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REVIEW: The Partitioning Problem 

The partitioning problem is to assign 

n objects O={o1, …, on} to 

m blocks (also called partitions) P={p1, …, pm} 

such that 

 p1  p2 …  pm = O 

 pi  pj =  for all ij, and  

 cost c(P) is minimized.  
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REVIEW: Partitioning Methods 

 Heuristic methods 

 Constructive methods 

• Random mapping 

• Hierarchical clustering 

 Iterative methods 

• Kernighan-Lin Algorithm 

• Simulated Annealing 

 Exact methods 

 Enumeration 

 Integer Linear Programming (ILP) 

 

 -  4 - BF - ES 

REVIEW: Hierarchical Clustering 
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REVIEW: Kernighan-Lin 
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REVIEW: Fiduccia-Mattheyses Heuristic (F-M) 

 Objects have size s(o) 

 Size of block: sum of size of objects 

 Balanced two-way partition:  

Given a fraction r, 0 < r < 1, 

partition a graph into two blocks A and B such that  

|A| / (|A|+|B|)  r 

and cutset is minimized 

 Linear complexity 

 

Terminology: object=„cell“, hyperedges=„net“ 

A B C D 
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REVIEW: Single pass of the F-M heuristic 

 Select the cell with the 

greatest gains that 

satisfies balance 

conditions 

 Move the cell and lock it 

 Update gains 

 Repeat until all cells are 

locked or will dissatisfy 

balance conditions 
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REVIEW: Overall F-M heuristic 

 Create an initial partition 

 Execute a pass of the F-M 

heuristic 

 Start again using the resulting 

partition as the initial partition 

 Continue until the resulting gain 

is no longer greater than zero 
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REVIEW: Calculate gain 

 g(i) = FS(i) - TE(i) 

 FS(i): The number of nets which contain cell i but no other object in 
the same partition as i 

 TE(i): The number of nets that consist only of i and other cells 
currently in the same partition as i 

object FS TE gain 
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Calculate Gain 

 

 For each unlocked cell i do 

 g(i) = 0 

 F = the “from block” of object i 

 T = the “to block” of object i 

 For each net n that contains i do 

• If F(n) = 1 increment g(i) 

• If T(n) = 0 decrement g(i) 
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Net distribution and critical nets 

 Distribution of net i:  

(A(i),B(i))=(# of cells in A, # of cells in B) 

 

 A net is critical if it has an cell that if moved will add or 

remove the net from the cutset 

 Gain of a cell depends only on its critical nets. 

 4 cases: A(i)=0 or 1, B(i)=0 or 1 
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Updating gains 

 For the update of the gains, we only need to consider 

nets that contain the cell selected for movement and that 

are critical before or after the move. 
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Complexity 

 Once a net has some locked cell at both sides, the net 

will remain in the cut set.  

 At most 3 update operations per net during one pass of 

the algorithm 

 Linear complexity 
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Simulated Annealing 

 General method for solving combinatorial optimization 

problems. 

 Based the model of slowly cooling crystal liquids. 

 Changes leading to a poorer configuration (with respect 

to some cost function) are accepted with a certain 

probability. 

 This probability is controlled by a temperature parameter: 

the probability is smaller for smaller temperatures. 
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Simulated Annealing Algorithm 

procedure SimulatedAnnealing; 

var i, T: integer; 

 begin 

   temp := temp_start; 

   cost:=c(P); 

   while (Frozen()==FALSE) do 

    begin 

     while (Equilibrium()==FALSE) do 

       begin P’ := RandomMove(P); 
    cost’=c(P’) 

         deltacost := cost’ - cost; 

         if (Accept(deltacost, temp)>random[0,1))  

         then P=P’; cost=cost’ 

       end; 
temp:= decreaseTemp(temp) 

   end; 

end;  
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Simulated Annealing 

 Annealing schedule: DecreaseTemp(), Frozen() 

• temp_start=1.0 

• temp =   temp (typical: 0.8    0.99) 

• stop at temp < temp_min or if no more improvement 

 Equilibrium: 

• After certain number of iterations or when no more improvement 

 Complexity:  

• From exponential to constant, depending on choice of Equilibrium(), 

DecreaseTemp(), Frozen() 

• The longer the runtime, the better the results 

• Usually functions constructed to obtain polynomial runtime 



10 

 -  19 - BF - ES 

Integer programming models 

 Ingredients: 

 Cost function 

 Constraints 

Involving linear expressions over 
integer variables from a set X 

Def.: The problem of minimizing (1) subject to the constraints 
(2) is called an integer programming (IP) problem. 

If all xi are constrained to be either 0 or 1, the IP problem said 

to be a 0/1 integer programming problem.  
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Remarks on integer programming 

 Integer programming is NP-complete. 

 Running times depend exponentially on problem size, 

but problems of >1000 vars solvable with good solver (depending on 

the size and structure of the problem) 

 The case of xi  ℝ  is called linear programming (LP). 

