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REVIEW: The Partitioning Problem 

The partitioning problem is to assign 

n objects O={o1, …, on} to 

m blocks (also called partitions) P={p1, …, pm} 

such that 

 p1  p2 …  pm = O 

 pi  pj =  for all ij, and  

 cost c(P) is minimized.  
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REVIEW: Partitioning Methods 

 Heuristic methods 

 Constructive methods 

• Random mapping 

• Hierarchical clustering 

 Iterative methods 

• Kernighan-Lin Algorithm 

• Simulated Annealing 

 Exact methods 

 Enumeration 

 Integer Linear Programming (ILP) 
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REVIEW: Hierarchical Clustering 
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REVIEW: Kernighan-Lin 
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REVIEW: Fiduccia-Mattheyses Heuristic (F-M) 

 Objects have size s(o) 

 Size of block: sum of size of objects 

 Balanced two-way partition:  

Given a fraction r, 0 < r < 1, 

partition a graph into two blocks A and B such that  

|A| / (|A|+|B|)  r 

and cutset is minimized 

 Linear complexity 

 

Terminology: object=„cell“, hyperedges=„net“ 

A B C D 
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REVIEW: Single pass of the F-M heuristic 

 Select the cell with the 

greatest gains that 

satisfies balance 

conditions 

 Move the cell and lock it 

 Update gains 

 Repeat until all cells are 

locked or will dissatisfy 

balance conditions 
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REVIEW: Overall F-M heuristic 

 Create an initial partition 

 Execute a pass of the F-M 

heuristic 

 Start again using the resulting 

partition as the initial partition 

 Continue until the resulting gain 

is no longer greater than zero 
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REVIEW: Calculate gain 

 g(i) = FS(i) - TE(i) 

 FS(i): The number of nets which contain cell i but no other object in 
the same partition as i 

 TE(i): The number of nets that consist only of i and other cells 
currently in the same partition as i 

object FS TE gain 

A 
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A B C D 
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Calculate Gain 

 

 For each unlocked cell i do 

 g(i) = 0 

 F = the “from block” of object i 

 T = the “to block” of object i 

 For each net n that contains i do 

• If F(n) = 1 increment g(i) 

• If T(n) = 0 decrement g(i) 
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Net distribution and critical nets 

 Distribution of net i:  

(A(i),B(i))=(# of cells in A, # of cells in B) 

 

 A net is critical if it has an cell that if moved will add or 

remove the net from the cutset 

 Gain of a cell depends only on its critical nets. 

 4 cases: A(i)=0 or 1, B(i)=0 or 1 
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Updating gains 

 For the update of the gains, we only need to consider 

nets that contain the cell selected for movement and that 

are critical before or after the move. 
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Complexity 

 Once a net has some locked cell at both sides, the net 

will remain in the cut set.  

 At most 3 update operations per net during one pass of 

the algorithm 

 Linear complexity 
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Simulated Annealing 

 General method for solving combinatorial optimization 

problems. 

 Based the model of slowly cooling crystal liquids. 

 Changes leading to a poorer configuration (with respect 

to some cost function) are accepted with a certain 

probability. 

 This probability is controlled by a temperature parameter: 

the probability is smaller for smaller temperatures. 
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Simulated Annealing Algorithm 

procedure SimulatedAnnealing; 

var i, T: integer; 

 begin 

   temp := temp_start; 

   cost:=c(P); 

   while (Frozen()==FALSE) do 

    begin 

     while (Equilibrium()==FALSE) do 

       begin P’ := RandomMove(P); 
    cost’=c(P’) 

         deltacost := cost’ - cost; 

         if (Accept(deltacost, temp)>random[0,1))  

         then P=P’; cost=cost’ 

       end; 
temp:= decreaseTemp(temp) 

   end; 

end;  
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Simulated Annealing 

 Annealing schedule: DecreaseTemp(), Frozen() 

• temp_start=1.0 

• temp =   temp (typical: 0.8    0.99) 

• stop at temp < temp_min or if no more improvement 

 Equilibrium: 

• After certain number of iterations or when no more improvement 

 Complexity:  

• From exponential to constant, depending on choice of Equilibrium(), 

DecreaseTemp(), Frozen() 

• The longer the runtime, the better the results 

• Usually functions constructed to obtain polynomial runtime 
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Integer programming models 

 Ingredients: 

 Cost function 

 Constraints 

Involving linear expressions over 
integer variables from a set X 

Def.: The problem of minimizing (1) subject to the constraints 
(2) is called an integer programming (IP) problem. 

If all xi are constrained to be either 0 or 1, the IP problem said 

to be a 0/1 integer programming problem.  
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Example 
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Remarks on integer programming 

 Integer programming is NP-complete. 

 Running times depend exponentially on problem size, 

but problems of >1000 vars solvable with good solver (depending on 

the size and structure of the problem) 

 The case of xi  ℝ  is called linear programming (LP). 

