
1

 - 1 - BF - ES

Embedded Systems 23

 - 2 - BF - ES

Testing

Goal: make sure manufactured system behaves as

intended.

 During/after fabrication: fabrication testing

 After delivery to customer: field testing

2

 - 3 - BF - ES

Testing embedded systems

 Embedded/cyber-physical systems integrated into a

physical environment may be safety-critical. As a

result, expectations for the product quality are

higher than for non-safety critical systems.

 Testing embedded/cyber-physical systems in their

real environment may be dangerous.

 - 4 - BF - ES

Testing: Scope

Testing includes

 the application of test patterns to the inputs of the device

under test (DUT) and

 the observation of the results.

More precisely, testing requires the following steps:

1. test pattern generation,

2. test pattern application,

3. response observation, and

4. result comparison (okay, not okay, inconclusive).

3

 - 5 - BF - ES

Test pattern generation

Test pattern generation typically

 considers certain fault models and

 generates patterns that enable a distinction between the

faulty and the fault-free case.

 Coverage criteria shed light on the likeliness of instances

of the fault type slipping through

 - 6 - BF - ES

Hardware Fault models

 stuck-at fault model

(net permanently

connected to ground

or Vdd)

 stuck-open faults:

for CMOS, open

transistors can

behave like memories

 delay faults: circuit is

functionally correct,

but the delay is not.

Hardware fault models include:

www.cedcc.psu.edu/ee497f

/rassp_43/sld022.htm

4

 - 7 - BF - ES

Simple example

 Could we check for a stuck at one error at a (s-a-1(a)) ?

 Solution:
 f='1' if there is an error

  a='0', b='0' in order to have f='0' if there is no error

 g='1' in order to propagate error

 c='1' in order to have g='1' (or set d='1')

 e='1' in order to propagate error

 i='1' if there is no error & i='0' if there is

/1

0

 /1 0

1 1

1

1/0 1/0

0
error no error

 - 8 - BF - ES

Two Copies of the Circuit

X

0

1

Good circuit

0

X

0

1
sa1

Faulty circuit

1

X

0

1
sa1

Circuit

0/1

Alternatively, use a multi-valued

 algebra of signal values for both

 good and faulty circuits.

S
a
m

e
 i
n
p
u
t

D
if
fe

re
n
t

o
u
tp

u
ts

X

X X

Copyright Agrawal & Bushnell

5

 - 9 - BF - ES

Symbol

D

D

0

1

X

Alternative

Representation

1/0

0/1

0/0

1/1

X/X

Faulty

Circuit

0

1

0

1

X

Fault-free

circuit

1

0

0

1

X

Roth‘s 5-valued algebra (1966)

Copyright Agrawal & Bushnell

 - 10 - BF - ES

Function of NAND Gate

c
Input a

0 1 X D

0

1

X

D

D

D

 a

 b
 c

 D

1/0

0/1

D

1

In
p

u
t
b

Copyright Agrawal & Bushnell

6

 - 11 - BF - ES

D-Algorithm

 Activate fault

• Place a D or D at fault site

• Do justification, forward implication, and consistency
check for all signals

 D-Drive

• Propagate D/D toward outputs

• Do justification, forward implication, and consistency
check for all signals

 Backtrack if

• A conflict occurs, or

• D-frontier becomes empty

 Stop when

• D or D at an output, i.e., test found, or

• If search exhausted without a test, then no test possible

Copyright Agrawal & Bushnell

 - 12 - BF - ES

D-Algorithm

 Justification: Changing inputs of a gate if the present

input values do not justify the output value.

 Forward implication: Determination of the gate output

value (presently X) according to the input values.

 Consistency check: Verifying that the gate output is

justifiable from the values of inputs, which may have

changed since the output was determined.

 D-frontier: Set of gates whose inputs have a D or D,

and the output is X.

Copyright Agrawal & Bushnell

7

 - 13 - BF - ES

Singular Cover

 A singular cover defines the least restrictive inputs for a

deterministic output value.

 Used for:

• Justification: determine gate inputs for specified output.

• Forward implication: determine gate output.

 a

 b
 c

Singular

covers
a b c

SC-1 0 X 1

SC-2 X 0 1

SC-3 1 1 0

X

X

0

Examples: XX0 ∩ 110 = 110

 0XX ∩ 0X1 = 0X1

Copyright Agrawal & Bushnell

 - 14 - BF - ES

D-Cubes

 D-cubes are

singular covers with

five-valued signals

 Used for D-drive

(propagation of D/D

through gates)

