
1

 - 1 - BF - ES

Embedded Systems 21

 - 2 - BF - ES

REVIEW: The Partitioning Problem

The partitioning problem is to assign

n objects O={o1, …, on} to

m blocks (also called partitions) P={p1, …, pm}

such that

 p1  p2 …  pm = O

 pi  pj =  for all ij, and

 cost c(P) is minimized.

2

 - 3 - BF - ES

REVIEW: Partitioning Methods

 Heuristic methods

 Constructive methods

• Random mapping

• Hierarchical clustering

 Iterative methods

• Kernighan-Lin Algorithm

• Simulated Annealing

 Exact methods

 Enumeration

 Integer Linear Programming (ILP)

 - 4 - BF - ES

REVIEW: Hierarchical Clustering

1

4

2 3

30 25

15

10

10 10

Average

closeness;

Termination:

2 blocks

3

 - 5 - BF - ES

REVIEW: Kernighan-Lin

a

d

b

c

e

h

f

g

 - 6 - BF - ES

REVIEW: Fiduccia-Mattheyses Heuristic (F-M)

 Objects have size s(o)

 Size of block: sum of size of objects

 Balanced two-way partition:

Given a fraction r, 0 < r < 1,

partition a graph into two blocks A and B such that

|A| / (|A|+|B|)  r

and cutset is minimized

 Linear complexity

Terminology: object=„cell“, hyperedges=„net“

A B C D

4

 - 7 - BF - ES

REVIEW: Single pass of the F-M heuristic

 Select the cell with the

greatest gains that

satisfies balance

conditions

 Move the cell and lock it

 Update gains

 Repeat until all cells are

locked or will dissatisfy

balance conditions

 - 8 - BF - ES

REVIEW: Overall F-M heuristic

 Create an initial partition

 Execute a pass of the F-M

heuristic

 Start again using the resulting

partition as the initial partition

 Continue until the resulting gain

is no longer greater than zero

5

 - 9 - BF - ES

REVIEW: Calculate gain

 g(i) = FS(i) - TE(i)

 FS(i): The number of nets which contain cell i but no other object in
the same partition as i

 TE(i): The number of nets that consist only of i and other cells
currently in the same partition as i

object FS TE gain

A

B

C

D

A B C D

 - 10 - BF - ES

Calculate Gain

 For each unlocked cell i do

 g(i) = 0

 F = the “from block” of object i

 T = the “to block” of object i

 For each net n that contains i do

• If F(n) = 1 increment g(i)

• If T(n) = 0 decrement g(i)

6

 - 11 - BF - ES

Net distribution and critical nets

 Distribution of net i:

(A(i),B(i))=(# of cells in A, # of cells in B)

 A net is critical if it has an cell that if moved will add or

remove the net from the cutset

 Gain of a cell depends only on its critical nets.

 4 cases: A(i)=0 or 1, B(i)=0 or 1

 - 12 - BF - ES

Updating gains

 For the update of the gains, we only need to consider

nets that contain the cell selected for movement and that

are critical before or after the move.

7

 - 13 - BF - ES

 - 14 - BF - ES

8

 - 15 - BF - ES

Complexity

 Once a net has some locked cell at both sides, the net

will remain in the cut set.

 At most 3 update operations per net during one pass of

the algorithm

 Linear complexity

 - 16 - BF - ES

Simulated Annealing

 General method for solving combinatorial optimization

problems.

 Based the model of slowly cooling crystal liquids.

 Changes leading to a poorer configuration (with respect

to some cost function) are accepted with a certain

probability.

 This probability is controlled by a temperature parameter:

the probability is smaller for smaller temperatures.

