
1

 - 1 - BF - ES

Embedded Systems 21

 - 2 - BF - ES

REVIEW: The Partitioning Problem

The partitioning problem is to assign

n objects O={o1, …, on} to

m blocks (also called partitions) P={p1, …, pm}

such that

 p1 p2 … pm = O

 pi pj = for all ij, and

 cost c(P) is minimized.

2

 - 3 - BF - ES

REVIEW: Partitioning Methods

 Heuristic methods

 Constructive methods

• Random mapping

• Hierarchical clustering

 Iterative methods

• Kernighan-Lin Algorithm

• Simulated Annealing

 Exact methods

 Enumeration

 Integer Linear Programming (ILP)

 - 4 - BF - ES

REVIEW: Hierarchical Clustering

1

4

2 3

30 25

15

10

10 10

Average

closeness;

Termination:

2 blocks

3

 - 5 - BF - ES

REVIEW: Kernighan-Lin

a

d

b

c

e

h

f

g

 - 6 - BF - ES

REVIEW: Fiduccia-Mattheyses Heuristic (F-M)

 Objects have size s(o)

 Size of block: sum of size of objects

 Balanced two-way partition:

Given a fraction r, 0 < r < 1,

partition a graph into two blocks A and B such that

|A| / (|A|+|B|) r

and cutset is minimized

 Linear complexity

Terminology: object=„cell“, hyperedges=„net“

A B C D

4

 - 7 - BF - ES

REVIEW: Single pass of the F-M heuristic

 Select the cell with the

greatest gains that

satisfies balance

conditions

 Move the cell and lock it

 Update gains

 Repeat until all cells are

locked or will dissatisfy

balance conditions

 - 8 - BF - ES

REVIEW: Overall F-M heuristic

 Create an initial partition

 Execute a pass of the F-M

heuristic

 Start again using the resulting

partition as the initial partition

 Continue until the resulting gain

is no longer greater than zero

5

 - 9 - BF - ES

REVIEW: Calculate gain

 g(i) = FS(i) - TE(i)

 FS(i): The number of nets which contain cell i but no other object in
the same partition as i

 TE(i): The number of nets that consist only of i and other cells
currently in the same partition as i

object FS TE gain

A

B

C

D

A B C D

 - 10 - BF - ES

Calculate Gain

 For each unlocked cell i do

 g(i) = 0

 F = the “from block” of object i

 T = the “to block” of object i

 For each net n that contains i do

• If F(n) = 1 increment g(i)

• If T(n) = 0 decrement g(i)

6

 - 11 - BF - ES

Net distribution and critical nets

 Distribution of net i:

(A(i),B(i))=(# of cells in A, # of cells in B)

 A net is critical if it has an cell that if moved will add or

remove the net from the cutset

 Gain of a cell depends only on its critical nets.

 4 cases: A(i)=0 or 1, B(i)=0 or 1

 - 12 - BF - ES

Updating gains

 For the update of the gains, we only need to consider

nets that contain the cell selected for movement and that

are critical before or after the move.

7

 - 13 - BF - ES

 - 14 - BF - ES

8

 - 15 - BF - ES

Complexity

 Once a net has some locked cell at both sides, the net

will remain in the cut set.

 At most 3 update operations per net during one pass of

the algorithm

 Linear complexity

 - 16 - BF - ES

Simulated Annealing

 General method for solving combinatorial optimization

problems.

 Based the model of slowly cooling crystal liquids.

 Changes leading to a poorer configuration (with respect

to some cost function) are accepted with a certain

probability.

 This probability is controlled by a temperature parameter:

the probability is smaller for smaller temperatures.