LP has polynomial complexity, but most algorithms are exponential, 

still in practice faster than for ILP problems. 

 The case of some xi  ℝ and some xi  ℕ  is called mixed integer-

linear programming. 

 ILP/LP models can be a good starting point for modeling, even if in the 

end heuristics have to be used to solve them. 
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Integer Linear Programming for Partitioning 

 Binary variables xi,k 

 Xi,k=1: object oi in block pk 

 xX,k=0: object oi not in block pk 

 Cost ci,k if object oi in block pk 

 

 Integer linear program: 
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A comprehensive integer linear programming  
model for HW/SW partitioning 

Notation: 

 Index set V denotes tasks.  

 Index set L denotes task types 

e.g. square root, DCT or FFT 

 Index set M denotes hardware component types. 

e.g. hardware components for the DCT or the FFT.  

 Index set J of hardware component instances 

 Index set KP denotes processors. 

All processors are assumed to be of the same type 

Marwedel 

Section 6.3.2 
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An ILP model for HW/SW partitioning 

 Xv,m: =1 if node v is mapped to hardware 

component type m  M and 0 otherwise. 

 Yv,k: =1 if node v is mapped to processor k  KP and 0 otherwise. 

 NYl,k =1 if at least one node of type l is mapped to processor k  KP 

and 0 otherwise. 

 Type is a mapping from tasks to their types: 

Type : V  L  

 The cost function accumulates the cost of hardware units: 

C = cost(processors) + cost(memories) +  

   cost(application specific hardware) 
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Constraints 

Operation assignment constraints 
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All task graph nodes have to be mapped either in 
software or in hardware. 

Variables are assumed to be integers.  
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Operation assignment constraints (2) 

 l  L,  v:Type(v)=cl ,  k  KP : NYl,k  Yv,k 

 

 For all types l of operations and for all nodes v of this 

type: 

if v is mapped to some processor k, then that processor 

must implement the functionality of l.  

 

 Decision variables must also be 0/1 variables: 

 l  L,  k  KP : NY l,k  1. 
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Resource & design constraints 

 m  M, the cost for components of type m is  
= sum of the costs of the components of that type. 
 

 

 k  KP, the cost for associated data storage area should 
not exceed its maximum. 

 

 k  KP the cost for storing instructions should not exceed 
its maximum. 
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Scheduling / precedence  constraints 

 For all nodes vi1 and vi2 that are potentially 

mapped to the same processor or hardware component instance, 

introduce a binary decision variable bi1,i2 with 

bi1,i2=1 if vi1 is executed before vi2 and 

         = 0 otherwise. 

Define constraints of the type 

(end-time of vi1)  (start time of vi2) if bi1,i2=1 and 

(end-time of vi2)  (start time of vi1) if bi1,i2=0 

 Ensure that the schedule for executing operations is consistent with 

the precedence constraints  

 Approach fixes the order of execution 

 Timing constraints guarantee that deadlines are met. 
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Example 

 HW types H1, H2 and H3 with 
costs of 20, 25, and 30. 

 Processors of type P. 

 Tasks T1 to T5. 

 Execution times: 

T H1 H2 H3 P 

1 20   100 

2  20  100 

3   12 10 

4   12 10 

5 20   100 
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Operation assignment constraints (1) 

T H1 H2 H3 P 

1 20   100 

2  20  100 

3   12 10 

4   12 10 

5 20   100 

X1,1+Y1,1=1 (task 1 mapped to H1 or to P) 

X2,2+Y2,1=1 

X3,3+Y3,1=1 

X4,3+Y4,1=1 

X5,1+Y5,1=1 
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Operation assignment constraints (2) 

 Assume types of tasks are l =1, 2, 3, 3, and 1. 

 l  L,  v:Type(v)=c l,  k  KP : NY l,k  Yv,k 

Functionality 3 to be 
implemented on 

processor if node 4 is 
mapped to it. 
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Other equations 

 Time constraints leading to: Application specific 
hardware required for time constraints  100 time 
units. 

T H1 H2 H3 P 

1 20   100 

2  20  100 

3   12 10 

4   12 10 

5 20   100 

Cost function: 

C=20 #(H1) + 25 #(H2) + 30 # (H3) + cost(processor) + 

cost(memory)  



17 

 -  33 - BF - ES 

Result 

 For a time constraint of 100 time units 
and cost(P)<cost(H3): 

T H1 H2 H3 P 

1 20   100 

2  20  100 

3   12 10 

4   12 10 

5 20   100 

Solution (educated guessing) : 
T1  H1 

T2  H2 

T3  P 

T4  P 

T5  H1 
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Fault tolerance 
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Safety vs. Reliability 

 Safe means sufficiently low probability of serious harm 
caused by the system: 

 e.g. ISO 8402: „State in which risk of harm (to persons) or 

damage is limited to an acceptable level.“ 

 

 Reliable means sufficiently high probability of 

delivering intended service. 

