Embedded Systems 21

BF -ES S1-

REVIEW: The Partitioning Problem

The partitioning problem is to assign
n objects O={o,, ..., 0.} to
m blocks (also called partitions) P={p,, ..., P}
such that

" pUP,...UPpy=0

" pinp;= < for all i, and

= cost ¢c(P) is minimized.

BF -ES S




REVIEW: Partitioning Methods

» Heuristic methods
= Constructive methods
» Random mapping
* Hierarchical clustering
» [terative methods
» Kernighan-Lin Algorithm
» Simulated Annealing
= Exact methods
» Enumeration
= Integer Linear Programming (ILP)

BF -ES

Average
closeness;

Termination:
2 blocks

BF - ES




REVIEW: Kernighan—Lin

b 90

Mf”/ L
S@ 1 <
N {”\( 3 2

T
3 (IO}L\\ e °

BF-Es U (_‘f,Q«'S L § 5.

REVIEW: Fiduccia-Mattheyses Heuristic (F-M)

I l

A — B C — D

= Objects have size s(0)
= Size of block: sum of size of objects

» Balanced two-way partition:
Given a fractionr, 0 <r< 1,
partition a graph into two blocks A and B such that
|Al7 (IA[+]B]) = r
and cutset is minimized
» Linear complexity

Terminology: object=,cell*, hyperedges=,net"

BF -ES - 6-




REVIEW: Single pass of the F-M heuristic

I Select the cell with the
greatest gains that
satisfies balance
conditions

= Move the cell and lock it
» Update gains

Satisf Swap Base Gell
Balance No Back, choose
new Base Cell

» Repeat until all cells are
locked or will dissatisfy
balance conditions
BF - ES 4.

REVIEW: Overall F-M heuristic

= Create an initial partition l
= Execute a pass of the F-M e
heuristic 7
= Start again using the resulting Singe P
partition as the initial partition I
= Continue until the resulting gain e
Is no longer greater than zero ;

BF -ES - 8-




REVIEW: Calculate gain

= g(i) = FS(i) - TE()

= FS(i): The number of nets which contain cell i but no other object in
the same patrtition as i

= TE(i): The number of nets that consist only of i and other cells
currently in the same partition as i

object| FS TE gain /
A 2 (o) 2 [ l
B P o P A B C — D
C 7 1 0
D 0 A —I
BF - ES -9-

Calculate Gain

= For each unlocked cellido
= g@=0
= F = the “from block” of object i
= T = the “to block” of object i
= For each net n that contains i do
* If F(n) =1 increment g(i)
 If T(n) = 0 decrement g(i)

BF - ES - 10 -




Net distribution and critical nets

= Distribution of net i:
(A(),B(1))=(# of cells in A, # of cells in B)

= A netis critical if it has an cell that if moved will add or
remove the net from the cutset

= Gain of a cell depends only on its critical nets.
= 4 cases: A()=0or1,B()=0or1l

N e R Ty !

RRCIRI Y

BF -ES 11 -

Updating gains

» For the update of the gains, we only need to consider
nets that contain the cell selected for movement and that
are critical before or after the move.

BF - ES - 12-




—
Y
T
v/ — Lrj_@'TJ
6 o N A [
)

(’a\_,sc 3 /Lf W?M«‘

BF - ES

- 14 -




Complexity

= Once a net has some locked cell at both sides, the net
will remain in the cut set.

= At most 3 update operations per net during one pass of

the algorithm s;u'w? i
» Linear complexity [Bl=a, 1817]
L/LOB /lfl' st A '_'VE

v oA \B[=0 Y .

BF -ES - 15-

Simulated Annealing

= General method for solving combinatorial optimization
problems.

= Based the model of slowly cooling crystal liquids.

= Changes leading to a poorer configuration (with respect
to some cost function) are accepted with a certain
probability.

= This probability is controlled by a temperature parameter:
the probability is smaller for smaller temperatures.