9

 - 17 - BF - ES

Simulated Annealing Algorithm

procedure SimulatedAnnealing;

var i, T: integer;

 begin

 temp := temp_start;

 cost:=c(P);

 while (Frozen()==FALSE) do

 begin

 while (Equilibrium()==FALSE) do

 begin P’ := RandomMove(P);
 cost’=c(P’)

 deltacost := cost’ - cost;

 if (Accept(deltacost, temp)>random[0,1))

 then P=P’; cost=cost’

 end;
temp:= decreaseTemp(temp)

 end;

end;

 - 18 - BF - ES

Simulated Annealing

 Annealing schedule: DecreaseTemp(), Frozen()

• temp_start=1.0

• temp = temp (typical: 0.8 0.99)

• stop at temp < temp_min or if no more improvement

 Equilibrium:

• After certain number of iterations or when no more improvement

 Complexity:

• From exponential to constant, depending on choice of Equilibrium(),

DecreaseTemp(), Frozen()

• The longer the runtime, the better the results

• Usually functions constructed to obtain polynomial runtime

10

 - 19 - BF - ES

Integer programming models

 Ingredients:

 Cost function

 Constraints

Involving linear expressions over
integer variables from a set X

Def.: The problem of minimizing (1) subject to the constraints
(2) is called an integer programming (IP) problem.

If all xi are constrained to be either 0 or 1, the IP problem said

to be a 0/1 integer programming problem.

Cost function)1(,with NxRaxaC
i

Xx

iii

i

Constraints:)2(,with:
,,

RcbcxbJj

Xx

jjijiji

i

ℕ

ℝ

 - 20 - BF - ES

Example

321
465 xxxC

}1,0{,,

2

321

321

xxx

xxx

Optimal

C

11

 - 21 - BF - ES

Remarks on integer programming

 Integer programming is NP-complete.

 Running times depend exponentially on problem size,

but problems of >1000 vars solvable with good solver (depending on

the size and structure of the problem)

 The case of xi ℝ is called linear programming (LP).

LP has polynomial complexity, but most algorithms are exponential,

still in practice faster than for ILP problems.

 The case of some xi ℝ and some xi ℕ is called mixed integer-

linear programming.

 ILP/LP models can be a good starting point for modeling, even if in the

end heuristics have to be used to solve them.

 - 22 - BF - ES

Integer Linear Programming for Partitioning

 Binary variables xi,k

 Xi,k=1: object oi in block pk

 xX,k=0: object oi not in block pk

 Cost ci,k if object oi in block pk

 Integer linear program:

minimize

niX

mkniX

m

k

ki

ki

11

1,1}1,0{

1

,

,

m

k

n

i

kiki
cX

1 1

,,

12

 - 23 - BF - ES

A comprehensive integer linear programming
model for HW/SW partitioning

Notation:

 Index set V denotes tasks.

 Index set L denotes task types

e.g. square root, DCT or FFT

 Index set M denotes hardware component types.

e.g. hardware components for the DCT or the FFT.

 Index set J of hardware component instances

 Index set KP denotes processors.

All processors are assumed to be of the same type

Marwedel

Section 6.3.2

 - 24 - BF - ES

An ILP model for HW/SW partitioning

 Xv,m: =1 if node v is mapped to hardware

component type m M and 0 otherwise.

 Yv,k: =1 if node v is mapped to processor k KP and 0 otherwise.

 NYl,k =1 if at least one node of type l is mapped to processor k KP

and 0 otherwise.

 Type is a mapping from tasks to their types:

Type : V L

 The cost function accumulates the cost of hardware units:

C = cost(processors) + cost(memories) +

 cost(application specific hardware)

13

 - 25 - BF - ES

Constraints

Operation assignment constraints

Mm KPk

kvmv
YXVv 1:

,,

All task graph nodes have to be mapped either in
software or in hardware.

Variables are assumed to be integers.

Additional constraints to guarantee they are either 0 or 1:

1::
,

mv

XMmVv

1::
,

kv

YKPkVv

 - 26 - BF - ES

Operation assignment constraints (2)

 l L, v:Type(v)=cl , k KP : NYl,k Yv,k

 For all types l of operations and for all nodes v of this

type:

if v is mapped to some processor k, then that processor

must implement the functionality of l.

 Decision variables must also be 0/1 variables:

 l L, k KP : NY l,k 1.

14

 - 27 - BF - ES

Resource & design constraints

 m M, the cost for components of type m is
= sum of the costs of the components of that type.

 k KP, the cost for associated data storage area should
not exceed its maximum.

 k KP the cost for storing instructions should not exceed
its maximum.