 Reliability is the probability of the system delivering the service 

it was designed for throughout the horizon, given  

• a defined temporal horizon 

• the operational conditions 
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Faults, Errors & Failures 

Example - landing gear in an airplane 

 Landing gear sensor faulty: doesn’t report that gear is down 

 Landing flaps and thrust-reverters are blocked by control software though 

plane is grounded 

 Braking distance increases dramatically, plane may drive off runway 

Primary cause of error 
(and failure) 

Fault 
Error 

Unintended 
internal state 
of subsystem 

Standardized terminology: J. C. Laprie (ed.) 1992,  

„Dependability:   Basic Concepts and Terminology“ 

Failure 

Deviation of actual service 
from intended service 
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Dealing with Faults 

 Fault avoidance aims at preventing the occurrence of 

faults: design reviews, testing, verification. 

 

 Fault tolerance Is the ability of a system to continue to 

perform its tasks after the occurrence of faults 

 Fault masking: preventing faults from introducing errors 

 Reconfiguration: fault detection, location, containment and 

recovery 
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Types of faults 

 A permanent fault remains in existence indefinitely if no corrective 

action is taken 

 A transient fault disappears within a short period of time 

 An intermittent fault may appear and disappear repeatedly. 

 

 

 Pilots noticed malfunctions every 6 flight hour 

 Pilots requested maintenance every 31 hour 

 Only 1/3 of the noticed malfunctions could be reproduced in the 
maintenance shop 

6 

31 

82                             unit failed shop test 

pilot requests maintenance 

failure occurred during flight 

Hours MTTF 10 20 30 40 50 60 70 80 90 100 

fire-control  

radar in F-16 
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Types of redundancy 

 Hardware redundancy: physical replication of hardware 

 

 Software redundancy: different software versions of tasks, 

preferably written by different teams 

 

 Time redundancy: multiple executions on the same hardware at 

different times 

 

 Information redundancy: Coding data in such a way that a certain 

number of bit errors can be detected and/or corrected. 
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Static hardware redundancy 

 Static redundancy based on voting. 

 Triple modular redundancy (TMR): 
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Static hardware redundancy:  

N-modular redundancy (NMR) 

 System tolerates failure of (N-1)/2 modules 

 Protects against random faults but not againts 

systematic faults 

 Disadvantages: high cost, size, weight, energy. 

(typically: N4). 
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Static hardware redundancy: 

Multiple Stage TMR 
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Dynamic hardware redundancy: 

standby spare arrangement 

 Fault detection based on outputs (consistency check) not on voting 

 Advantage: less redundant hardware 

 Disadvantage: fault detection may take time  fault not masked 
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Standby spares 

 Hot standby: spare is run continuously in parallel with 

active unit 

 Fast transfer of control 

 Increased power consumption 

 Same operating stress as active unit 

 Cold standby: spare is unpowered until called into 

service 

 Reduces power consumption 

 Reduces wear and tear 

 More disruption at  changeover 
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Hybrid redundancy:  

N-modular redundancy with spares 
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Software fault tolerance 

 N-version programming ( static redundancy) 

 Prepare N different versions  

 Run them in parallel or sequentially 

 Select result of majority at the end 

 Recovery blocks ( dynamic redundancy) 

 Each job has a primary version and one or more alternatives 

 When primary version is completed, perform acceptance test 

 If acceptance test fails, run alternative version 

 

Danger: common-mode failures 

 Ambiguities in specification 

 Choice of programming language, numerical algorithms,… 

 Common background of software developers  
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Failure modes of subsystems 

 Fail-silent failures 

 subsystem either produces correct results  

or produces (recognizable) incorrect results  

or remains quiet 

 can be masked as long as at least one system survives 

 Consistent failures 

 If subsystem produces incorrect results all recipients receive same 

(incorrect) result 

 can be masked iff the failing systems form a minority 

 Byzantine failures 

 subsystem reports different results to different dependent systems 

 can be masked iff strictly less than a third of the systems fail 

 -  48 - BF - ES 

Byzantine generals [Lamport/Shostak/Pease´82] 

 Several divisions of the Byzantine army are camped  
outside an enemy city 

 Each division is commanded by a general: there is one 
„commander“ and several „lieutenants“ 

 Each general may be a traitor 

 Communication is reliable 

 

 Goal: All loyal divisions must decide upon the same 
plan of action; if commander is loyal, loyal lieutenants 
should execute his order 

 Basic idea: every lieutenant reports about the command 
received 
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Solution 

Algorithm A(0): 

 Commander sends value (=order) to every lieutenant. 

 

Algorithm A(m), m>0: 

 Commander sends value to every lieutenant. 

 Each lieutenant forwards value to all other lieutenants 

using algorithm A(m-1). 

 Lieutenant i uses majority value of received values to 

determine result. 
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Lieutenants reach consensus (Case 1 traitor) 