BF - ES - 16 -




Simulated Annealing Algorithm

procedure SimulatedAnnealing;
var i, T: integer;

begin
temp := temp_start;
cost:=c(P);
while (Frozen()==FALSE) do
begin

while (Equilibrium()==FALSE) do

begin P’ := RandomMove(P);
cost'=c(P’)
deltacost := cost’ - cost;
if (Accept(deltacost, temp)>random[0,1))
then P=P’; cost=cost’

end;

temp:= decreaseTemp(temp)

end;
end;

BF - ES -17-

Simulated Annealing

= Annealing schedule: DecreaseTemp(), Frozen()

» temp_start=1.0

* temp = a - temp (typical: 0.8 < o < 0.99)

* stop at temp < temp_min or if no more improvement
= Equilibrium:

« After certain number of iterations or when no more improvement
= Complexity:

» From exponential to constant, depending on choice of Equilibrium(),

DecreaseTemp(), Frozen()
» The longer the runtime, the better the results
« Usually functions constructed to obtain polynomial runtime

BF - ES - 18-




Integer programming models

* Ingredients:

= Cost function Involving linear expressions over
= Constraints integer variables from a set X

Cost function C= > ax witha,eRx; ey (1)

Xl'EX

Constraints:vj e J: > b, x;, 2c;withb, ,c; e B (2)

x;eX

Def.: The problem of minimizing (1) subject to the constraints
(2) is called an integer programming (IP) problem.

If all x; are constrained to be either O or 1, the IP problem said
to be a 0/1 integer programming problem.

BF -ES -19-

Example

C =5x,+ 6x_+ 4Xx
1 2 3

X1 X2 X3 C

0 1 1 10
1 0 1 9 <«—— Optimal
1 1 0 11
1 1 1 15
BF - ES - 20 -

10



Remarks on integer programming

= |nteger programming is NP-complete.

= Running times depend exponentially on problem size,
but problems of >1000 vars solvable with good solver (depending on
the size and structure of the problem)

= The case of x; € R is called linear programming (LP).
LP has polynomial complexity, but most algorithms are exponential,
still in practice faster than for ILP problems.

= The case of some x; € Rand some x; € & is called mixed integer-
linear programming.

= |LP/LP models can be a good starting point for modeling, even if in the
end heuristics have to be used to solve them.

BF - ES - 21-

Integer Linear Programming for Partitioning

* Binary variables x;

= X;=1: object o, in block p

= Xy =0: object o; not in block p,
* Cost c; if object o; in block p,

= Integer linear program:

minimize Ty ox,, e

BF - ES - 22.-

11



A comprehensive integer linear programming

model for HW/SW partitioning
Marwedel

Section 6.3.2
Notation:
= |ndex set V denotes tasks.

= Index set L denotes task types
e.g. square root, DCT or FFT

» Index set M denotes hardware component types.
e.g. hardware components for the DCT or the FFT.

= Index set J of hardware component instances

» Index set KP denotes processors.
All processors are assumed to be of the same type

BF -ES - 23-

An ILP model for HW/SW partitioning

* X,m: =1if node v is mapped to hardware
component type m € M and 0 otherwise.

* Y, =1if node v is mapped to processor k € KP and 0 otherwise.

= NY,, =1if at least one node of type | is mapped to processor k € KP
and 0 otherwise.

= Type is a mapping from tasks to their types:
Type:V L

= The cost function accumulates the cost of hardware units:

C = cost(processors) + cost(memories) +
cost(application specific hardware)

BF - ES - 24-




Constraints
Operation assignment constraints

VveV:z Xv‘m+ ZYv‘kzl
meM

ke KP

All task graph nodes have to be mapped either in
software or in hardware.

Variables are assumed to be integers.
Additional constraints to guarantee they are either O or 1:

VveV :Vme M : X

IA
-

v.,m

VveV :Vke KP :YVk

IN
=

BF -ES

- 25-

Operation assignment constraints (2)

Vlel, VvType(v)=c, Vke KP:NY =Y,

= For all types | of operations and for all nodes v of this
type:

if vis mapped to some processor k, then that processor

must implement the functionality of I.

= Decision variables must also be 0/1 variables:
Vliel, Vke KP:NY, <1

BF - ES

- 26 -

13



Resource & design constraints

Vv m e M, the cost for components of type m is
= sum of the costs of the components of that type.

Vv k € KP, the cost for associated data storage area should
not exceed its maximum.

Vv k € KP the cost for storing instructions should not exceed
its maximum.

BF - ES - 27-

Scheduling / precedence constraints

= For all nodes v;; and v;, that are potentially
mapped to the same processor or hardware component instance,
introduce a binary decision variable b;; ;, with
by ;,=1 if v;; is executed before v;, and
= 0 otherwise.
Define constraints of the type
(end-time of v;)) < (start time of v;,) if b;; ;=1 and
(end-time of v;,) < (start time of v;) if b;; ;,=0

= Ensure that the schedule for executing operations is consistent with
the precedence constraints

= Approach fixes the order of execution

= Timing constraints guarantee that deadlines are met.