LP has polynomial complexity, but most algorithms are exponential, 

still in practice faster than for ILP problems. 

 The case of some xi  ℝ and some xi  ℕ  is called mixed integer-

linear programming. 

 ILP/LP models can be a good starting point for modeling, even if in the 

end heuristics have to be used to solve them. 
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Integer Linear Programming for Partitioning 

 Binary variables xi,k 

 Xi,k=1: object oi in block pk 

 xX,k=0: object oi not in block pk 

 Cost ci,k if object oi in block pk 

 

 Integer linear program: 
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A comprehensive integer linear programming  
model for HW/SW partitioning 

Notation: 

 Index set V denotes tasks.  

 Index set L denotes task types 

e.g. square root, DCT or FFT 

 Index set M denotes hardware component types. 

e.g. hardware components for the DCT or the FFT.  

 Index set J of hardware component instances 

 Index set KP denotes processors. 

All processors are assumed to be of the same type 

Marwedel 

Section 6.3.2 
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An ILP model for HW/SW partitioning 

 Xv,m: =1 if node v is mapped to hardware 

component type m  M and 0 otherwise. 

 Yv,k: =1 if node v is mapped to processor k  KP and 0 otherwise. 

 NYl,k =1 if at least one node of type l is mapped to processor k  KP 

and 0 otherwise. 

 Type is a mapping from tasks to their types: 

Type : V  L  

 The cost function accumulates the cost of hardware units: 

C = cost(processors) + cost(memories) +  

   cost(application specific hardware) 
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Constraints 

Operation assignment constraints 
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All task graph nodes have to be mapped either in 
software or in hardware. 

Variables are assumed to be integers.  
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Operation assignment constraints (2) 

 l  L,  v:Type(v)=cl ,  k  KP : NYl,k  Yv,k 

 

 For all types l of operations and for all nodes v of this 

type: 

if v is mapped to some processor k, then that processor 

must implement the functionality of l.  

 

 Decision variables must also be 0/1 variables: 

 l  L,  k  KP : NY l,k  1. 
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Resource & design constraints 

 m  M, the cost for components of type m is  
= sum of the costs of the components of that type. 
 

 

 k  KP, the cost for associated data storage area should 
not exceed its maximum. 

 

 k  KP the cost for storing instructions should not exceed 
its maximum. 
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Scheduling / precedence  constraints 

 For all nodes vi1 and vi2 that are potentially 

mapped to the same processor or hardware component instance, 

introduce a binary decision variable bi1,i2 with 

bi1,i2=1 if vi1 is executed before vi2 and 

         = 0 otherwise. 

Define constraints of the type 

(end-time of vi1)  (start time of vi2) if bi1,i2=1 and 

(end-time of vi2)  (start time of vi1) if bi1,i2=0 

 Ensure that the schedule for executing operations is consistent with 

the precedence constraints  

 Approach fixes the order of execution 

 Timing constraints guarantee that deadlines are met. 
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Example 

 HW types H1, H2 and H3 with 
costs of 20, 25, and 30. 

 Processors of type P. 

 Tasks T1 to T5. 

 Execution times: 

T H1 H2 H3 P 

1 20   100 

2  20  100 

3   12 10 

4   12 10 

5 20   100 
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Operation assignment constraints (1) 

T H1 H2 H3 P 

1 20   100 

2  20  100 

3   12 10 

4   12 10 

5 20   100 

X1,1+Y1,1=1 (task 1 mapped to H1 or to P) 

X2,2+Y2,1=1 

X3,3+Y3,1=1 

X4,3+Y4,1=1 

X5,1+Y5,1=1 

 
 



KMm KPk

kvmv
YXVv 1:
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Operation assignment constraints (2) 

 Assume types of tasks are l =1, 2, 3, 3, and 1. 

 l  L,  v:Type(v)=c l,  k  KP : NY l,k  Yv,k 

Functionality 3 to be 
implemented on 

processor if node 4 is 
mapped to it. 
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Other equations 

 Time constraints leading to: Application specific 
hardware required for time constraints  100 time 
units. 

T H1 H2 H3 P 

1 20   100 

2  20  100 

3   12 10 

4   12 10 

5 20   100 

Cost function: 

C=20 #(H1) + 25 #(H2) + 30 # (H3) + cost(processor) + 

cost(memory)  
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Result 

 For a time constraint of 100 time units 
and cost(P)<cost(H3): 

T H1 H2 H3 P 

1 20   100 

2  20  100 

3   12 10 

4   12 10 

5 20   100 

Solution (educated guessing) : 
T1  H1 

T2  H2 

T3  P 

T4  P 

T5  H1 
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Fault tolerance 
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Safety vs. Reliability 

 Safe means sufficiently low probability of serious harm 
caused by the system: 

 e.g. ISO 8402: „State in which risk of harm (to persons) or 

damage is limited to an acceptable level.“ 

 

 Reliable means sufficiently high probability of 

delivering intended service. 