9

 - 17 - BF - ES

Simulated Annealing Algorithm

procedure SimulatedAnnealing;

var i, T: integer;

 begin

 temp := temp_start;

 cost:=c(P);

 while (Frozen()==FALSE) do

 begin

 while (Equilibrium()==FALSE) do

 begin P’ := RandomMove(P);
 cost’=c(P’)

 deltacost := cost’ - cost;

 if (Accept(deltacost, temp)>random[0,1))

 then P=P’; cost=cost’

 end;
temp:= decreaseTemp(temp)

 end;

end;

 - 18 - BF - ES

Simulated Annealing

 Annealing schedule: DecreaseTemp(), Frozen()

• temp_start=1.0

• temp =   temp (typical: 0.8    0.99)

• stop at temp < temp_min or if no more improvement

 Equilibrium:

• After certain number of iterations or when no more improvement

 Complexity:

• From exponential to constant, depending on choice of Equilibrium(),

DecreaseTemp(), Frozen()

• The longer the runtime, the better the results

• Usually functions constructed to obtain polynomial runtime

10

 - 19 - BF - ES

Integer programming models

 Ingredients:

 Cost function

 Constraints

Involving linear expressions over
integer variables from a set X

Def.: The problem of minimizing (1) subject to the constraints
(2) is called an integer programming (IP) problem.

If all xi are constrained to be either 0 or 1, the IP problem said

to be a 0/1 integer programming problem.

Cost function)1(,with NxRaxaC
i

Xx

iii

i

 


Constraints:)2(,with:
,,

RcbcxbJj

Xx

jjijiji

i

 


ℕ

ℝ

 - 20 - BF - ES

Example

321
465 xxxC 

}1,0{,,

2

321

321





xxx

xxx

Optimal

C

11

 - 21 - BF - ES

Remarks on integer programming

 Integer programming is NP-complete.

 Running times depend exponentially on problem size,

but problems of >1000 vars solvable with good solver (depending on

the size and structure of the problem)

 The case of xi  ℝ is called linear programming (LP).

LP has polynomial complexity, but most algorithms are exponential,

still in practice faster than for ILP problems.

 The case of some xi  ℝ and some xi  ℕ is called mixed integer-

linear programming.

 ILP/LP models can be a good starting point for modeling, even if in the

end heuristics have to be used to solve them.

 - 22 - BF - ES

Integer Linear Programming for Partitioning

 Binary variables xi,k

 Xi,k=1: object oi in block pk

 xX,k=0: object oi not in block pk

 Cost ci,k if object oi in block pk

 Integer linear program:

minimize

niX

mkniX

m

k

ki

ki








11

1,1}1,0{

1

,

,

 
 



m

k

n

i

kiki
cX

1 1

,,

12

 - 23 - BF - ES

A comprehensive integer linear programming
model for HW/SW partitioning

Notation:

 Index set V denotes tasks.

 Index set L denotes task types

e.g. square root, DCT or FFT

 Index set M denotes hardware component types.

e.g. hardware components for the DCT or the FFT.

 Index set J of hardware component instances

 Index set KP denotes processors.

All processors are assumed to be of the same type

Marwedel

Section 6.3.2

 - 24 - BF - ES

An ILP model for HW/SW partitioning

 Xv,m: =1 if node v is mapped to hardware

component type m  M and 0 otherwise.

 Yv,k: =1 if node v is mapped to processor k  KP and 0 otherwise.

 NYl,k =1 if at least one node of type l is mapped to processor k  KP

and 0 otherwise.

 Type is a mapping from tasks to their types:

Type : V  L

 The cost function accumulates the cost of hardware units:

C = cost(processors) + cost(memories) +

 cost(application specific hardware)

13

 - 25 - BF - ES

Constraints

Operation assignment constraints

 
 



Mm KPk

kvmv
YXVv 1:

,,

All task graph nodes have to be mapped either in
software or in hardware.

Variables are assumed to be integers.

Additional constraints to guarantee they are either 0 or 1:

1::
,


mv

XMmVv

1::
,


kv

YKPkVv

 - 26 - BF - ES

Operation assignment constraints (2)

 l  L,  v:Type(v)=cl ,  k  KP : NYl,k  Yv,k

 For all types l of operations and for all nodes v of this

type:

if v is mapped to some processor k, then that processor

must implement the functionality of l.

 Decision variables must also be 0/1 variables:

 l  L,  k  KP : NY l,k  1.

14

 - 27 - BF - ES

Resource & design constraints

 m  M, the cost for components of type m is
= sum of the costs of the components of that type.

 k  KP, the cost for associated data storage area should
not exceed its maximum.

 k  KP the cost for storing instructions should not exceed
its maximum.

