Embedded Systems

REVIEW: Actor models

= A system is a function that
accepts an input signal and
yields an output signal.

» The domain and range of
the system function are sets
of signals, which themselves
are functions.

» Parameters may affect the
definition of the function S.

BF -ES

S

X parameters| Y

I P q

rxR—R, yR—R
S: X =Y
X=Y=(R—-R)

REVIEW: Actor models of continuous-time systems

Helicopter
Input is the net torque of the .
tail rotor and the top rotor. Tv) I\\ 0,
Output is the angular velocity 9 (O)
around the y axis. >

BF - ES -3-

Actor Model of an FSM

i o,
RS C
PR Oy e

guard / action

guard / action

guard / action

BF -ES - 4.

REVIEW: Discrete Systems Lee/Seshia, Chapter 3

= Example: count the number of cars that enter and leave a
parking garage:

ArrivalDetector

arrival
! Counter Display

’1.. | count
DepartureDetector t Z
down
departure

» Pure signal: up: R — {absent,present}

= Discrete actor:
Counter: (R — {absent,present})" — (R — {absent} UN)
P = {up,down}

BF - ES -5-

Discrete Signals

Let e be a signal R — {absent}U X
where X is any set of values.

Let T={reR : e(t) = absent}
Then e is discrete iff there exists a one-to-one function

f:T—N

that is order-preserving, i.e., for all t;<t,, f(t,)<f(t,).

BF - ES -6-

REVIEW: Extended State Machines

Extended state machines augment the FSM model with
variables that may be read or written. E.g.:

variable: count € {0,--- ,M}
inputs: up, down € {present,absent }
output € {0,--- M}

up A —down A count < M [count + 1

count := count + 1

count \= D

down A\ —up N\ count > 0 / count — 1

count .= count — 1

BF - ES - 7-

General Notation for Extended State Machines

We make explicit declarations of variables, inputs, and outputs
to help distinguish the three.

variable declaration(s)
input declaration(s)
output declaration(s)

guard / output action
set action

intial set action guard / output action
set action

BF - ES - 8-

Extended state machine model of a traffic light
controller at a pedestrian crossing:

variable: count: {0,---,60}
inputs: pedestrian : pure count < 60 /
outputs: sigR, sigG, sigY : pure count ;= count + 1

Default transition

with implicit
guard /paction count = 60 / sigG
(true / none) count ;=0

pedestrian A count < 60 /

count := count + 1 ;

count :== 0

@ pedestrian /\ count > 60 / sigV

tcount 1= count + 1
count :=0 !

|

Count > 60 / sig¥

count > 5 [sigR count 1= 0

count :=10
count = count + |

BF - ES -9-

When does a reaction occur?

variable: counr € {0,---,60}

count '= count+ 1

count := (0

When a reaction occurs is not specified in the state machine
itself. It is up to the environment.

This traffic light controller design assumes one reaction per
second. This is a time-triggered model.

BF -ES - 10 -

When does a reaction occur?

input: x € {present,absent}
output: y € {present, absent}

\.__..’

x/y

= Suppose all inputs are discrete and a reaction occurs when
any input is present. Then the above transition will be taken
whenever the current state is s1 and x is present.

» This is an event-triggered model.

BF -ES 11 -

When does a reaction occur?

input: x € {present, absent}
output: y € {present, absent }

A

_x ,I':l }I

Suppose x and y are discrete and pure signals.
When does the transition occur?

Answer: when the environment triggers a reaction and x is absent.
If this is a (complete) event-triggered model, then the transition will
never be taken because the reaction will only occur when x is

present!
BF -ES .12 -

Definitions

» Stuttering transition: Implicit default transition that is
enabled when inputs are absent and that produces
absent outputs.

* Receptiveness: For any input values, some transition is
enabled. Our structure together with the implicit default
transition ensures that our FSMs are receptive.

» Determinism: In every state, for all input values, exactly
one (possibly implicit) transition is enabled.

BF -ES - 13-

Example: Nondeterministic FSM

Nondeterministic model of pedestrians arriving at a crosswalk:

inputs: sigR, sigG, sigY : pure
outputs: pedestrian : pure

true /

true / pedestrian

crossing

Formally, the update function
is replaced by a function

possibleUpdates : States x Inputs — 25tatesxQuiputs

BF - ES - 14 -

Uses of nondeterminism

1. Modeling unknown aspects of the environment or system

2. Hiding detail in a specification of the system

BF -ES

- 15-

Non-deterministic Behavior: Tree of Computations

For a fixed input sequence:
O A deterministic system exhibits a single behavior
O A non-deterministic system exhibits a set of behaviors

Deterministic FSM behavior for a particular input sequence:
o > @ > @ > @ > @ >

Non-deterministic FSM behavior for an input sequence:
[> @ > @ > @ > oo

./ -
\ ./. — . a om
BF -ES —— ¢ — L.