 - 28 - BF - ES

Scheduling / precedence constraints

 For all nodes vi1 and vi2 that are potentially

mapped to the same processor or hardware component instance,

introduce a binary decision variable bi1,i2 with

bi1,i2=1 if vi1 is executed before vi2 and

 = 0 otherwise.

Define constraints of the type

(end-time of vi1) (start time of vi2) if bi1,i2=1 and

(end-time of vi2) (start time of vi1) if bi1,i2=0

 Ensure that the schedule for executing operations is consistent with

the precedence constraints

 Approach fixes the order of execution

 Timing constraints guarantee that deadlines are met.

15

 - 29 - BF - ES

Example

 HW types H1, H2 and H3 with
costs of 20, 25, and 30.

 Processors of type P.

 Tasks T1 to T5.

 Execution times:

T H1 H2 H3 P

1 20 100

2 20 100

3 12 10

4 12 10

5 20 100

 - 30 - BF - ES

Operation assignment constraints (1)

T H1 H2 H3 P

1 20 100

2 20 100

3 12 10

4 12 10

5 20 100

X1,1+Y1,1=1 (task 1 mapped to H1 or to P)

X2,2+Y2,1=1

X3,3+Y3,1=1

X4,3+Y4,1=1

X5,1+Y5,1=1

KMm KPk

kvmv
YXVv 1:

,,

16

 - 31 - BF - ES

Operation assignment constraints (2)

 Assume types of tasks are l =1, 2, 3, 3, and 1.

 l L, v:Type(v)=c l, k KP : NY l,k Yv,k

Functionality 3 to be
implemented on

processor if node 4 is
mapped to it.

 - 32 - BF - ES

Other equations

 Time constraints leading to: Application specific
hardware required for time constraints 100 time
units.

T H1 H2 H3 P

1 20 100

2 20 100

3 12 10

4 12 10

5 20 100

Cost function:

C=20 #(H1) + 25 #(H2) + 30 # (H3) + cost(processor) +

cost(memory)

17

 - 33 - BF - ES

Result

 For a time constraint of 100 time units
and cost(P)<cost(H3):

T H1 H2 H3 P

1 20 100

2 20 100

3 12 10

4 12 10

5 20 100

Solution (educated guessing) :
T1 H1

T2 H2

T3 P

T4 P

T5 H1

 - 34 - BF - ES

Fault tolerance

18

 - 35 - BF - ES

Safety vs. Reliability

 Safe means sufficiently low probability of serious harm
caused by the system:

 e.g. ISO 8402: „State in which risk of harm (to persons) or

damage is limited to an acceptable level.“

 Reliable means sufficiently high probability of

delivering intended service.

 Reliability is the probability of the system delivering the service

it was designed for throughout the horizon, given

• a defined temporal horizon

• the operational conditions

 - 36 - BF - ES

Faults, Errors & Failures

Example - landing gear in an airplane

 Landing gear sensor faulty: doesn’t report that gear is down

 Landing flaps and thrust-reverters are blocked by control software though

plane is grounded

 Braking distance increases dramatically, plane may drive off runway

Primary cause of error
(and failure)

Fault
Error

Unintended
internal state
of subsystem

Standardized terminology: J. C. Laprie (ed.) 1992,

„Dependability: Basic Concepts and Terminology“

Failure

Deviation of actual service
from intended service

19

 - 37 - BF - ES

Dealing with Faults

 Fault avoidance aims at preventing the occurrence of

faults: design reviews, testing, verification.

 Fault tolerance Is the ability of a system to continue to

perform its tasks after the occurrence of faults

 Fault masking: preventing faults from introducing errors

 Reconfiguration: fault detection, location, containment and

recovery

 - 38 - BF - ES

Types of faults

 A permanent fault remains in existence indefinitely if no corrective

action is taken

 A transient fault disappears within a short period of time

 An intermittent fault may appear and disappear repeatedly.