 - 28 - BF - ES

Scheduling / precedence constraints

 For all nodes vi1 and vi2 that are potentially

mapped to the same processor or hardware component instance,

introduce a binary decision variable bi1,i2 with

bi1,i2=1 if vi1 is executed before vi2 and

 = 0 otherwise.

Define constraints of the type

(end-time of vi1)  (start time of vi2) if bi1,i2=1 and

(end-time of vi2)  (start time of vi1) if bi1,i2=0

 Ensure that the schedule for executing operations is consistent with

the precedence constraints

 Approach fixes the order of execution

 Timing constraints guarantee that deadlines are met.

15

 - 29 - BF - ES

Example

 HW types H1, H2 and H3 with
costs of 20, 25, and 30.

 Processors of type P.

 Tasks T1 to T5.

 Execution times:

T H1 H2 H3 P

1 20 100

2 20 100

3 12 10

4 12 10

5 20 100

 - 30 - BF - ES

Operation assignment constraints (1)

T H1 H2 H3 P

1 20 100

2 20 100

3 12 10

4 12 10

5 20 100

X1,1+Y1,1=1 (task 1 mapped to H1 or to P)

X2,2+Y2,1=1

X3,3+Y3,1=1

X4,3+Y4,1=1

X5,1+Y5,1=1

 
 



KMm KPk

kvmv
YXVv 1:

,,

16

 - 31 - BF - ES

Operation assignment constraints (2)

 Assume types of tasks are l =1, 2, 3, 3, and 1.

 l  L,  v:Type(v)=c l,  k  KP : NY l,k  Yv,k

Functionality 3 to be
implemented on

processor if node 4 is
mapped to it.

 - 32 - BF - ES

Other equations

 Time constraints leading to: Application specific
hardware required for time constraints  100 time
units.

T H1 H2 H3 P

1 20 100

2 20 100

3 12 10

4 12 10

5 20 100

Cost function:

C=20 #(H1) + 25 #(H2) + 30 # (H3) + cost(processor) +

cost(memory)

17

 - 33 - BF - ES

Result

 For a time constraint of 100 time units
and cost(P)<cost(H3):

T H1 H2 H3 P

1 20 100

2 20 100

3 12 10

4 12 10

5 20 100

Solution (educated guessing) :
T1  H1

T2  H2

T3  P

T4  P

T5  H1

 - 34 - BF - ES

Fault tolerance

18

 - 35 - BF - ES

Safety vs. Reliability

 Safe means sufficiently low probability of serious harm
caused by the system:

 e.g. ISO 8402: „State in which risk of harm (to persons) or

damage is limited to an acceptable level.“

 Reliable means sufficiently high probability of

delivering intended service.

 Reliability is the probability of the system delivering the service

it was designed for throughout the horizon, given

• a defined temporal horizon

• the operational conditions

 - 36 - BF - ES

Faults, Errors & Failures

Example - landing gear in an airplane

 Landing gear sensor faulty: doesn’t report that gear is down

 Landing flaps and thrust-reverters are blocked by control software though

plane is grounded

 Braking distance increases dramatically, plane may drive off runway

Primary cause of error
(and failure)

Fault
Error

Unintended
internal state
of subsystem

Standardized terminology: J. C. Laprie (ed.) 1992,

„Dependability: Basic Concepts and Terminology“

Failure

Deviation of actual service
from intended service

19

 - 37 - BF - ES

Dealing with Faults

 Fault avoidance aims at preventing the occurrence of

faults: design reviews, testing, verification.

 Fault tolerance Is the ability of a system to continue to

perform its tasks after the occurrence of faults

 Fault masking: preventing faults from introducing errors

 Reconfiguration: fault detection, location, containment and

recovery

 - 38 - BF - ES

Types of faults

 A permanent fault remains in existence indefinitely if no corrective

action is taken

 A transient fault disappears within a short period of time

 An intermittent fault may appear and disappear repeatedly.