./
N

- 16 -

Behaviors and Traces

FSM behavior is a sequence of (non-stuttering) steps.

A trace is the record of inputs, states,
and outputs in a behavior.
A computation tree is a graphical '

representation of all
possible traces.

true / sigG

trm true | sigG @
(red)

FSMs are suitable for formal ~au

analysis. For example, safety \
analysis might show that some unsafe """ ™\ __
state is not reachable. \

BF - ES -17-

It is sometimes useful to even model
continuous systems as FSMs by discretizing
their state space.

BF -ES - 18-

Contlnuous System Lee/Seshia, Chapter 4

Discrete System (FSM)

>

Hybrid System > jump
N ”\- ’3 > flow
BF - ES - 19-

Where do Hybrid Systems arise?

U Digital controller of physical “plant”
o thermostat
o intelligent cruise control in cars
0 aircraft auto pilot
U Phased operation of natural phenomena
0 bouncing ball
0 biological cell growth
O Multi-agent systems
0 ground and air transportation systems
0 interacting robots

BF -ES - 20 -

10

FSM with continous-time input

heatOn

t(t) = 22/ heatOff

\

T(¢) < 18/ heatOn

BF - ES S 21
State refinement: continuous output
T . @ .
T(r) > 22
™
:‘. 1) < 8,/
h(t) =0 h(r) =1
BF -ES - 22.-

11

Timed automata

= A clock is a continous-time signal s with constant rate
VieT,, S$t)=a

while the system is in some mode m

= Timed automata are FSMs extended with clocks.

BF -ES - 23-

Example: Mouse Double Click Detector

continuous variable: x(r) € R
inputs: click € {present, absent}
outputs: single, double € {present,absent}

click [
x(1):=0
idle Y™ ™ one
x(r)=0 =1
.~ —

x(t) = 1/ single

click hx(1) < 1 / double

BF - ES - 24-

12

Example: Mouse Double Click Detector

continuous variable: x(r) € R
inputs: click € {present, absent}
outputs: single, double € {present,absent}

click /
x(1):=0
idle — = one
X(1) =0 1) =1
X\(P‘T-ZJU x(t) = 1/ single

click nx(t) < 1/ double

How many states does this automaton have?

BF -ES - 25-

Timed automaton model of a traffic light controller

continuous variable: x(r):
inputs: pedestrian: pure
outputs: sigR, sigG, sigY: pure

. green
X(0) > 60 / sigG
x(1) ::yy = N&.wrﬁan Ax(t) < 60/

_ red pedestrian A x(t) = 60 / sigY m——
x(t):=0
: I *(t) > 60 / sigY
x(t) =5/ sigR x(t) = 60 / sig

A1) =0 x(0)=0

This light remains green at least 60 seconds, and then turns
yellow if a pedestrian has requested a crossing. It then

remains red for 60 seconds.
BF - ES - 26 -

13

Example: “Tick” Generator (Timer)

How would you model a timer that generates a ‘tick’
each time T time units elapse?

BF - ES - 27-

Hybrid Automaton for Bouncing Ball

BouncingBall () <0
ouncingba y(t) _ 0 /bump »bump
¥(t) == —ay(t)
free
Y(0) = ko) =—¢ y()

50):=0 g

y — vertical distance from ground (position)
a — coefficient of restitution, 0 <a<1
If you plotted y(t), what would it look like?