 Reliability is the probability of the system delivering the service 

it was designed for throughout the horizon, given  

• a defined temporal horizon 

• the operational conditions 
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Faults, Errors & Failures 

Example - landing gear in an airplane 

 Landing gear sensor faulty: doesn’t report that gear is down 

 Landing flaps and thrust-reverters are blocked by control software though 

plane is grounded 

 Braking distance increases dramatically, plane may drive off runway 

Primary cause of error 
(and failure) 

Fault 
Error 

Unintended 
internal state 
of subsystem 

Standardized terminology: J. C. Laprie (ed.) 1992,  

„Dependability:   Basic Concepts and Terminology“ 

Failure 

Deviation of actual service 
from intended service 
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Dealing with Faults 

 Fault avoidance aims at preventing the occurrence of 

faults: design reviews, testing, verification. 

 

 Fault tolerance Is the ability of a system to continue to 

perform its tasks after the occurrence of faults 

 Fault masking: preventing faults from introducing errors 

 Reconfiguration: fault detection, location, containment and 

recovery 

 -  38 - BF - ES 

Types of faults 

 A permanent fault remains in existence indefinitely if no corrective 

action is taken 

 A transient fault disappears within a short period of time 

 An intermittent fault may appear and disappear repeatedly. 

 

 

 Pilots noticed malfunctions every 6 flight hour 

 Pilots requested maintenance every 31 hour 

 Only 1/3 of the noticed malfunctions could be reproduced in the 
maintenance shop 

6 

31 

82                             unit failed shop test 

pilot requests maintenance 

failure occurred during flight 

Hours MTTF 10 20 30 40 50 60 70 80 90 100 

fire-control  

radar in F-16 
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Types of redundancy 

 Hardware redundancy: physical replication of hardware 

 

 Software redundancy: different software versions of tasks, 

preferably written by different teams 

 

 Time redundancy: multiple executions on the same hardware at 

different times 

 

 Information redundancy: Coding data in such a way that a certain 

number of bit errors can be detected and/or corrected. 
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Static hardware redundancy 

 Static redundancy based on voting. 

 Triple modular redundancy (TMR): 
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Static hardware redundancy:  

N-modular redundancy (NMR) 

 System tolerates failure of (N-1)/2 modules 

 Protects against random faults but not againts 

systematic faults 

 Disadvantages: high cost, size, weight, energy. 

(typically: N4). 
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Static hardware redundancy: 

Multiple Stage TMR 
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Dynamic hardware redundancy: 

standby spare arrangement 

 Fault detection based on outputs (consistency check) not on voting 

 Advantage: less redundant hardware 

 Disadvantage: fault detection may take time  fault not masked 
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Standby spares 

 Hot standby: spare is run continuously in parallel with 

active unit 

 Fast transfer of control 

 Increased power consumption 

 Same operating stress as active unit 

 Cold standby: spare is unpowered until called into 

service 

 Reduces power consumption 

 Reduces wear and tear 

 More disruption at  changeover 
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Hybrid redundancy:  

N-modular redundancy with spares 
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Software fault tolerance 

 N-version programming ( static redundancy) 

 Prepare N different versions  

 Run them in parallel or sequentially 

 Select result of majority at the end 

 Recovery blocks ( dynamic redundancy) 

 Each job has a primary version and one or more alternatives 

 When primary version is completed, perform acceptance test 

 If acceptance test fails, run alternative version 

 

Danger: common-mode failures 

 Ambiguities in specification 

 Choice of programming language, numerical algorithms,… 

 Common background of software developers  
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Failure modes of subsystems 

 Fail-silent failures 

 subsystem either produces correct results  

or produces (recognizable) incorrect results  

or remains quiet 

 can be masked as long as at least one system survives 

 Consistent failures 

 If subsystem produces incorrect results all recipients receive same 

(incorrect) result 

 can be masked iff the failing systems form a minority 

 Byzantine failures 

 subsystem reports different results to different dependent systems 

 can be masked iff strictly less than a third of the systems fail 
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Byzantine generals [Lamport/Shostak/Pease´82] 

 Several divisions of the Byzantine army are camped  
outside an enemy city 

 Each division is commanded by a general: there is one 
„commander“ and several „lieutenants“ 

 Each general may be a traitor 

 Communication is reliable 

 

 Goal: All loyal divisions must decide upon the same 
plan of action; if commander is loyal, loyal lieutenants 
should execute his order 

 Basic idea: every lieutenant reports about the command 
received 
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27 

 -  53 - BF - ES 

Solution 

Algorithm A(0): 

 Commander sends value (=order) to every lieutenant. 

 

Algorithm A(m), m>0: 

 Commander sends value to every lieutenant. 

 Each lieutenant forwards value to all other lieutenants 

using algorithm A(m-1). 

 Lieutenant i uses majority value of received values to 

determine result. 
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Lieutenants reach consensus (Case 1 traitor) 