 Pilots noticed malfunctions every 6 flight hour

 Pilots requested maintenance every 31 hour

 Only 1/3 of the noticed malfunctions could be reproduced in the
maintenance shop

6

31

82 unit failed shop test

pilot requests maintenance

failure occurred during flight

Hours MTTF 10 20 30 40 50 60 70 80 90 100

fire-control

radar in F-16

20

 - 39 - BF - ES

Types of redundancy

 Hardware redundancy: physical replication of hardware

 Software redundancy: different software versions of tasks,

preferably written by different teams

 Time redundancy: multiple executions on the same hardware at

different times

 Information redundancy: Coding data in such a way that a certain

number of bit errors can be detected and/or corrected.

 - 40 - BF - ES

Static hardware redundancy

 Static redundancy based on voting.

 Triple modular redundancy (TMR):

21

 - 41 - BF - ES

Static hardware redundancy:

N-modular redundancy (NMR)

 System tolerates failure of (N-1)/2 modules

 Protects against random faults but not againts

systematic faults

 Disadvantages: high cost, size, weight, energy.

(typically: N4).

 - 42 - BF - ES

Static hardware redundancy:

Multiple Stage TMR

22

 - 43 - BF - ES

Dynamic hardware redundancy:

standby spare arrangement

 Fault detection based on outputs (consistency check) not on voting

 Advantage: less redundant hardware

 Disadvantage: fault detection may take time  fault not masked

 - 44 - BF - ES

Standby spares

 Hot standby: spare is run continuously in parallel with

active unit

 Fast transfer of control

 Increased power consumption

 Same operating stress as active unit

 Cold standby: spare is unpowered until called into

service

 Reduces power consumption

 Reduces wear and tear

 More disruption at changeover

23

 - 45 - BF - ES

Hybrid redundancy:

N-modular redundancy with spares

 - 46 - BF - ES

Software fault tolerance

 N-version programming ( static redundancy)

 Prepare N different versions

 Run them in parallel or sequentially

 Select result of majority at the end

 Recovery blocks ( dynamic redundancy)

 Each job has a primary version and one or more alternatives

 When primary version is completed, perform acceptance test

 If acceptance test fails, run alternative version

Danger: common-mode failures

 Ambiguities in specification

 Choice of programming language, numerical algorithms,…

 Common background of software developers

24

 - 47 - BF - ES

Failure modes of subsystems

 Fail-silent failures

 subsystem either produces correct results

or produces (recognizable) incorrect results

or remains quiet

 can be masked as long as at least one system survives

 Consistent failures

 If subsystem produces incorrect results all recipients receive same

(incorrect) result

 can be masked iff the failing systems form a minority

 Byzantine failures

 subsystem reports different results to different dependent systems

 can be masked iff strictly less than a third of the systems fail

 - 48 - BF - ES

Byzantine generals [Lamport/Shostak/Pease´82]

 Several divisions of the Byzantine army are camped
outside an enemy city

 Each division is commanded by a general: there is one
„commander“ and several „lieutenants“

 Each general may be a traitor

 Communication is reliable

 Goal: All loyal divisions must decide upon the same
plan of action; if commander is loyal, loyal lieutenants
should execute his order

 Basic idea: every lieutenant reports about the command
received

25

 - 49 - BF - ES

C

L2

L1

A

A

R

A

Traitor

Decision: A

 - 50 - BF - ES

C

L2

L1

R

A

R

A

Traitor Decision: A

26

 - 51 - BF - ES

C

L2

L1

R

R

R

A

Traitor

Decision: R

 - 52 - BF - ES

C

L2

L1

R

A

R

A

Traitor Decision: A

Decision: R

27

 - 53 - BF - ES

Solution

Algorithm A(0):

 Commander sends value (=order) to every lieutenant.

Algorithm A(m), m>0:

 Commander sends value to every lieutenant.

 Each lieutenant forwards value to all other lieutenants

using algorithm A(m-1).

 Lieutenant i uses majority value of received values to

determine result.

 - 54 - BF - ES

C

L2

L1
A

A

Traitor

L3

A

A

A

A
A

R
A

Decision A

Decision A Decision A

A A

28

 - 55 - BF - ES

C

L2

L1
A

R

Traitor

L3

R

A

A

R
A

A
A

Decision A

Decision A Decision A

A R

A

 - 56 - BF - ES

Lieutenants reach consensus (Case 1 traitor)

