4 3 

e 2 2 2 4 0  2 

f 4 1 1 3 2 0 

 

D 

 

6 

 

5 

 

3 

 

3 

 

0 

 

1 

A={a,b,c} 

B={d,e,f} 
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Weighted Example 

a b c d e f 

a 0 1 2 3 2 4 

b 1 0 1 4  2  1 

c 2 1 0 3 2 1 

d 3 4 3 0 4 3 

e 2 2 2 4 0  2 

f 4 1 1 3 2 0 

 

D 

 

6 

 

5 

 

3 

 

3 

 

0 

 

1 

A={a,b,c} 

B={d,e,f} 
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Weighted Example 

a b c d e f 

a 0 1 2 3 2 4 

b 1 0 1 4  2  1 

c 2 1 0 3 2 1 

d 3 4 3 0 4 3 

e 2 2 2 4 0  2 

f 4 1 1 3 2 0 

 

D 

 

6 

 

5 

 

3 

 

3 

 

0 

 

1 

A={a,b,c} 

B={d,e,f} 
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Kernighan-Lin 

 Repeat 
 Compute Dv für all objects 

 Mark all vertices as unlocked 

 For i=1 to n/2 do 

• Compute gab for all pairs a,b 

• Pick unlocked ai,bi with largest gab,i 

• Mark ai,bi as locked 

• Store gain 

• Update Dv für all objects 

 Find k such that Gk=
k
i=1 gab,i is maximal 

 If Gk>0, then move a1,…,ak from A to B  
and b1,…,bk from B to A. 

 Until Gk0 
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Extensions to K-L 

 Different block sizes 

 If |A|<|B|, add |B|-|A| dummy objects to A. 

Dummy objects are connected to each other with infinite weight 

 Apply K-L 

 Remove dummies 

 Objects with size > 1 

 Replace each object of size s with s objects of size 1 

new objects are connected with edges of infinite weight 

 Apply K-L 

 More than 2 blocks 

 Apply K-L to each pair of blocks 
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Hypergraphs 

A B C D 

E F 

A B C D 

E F 

net1 

net2 net3 net4 net5 
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Fiduccia-Mattheyses Heuristic (F-M) 

 Objects have size s(o) 

 Size of block: sum of size of objects 

 Balanced two-way partition:  

Given a fraction r, 0 < r < 1, 

partition a graph into two blocks A and B such that  

|A| / (|A|+|B|)  r 

and cutset is minimized 

 Linear complexity 

 

Terminology: object=„cell“, hyperedges=„net“ 
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Single pass of the F-M heuristic 

 Select the cell with the 

greatest gains that 

satisfies balance 

conditions 

 Move the cell and lock it 

 Update gains 

 Repeat until all cells are 

locked or will dissatisfy 

balance conditions 
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Overall F-M heuristic 

 Create an initial partition 

 Execute a pass of the F-M 

heuristic 

 Start again using the resulting 

partition as the initial partition 

 Continue until the resulting gain 

is no longer greater than zero 
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Calculating Gain 

 g(i) = FS(i) - TE(i) 

 FS(i): The number of nets which contain cell i but no other object in 
the same partition as i 

 TE(i): The number of nets that consist only of i and other cells 
currently in the same partition as i 

object FS TE gain 

A 

B 

C 

D 

A B C D 