BF - ES - 28-

14



Example

HW types H1, H2 and H3 with

costs of 20, 25, and 30.

Processors of type P.

Tasks T1 to T5.
Execution times:

T H1 H2 H3 P
1 20 100
2 20 100
3 12 10
4 12 10
5 20 100
BF - ES - 29-
Operation assignment constraints (1)
T H1 H2 H3 P
1 20 100
2 20 100
3 12 10 VVeV:Z Xva+ZYk=l
4 12 10 m e Ku ke
5 20 100
X11+Y1 =1 (task 1 mapped to H1 or to P)
XootY, =1
X33t+Y3,=1
Xg31Yy,=1
X5 1+Y5,=1
BF - ES

- 30-

15



Operation assignment constraints (2)

= Assume types of tasks are 1 =1, 2, 3, 3, and 1.
Vlel, VviType(v)=c |, Vke KP:NY  >Y,,

Functionality 3 to be
NYi1 2T implemented on
NY1 > Y2 processor if node 4 is

NY;1 > 13,
NY;1 > Yy,
NY| 1> Y5,

mapped to it.

BF -ES - 31-

Other equations

» Time constraints leading to: Application specific
hardware required for time constraints < 100 time
units.

T H1 H2 H3 P

1 20 100
2 20 100
3 12 10
4 12 10
B 20 100

Cost function:
C=20 #(H1) + 25 #(H2) + 30 # (H3) + cost(processor) +
cost(memory)

BF - ES - 32-

16



Result

= For atime constraint of 100 time units
and cost(P)<cost(H3):

H1 H2 H3 P
20 100
20 100
12 10

i
h
| |
| |
| |
12 10 @\
20 100 @
Solution (educated guessing) : C

T1->H1 N s
T2 > H2 N g
T83—>P P,
T4 > P

5 - H1

BF - ES - a3-

a b~ O PP A

Fault tolerance

BF -ES S 34

17



Safety vs. Reliability

= Safe means sufficiently low probability of serious harm
caused by the system:

= e.g. ISO 8402: ,State in which risk of harm (to persons) or
damage is limited to an acceptable level.”

= Reliable means sufficiently high probability of
delivering intended service.

= Reliability is the probability of the system delivering the service
it was designed for throughout the horizon, given

+ a defined temporal horizon
+ the operational conditions

BF - ES - 35-

Faults, Errors & Failures

Standardized terminology: J. C. Laprie (ed.) 1992,

,Dependability: Basic Concepts and Terminology*

Error .
Fault Failure
Pri P Unintended . i
rlr(ri\c:cr‘\/.'cause of error internal state Devm:hon of actual service
(and failure) of subsystem from intended service

Example - landing gear in an airplane
= Landing gear sensor faulty: doesn’t report that gear is down

= Landing flaps and thrust-reverters are blocked by control software though
plane is grounded

= Braking distance increases dramatically, plane may drive off runway

BF - ES - 36-

18



Dealing with Faults

» Fault avoidance aims at preventing the occurrence of
faults: design reviews, testing, verification.

»= Fault tolerance
perform its tasks
» Fault masking:

Is the ability of a system to continue to
after the occurrence of faults
preventing faults from introducing errors

» Reconfiguration: fault detection, location, containment and

recovery

BF -ES

- 37-

Types of faults

= A permanent fault
action is taken

remains in existence indefinitely if no corrective

= Atransient fault disappears within a short period of time
= Anintermittent fault may appear and disappear repeatedly.

8
ER—

fire-control
radar in F-16

failure occurred during flight

pilot requests maintenance

82

unit failed shop test |

= Pilots noticed

L
10 20 30 40 50 60 70 80 90 100 Hours MTTF

malfunctions every 6 flight hour

= Pilots requested maintenance every 31 hour

= Only 1/3 of th
maintenance

BF - ES

e noticed malfunctions could be reproduced in the
shop

- 38 -

19



Types of redundancy

= Hardware redundancy: physical replication of hardware

= Software redundancy: different software versions of tasks,
preferably written by different teams

= Timeredundancy: multiple executions on the same hardware at

different times

= Information redundancy: Coding data in such a way that a certain
number of bit errors can be detected and/or corrected.