 Pilots noticed malfunctions every 6 flight hour

 Pilots requested maintenance every 31 hour

 Only 1/3 of the noticed malfunctions could be reproduced in the
maintenance shop

6

31

82 unit failed shop test

pilot requests maintenance

failure occurred during flight

Hours MTTF 10 20 30 40 50 60 70 80 90 100

fire-control

radar in F-16

20

 - 39 - BF - ES

Types of redundancy

 Hardware redundancy: physical replication of hardware

 Software redundancy: different software versions of tasks,

preferably written by different teams

 Time redundancy: multiple executions on the same hardware at

different times

 Information redundancy: Coding data in such a way that a certain

number of bit errors can be detected and/or corrected.

 - 40 - BF - ES

Static hardware redundancy

 Static redundancy based on voting.

 Triple modular redundancy (TMR):

21

 - 41 - BF - ES

Static hardware redundancy:

N-modular redundancy (NMR)

 System tolerates failure of (N-1)/2 modules

 Protects against random faults but not againts

systematic faults

 Disadvantages: high cost, size, weight, energy.

(typically: N4).

 - 42 - BF - ES

Static hardware redundancy:

Multiple Stage TMR

22

 - 43 - BF - ES

Dynamic hardware redundancy:

standby spare arrangement

 Fault detection based on outputs (consistency check) not on voting

 Advantage: less redundant hardware

 Disadvantage: fault detection may take time fault not masked

 - 44 - BF - ES

Standby spares

 Hot standby: spare is run continuously in parallel with

active unit

 Fast transfer of control

 Increased power consumption

 Same operating stress as active unit

 Cold standby: spare is unpowered until called into

service

 Reduces power consumption

 Reduces wear and tear

 More disruption at changeover

23

 - 45 - BF - ES

Hybrid redundancy:

N-modular redundancy with spares

 - 46 - BF - ES

Software fault tolerance

 N-version programming (static redundancy)

 Prepare N different versions

 Run them in parallel or sequentially

 Select result of majority at the end

 Recovery blocks (dynamic redundancy)

 Each job has a primary version and one or more alternatives

 When primary version is completed, perform acceptance test

 If acceptance test fails, run alternative version

Danger: common-mode failures

 Ambiguities in specification

 Choice of programming language, numerical algorithms,…

 Common background of software developers

24

 - 47 - BF - ES

Failure modes of subsystems

 Fail-silent failures

 subsystem either produces correct results

or produces (recognizable) incorrect results

or remains quiet

 can be masked as long as at least one system survives

 Consistent failures

 If subsystem produces incorrect results all recipients receive same

(incorrect) result

 can be masked iff the failing systems form a minority

 Byzantine failures

 subsystem reports different results to different dependent systems

 can be masked iff strictly less than a third of the systems fail

 - 48 - BF - ES

Byzantine generals [Lamport/Shostak/Pease´82]

 Several divisions of the Byzantine army are camped
outside an enemy city

 Each division is commanded by a general: there is one
„commander“ and several „lieutenants“

 Each general may be a traitor

 Communication is reliable

 Goal: All loyal divisions must decide upon the same
plan of action; if commander is loyal, loyal lieutenants
should execute his order

 Basic idea: every lieutenant reports about the command
received

25

 - 49 - BF - ES

C

L2

L1

A

A

R

A

Traitor

Decision: A

 - 50 - BF - ES

C

L2

L1

R

A

R

A

Traitor Decision: A

26

 - 51 - BF - ES

C

L2

L1

R

R

R

A

Traitor

Decision: R

 - 52 - BF - ES

C

L2

L1

R

A

R

A

Traitor Decision: A

Decision: R

27

 - 53 - BF - ES

Solution

Algorithm A(0):

 Commander sends value (=order) to every lieutenant.

Algorithm A(m), m>0:

 Commander sends value to every lieutenant.

 Each lieutenant forwards value to all other lieutenants

using algorithm A(m-1).

 Lieutenant i uses majority value of received values to

determine result.

 - 54 - BF - ES

C

L2

L1
A

A

Traitor

L3

A

A

A

A
A

R
A

Decision A

Decision A Decision A

A A

28

 - 55 - BF - ES

C

L2

L1
A

R

Traitor

L3

R

A

A

R
A

A
A

Decision A

Decision A Decision A

A R

A

 - 56 - BF - ES

Lieutenants reach consensus (Case 1 traitor)