BF -ES

14

Hybrid Automaton for Bouncing Ball

y(£)
BouncingBall ¥()<0
¥(t) =0/ bump »b ump ‘ . t
¥(t) := —ay(t) oy \ "
/) A3(1)
free

t
y(O = 0 r f Iy g

y — vertical distance from ground (position)
a — coefficient of restitution, 0 -a - 1

BF -ES

Sticky Masses
> <>

v, (D

V(0

Displacement rJf.‘\’i"{_{.i'_\'c’\
of v 0=
: Ly

A ononoon

0O 5 10 15 20 25 30 35 40 45 50
time

BF -ES - 30-

15

StickyMasses yi(t) = y2(1)
y(t) ==y (1)

¥(1) := (1 (t)my + y2(t)ma) / (my +my) b'y' (t)
m)
.\'2(0):i2 ‘(k]—kz)}(f)+k2P2_kIIJI\>S yz(f)
71(0) =0 yi(r) ==y(t) >
e ya(t) := (1)
= (1) :=5(1)
ya(t) := y(t)
- kipi+kapr — (ki +ka)y(1)
Yi(t) =ki(pr —y1(1)) /m (0 === zf;wmlz -
¥2(t) = ka(p2 — y2(2)) /m2 yi(t) =y(r)
y2(t) = (1)
BF - ES - 31-
StateCharts —
Additional features compared to FSMs
= Hierarchy
= Concurrency
BF - ES - 32-

16

StateCharts

BF -

Statecharts introduced in
Harel: “StateCharts: A visual formalism for complex
systems”. Science of Computer Programming, 1987.

More detailed in

Drusinsky and Harel: “Using statecharts for hardware
desription and synthesis”, IEEE Trans. On Computer
Design, 1989.

Formal semantics in

Harel, Naamad: “The statemate semantics of
statecharts”, ACM Trans. Soft. Eng. Methods, 1996.

many variations of the semantics implemented in tools

ES - 33-

Non-deterministic transitions

Edge label (simple version): @

BF - ES - 34-

Transition from A to B iff event f is present.
Effect of transition from A to B: Event g is produced.
= Events may be

» External events (provided by the environment)

+ Internal events (produced by internal transitions)
Produced events exist only for one step.

17

Introducing hierarchy

FSM will be in exactly
one of the substates of S
if S is active

(eitherin AorinBor..)

f
. .) P Superstate
% 7 substates

BF - ES - 35-

Definitions

= Current states of FSMs are also called active states.

= States which are not composed of other states are called
basic states.

= States containing other states are called super-states.

» For each basic state s, the super-states containing s are
called ancestor states.

» Super-states S are called OR-super-states, if exactly one
of the sub-states of S is active whenever S is active.

[s]

f

g h i j
\ ORO

BF -ES - 36 -

__- ancestor state of E

«

18

Hierarchy

Statechart SC

[s]

f

g h i j
\ ®

= Hierachy information may be represented by a hierarchy
tree with basic states as leaves.

@ * Transitions between all
e e levels of hierarchy possible!
* When a basic state is
° G Q Q @ active, then all its ancestor

states are active, too.

BF - ES S 37

Hierarchy - transitions to super-states

[s]

S

= What is the meaning of transitions to superstates,
i.e., what basic state is entered when a superstate is entered?

default state mechanism
history mechanism

BF - ES - 40 -

19

Default state mechanism

Filled circle indicates

sub-state entered @—9—)@ " @ i @ G
whenever super- ™~ .

state is entered. %

Not a state by itself!

Allows internal 5] il

structure to be ;
hidden for outsid m‘.
vvlorlc(jrl oo { 9 G Q }
k
m

BF - ES .41 -

History mechanism

[s]
f
AR RN j
Noroororo
.
%

= For event m, S enters the state it was in before S was
left (can be A, B, C, D, or E). If S is entered for the very
first time, the default mechanism applies.

BF - ES - 42 -

20

History and default state mechanism

= History and default mechanisms may be used at different levels of
hierarchy.

E ; 2
RIRO
O]&0D @F
@y

X J
BF - ES - 43 -
History and deep history

I

e

[SENSOR_DISCONHECTED]

Umzssm

History connectors
remember states
at the same level
as the history
connector!

Q Default states

O Active states

BF - ES

.44 -

21

History and deep history
I

-

[SENSOR_DISCOHKECTED]

\moczssm

O Default states

O Active states @ b

BF -ES

remembers

What state is entered
after sequence
SENSOR_DISCONNECTED,
SENSOR_CONNECTED?

- 45-

History and deep history

7

[SENSOR_DISCONHECTED]

Umzssm

Q Default states

Q Active states

BF - ES

Deep history
connectors H*
remember basic
states!

- 46 -

22

History and deep history

l
= N

\mocass.m:

remembers

O Default states @ . OPFA

What state is entered

O Active states @ @ b after sequence
SENSOR_DISCONNECTED,

SENSOR_CONNECTED?