BF -ES

- 39-

Static hardware redundancy

» Static redundancy based on voting.

= Triple modular redundancy (TMR):

Input

BF - ES

Module 1

Module 2

™~

Voter

—= Qutput

Module 3

< Input | —s

Input 2

Input 3

- 40 -

20



Static hardware redundancy:
N-modular redundancy (NMR)

Input 1 Maodule 1

]

Output
Input 3 Module 3 [—

1

Input N Module N

= System tolerates failure of (N-1)/2 modules

» Protects against random faults but not againts
systematic faults

» Disadvantages: high cost, size, weight, energy.

(typically: N<4).

BF -ES

- 41 -
Static hardware redundancy:
Multiple Stage TMR
Input 1 Voter H Module Voter Output |
Input 2 Voter H Module Voter Output 2
Input 3 Module Voter Module Voter Output 3
BF - ES - 42 -

21



Dynamic hardware redundancy:
standby spare arrangement

Fault

Detector
[

'

Module 1 -

Input — Switch [—= Output

Module 2 -

/

= Fault detection based on outputs (consistency check) not on voting
= Advantage: less redundant hardware
= Disadvantage: fault detection may take time = fault not masked

BF -ES - 43-

Standby spares

= Hot standby: spare is run continuously in parallel with
active unit
» Fast transfer of control
= Increased power consumption
= Same operating stress as active unit
» Cold standby: spare is unpowered until called into
service
= Reduces power consumption
= Reduces wear and tear
= More disruption at changeover

BF - ES - 44 -

22



Hybrid redundancy:
N-modular redundancy with spares

F

Module 1

Disagreement
Module 2 Detector

il

Module N

Switch ¢ Voter p——— Qutput

Spare 1

Spare 2

Spare M

BF - ES - 45 -

Software fault tolerance

= N-version programming (= static redundancy)
= Prepare N different versions
= Run them in parallel or sequentially
= Select result of majority at the end

= Recovery blocks (= dynamic redundancy)
= Each job has a primary version and one or more alternatives
= When primary version is completed, perform acceptance test
= [f acceptance test fails, run alternative version

Danger: common-mode failures
= Ambiguities in specification
= Choice of programming language, numerical algorithms,...
= Common background of software developers

BF - ES - 46 -

23



Failure modes of subsystems

= Fail-silent failures

= subsystem either produces correct results
or produces (recognizable) incorrect results
or remains quiet

= can be masked as long as at least one system survives
= Consistent failures

= If subsystem produces incorrect results all recipients receive same
(incorrect) result

= can be masked iff the failing systems form a minority
= Byzantine failures

= subsystem reports different results to different dependent systems
= can be masked iff strictly less than a third of the systems fail

BF -ES - 47-

Byzantine generals [Lamport/Shostak/Pease 82]

= Several divisions of the Byzantine army are camped
outside an enemy city

= Each division is commanded by a general: there is one
,commander® and several ,lieutenants®

= Each general may be a traitor
= Communication is reliable

= Goal: All loyal divisions must decide upon the same
plan of action; if commander is loyal, loyal lieutenants
should execute his order

» Basic idea: every lieutenant reports about the command
received

BF - ES - 48 -

24



Decision: A

Traitor
BF - ES - 49-

Traitor Decision: A

BF - ES - 50-

25



Traitor

Decision: R

BF -ES - 51-

Traitor Decision: A

Decision: R

BF - ES - 52-

26



Solution

Algorithm A(0):
= Commander sends value (=order) to every lieutenant.

Algorithm A(m), m>0:

= Commander sends value to every lieutenant.

» Each lieutenant forwards value to all other lieutenants
using algorithm A(m-1).

» Lieutenant i uses majority value of received values to
determine result.

BF -ES - 53-

Traitor

Decision A

C

L2 L3

Decision A A Decision A
BF - ES - 54-

27



Traitor Decision A

A

Decision A R Decision A
BF - ES - 55-

Lieutenants reach consensus (Case 1 traitor)

(ot Comeat  faed) s Jicoda
- i realer
= S(A"/} &wuwl,J atamagto Al
o ok w1 Ve
=) Salmne W%WM vt
(s ‘wﬁ“’lﬁ”"’b"c”h ow B

e

SPE VY QR TWIN
_\ ohb v e
=) ¢ '(1 5 e A 2

Cone 2

BF - ES - 56 -

28