BF -ES - A7 -

Variables with complex data types

Similar to extended FSMs:

= Include typed variables (e.g. integers, reals, strings, records) to represent data
= Both ,graphical states“ and variables contribute to the state of the statechart.
= Notation:

« ,graphical states” = states

« ,graphical states” + variables = status

A 10-Bit counter, counting on event @ and issuing overflow after 1024 occurrences:

As FSM: As Statechart:
\ a & [v<1023]/x :=x+1
~

[A=
)

a/overflow \

a & [x=1023] / overflow: x := 0
P »
7 X,
- action: event generation and/or
trigger condition: state assignment
events and/or state
predicate

BF - ES - 48 -

23

Events and variables

Events:
= Exist only until the next evaluation of the model
= Can be either internally or externally generated

Variables:
= Values of variables keep their value until they are
reassigned.

BF - ES . 49-

General form of edge labels

. event [condition] / action .
Meaning:

»= Transition may be taken, if event occurred in last step and
condition is true
= [f transition is taken, then reaction is carried out.

Conditions:
= Refer to values of variables
Actions:
= Can either be assignments for variables or creation of events

Example:
» a&|[x=1023]/ overflow; x:=0

BF -ES - 50 -

24

Events, conditions, actions

= Possible events (incomplete list):
= Atomic events
* Basic events: A, B, BUTTON_PRESSED
» Entering, exiting a state: en(S), ex(S)
+ Condition test: [cond], e.g. [X>5]

* Timeout events: tm (e,d): event tm(e,d) is emitted d time
units after event e has occurred

= Compound events: logical connectives and, or, not

= Possible conditions (incomplete list):
= Atomic conditions
» Constants: true, false
» Condition variables (i.e. variables of type boolean)
* Relations between values: X > 1023, X - Y
» Residing in a state: in(S)
= Compound events: logical connectives and, or, not

BF -ES - 51-

Events, conditions, actions

= Possible actions (incomplete list):

= Atomic actions
+ Emitting events: E (E is event variable)
+ Assignments: X := expression
» Scheduled actions: sc!(A, N) (means perform action after N

time units)

= Compound actions
+ List of actions: Al; A2; A3
» Conditional action: if cond then Al else A2

BF -ES - 52-

25

Concurrency

= AND-super-states: FSM is in all (immediate) sub-
states of a AND-super-state; Example:

answering—machine
on

line-monitoring

T
|
|
ring ! key pressed
@ Lproc | @ Kproc
|
|
|
|
|
|
|

key-monitoring (excl. on/off)

hangup done
(caller)

key—on key—off

BF -ES - 53-

Concurrency

= Example for active states:

/ Default states

O Active states

BF - ES - 54-

26

Benefits of AND-decomposition

BF - ES - 55-

Entering and leaving AND-super-states

lanswering-machine|

[on]

line-monitoring

T
:
|
ring ; key pressed
. |
hangup 1 i done
|
|
|

key-monitoring (incl. on/off)

i (caller)

key—on
@ =+ key—off

» Line-monitoring and key-monitoring are entered and left,
when key-on and key-off events occur.

BF -ES - 56-

27

Types of states

In StateCharts, states are either

» basic states, or
= AND-super-states, or

= OR-super-states.

BF -ES - 57-

Timers

= |n StateCharts, special edges can be used for
timeouts.

a 20 ms

.

timeout

If event a does not happen while the system is in the left
state for 20 ms, a timeout will take place.

BF -ES - 58 -

28

Using timers in answering machine

Lproc
f
lift off ‘(al—k\ return dead
4s J (callee)
timeout T
W timeout
beep 8s ——=1 beep
record silent
\.
BF - ES

Condition connector

[cl]/B

[c2] N\

P

BF -ES

E[C1]/A;B

E[C2]/A

- 60 -

29

Connectors

= Example: Traffic light control with two programs

30s %@m{l\l

I S

|

timeout/b

[Prog = A]

Wy
30s neben voll/a

BF - ES - 61-
Join and Fork Connectors
< T
\ .
- ye_Ne)
10 0]
O O
BF - ES - 62 -

30

Compound transitions

2
tl
3

t1 and t2 must
be executed
together

) tl: evl/actl
At
O\[P_: ev2/act2

3 -

w

o (e) o)
[5_’@
v
4 [C4]/ acd

(evl and ev2) [C3] / actl;act2;act3

—_—

(evl and ev2) [C4] / actl;act2;actd

BF -ES

- 63 -

31