D-cube a b c

D-1 D 1

D-2 1 D

D-3 1 D

D-4 1 D

D-5 D D

D-6 D

D-7 D 0 1

D-8 0 D 1

D-9 D 1

D-10 D 1

D

D

D D

D

D

D

D

D

 a

 b
 c

X

D

X

Examples: XDX ∩ 1DD = 1DD

 0DX ∩ 0D1 = 0D1

 DDX ∩ DD1 = DD1

Copyright Agrawal & Bushnell

8

 - 15 - BF - ES

D-Intersection

∩ 0 1 X D

0 0 0

1 1 1

X 0 1 X D

D D D

D

D

D

D

Undefined

State

(conflict)

D

Copyright Agrawal & Bushnell

 - 16 - BF - ES

Example: Test for c sa0

 a

 b

 a2

 a1

b1

b2

 c1

 c

 c2

 d

 e

f

9

 - 17 - BF - ES

 a

 b

 a2

 a1

b1

b2

 c1

 c

 c2

 d

 e

f

 - 18 - BF - ES

10

 - 19 - BF - ES

Complexity of D-Algorithm

 Signal values on all lines (inputs and internal lines)

are manipulated using 5-valued algebra.

 Worst-case combinations of signals that may be tried

is 5#lines

• For XOR circuit, 512 = 244,140,625.

 Podem: A reduced-complexity ATPG algorithm

• Recognizes that internal signals depend on inputs.

• Only inputs are independent variables and should be

manipulated.

• Because faults are internal, an input can assume only

3 values (0, 1, X).

• Worst-case combinations = 3#PI; for XOR circuit, 32 = 8.

 - 20 - BF - ES

Fault coverage

A certain set of test patterns will not always detect all faults

that are possible within a fault model

model fault the to due possible faults of Number

set pattern test given a for faults detectable of Number
coverage

For actual designs, the coverage should be at least in the

order of 98 to 99%

11

 - 21 - BF - ES

Fault simulation

 Coverage can be computed with fault simulation:

  faults  fault model: check if distinction between faulty and

the fault-free case can be made:
Simulate fault-free system;

  faults  fault model DO

  test patterns DO

 Simulate faulty system;

 Can the fault be observed for 1 pattern?

Faults are called redundant if they do not affect the

observable behavior of the system

 Fault simulation checks whether mechanisms for improving

fault tolerance actually help.

 - 22 - BF - ES

An ATPG System

Random pattern

 generator

Fault simulator

Fault

 coverage

 improved?

Random

 patterns

 effective?

Save

 patterns

Deterministic

ATPG

(e.g., D-alg.) yes no

yes

no

Compact

vectors

Coverage

Sufficient?

no
yes

Copyright Agrawal & Bushnell

12

 - 23 - BF - ES

 Typically gets

tests for 60-80%

of faults

 Then switch to

D-algorithm or

other ATPG

method

Random Pattern Generation

Copyright Agrawal & Bushnell

 - 24 - BF - ES

Vector Compaction

 Objective: Reduce the size of test vector set

without reducing fault coverage.

 Simulate faults with test vectors in reverse order of

generation

• ATPG patterns go first

• Randomly-generated patterns go last (because they may

have less coverage)

• When coverage reaches 100% (or the original maximum

value), drop remaining patterns

 Significantly shortens test sequence  testing cost

reduction.

Copyright Agrawal & Bushnell

13

 - 25 - BF - ES

Finding other detected faults by the generated test

 Determine good circuit signal values.

 For each fault

• Place a D or D at the fault site

• Perform forward implication and D-drive

• Fault is detected if any output assumes a D or

D value

 - 26 - BF - ES

Example: Detect c2 sa0 with Test(0,1)?

 a

 b

 a2

 a1

b1

b2

 c1

 c

 c2

 d

 e

f

14

 - 27 - BF - ES

Example: Detect c1 sa0 with Test(0,1)?

 a

 b

 a2

 a1

b1

b2

 c1

 c

 c2

 d

 e

f

 - 28 - BF - ES

Test for c1 sa0 with Test(1,0)?

 a

 b

 a2

 a1

b1

b2

 c1

 c

 c2

 d

 e

f

15

 - 29 - BF - ES

Static and Dynamic Compaction of Sequences

 Static compaction

• ATPG should leave unassigned inputs as X

• Two patterns compatible – if no conflicting values for any

input

• Combine two tests ta and tb into one test tab = ta ∩ tb using

intersection

• Detects union of faults detected by ta and tb

 Dynamic compaction

• Process every partially-done ATPG vector immediately

• Assign 0 or 1 to inputs to test additional faults

Copyright Agrawal & Bushnell

 - 30 - BF - ES

Example

t1 = 0 1 X t2 = 0 X 1

t3 = 0 X 0 t4 = X 0 1

16

 - 31 - BF - ES

Fault Injection

 - 32 - BF - ES

Fault injection

 Fault simulation may be too time-consuming

 If real systems are available, faults can be injected.

 Two types of fault injection:

1. local faults within the system, and

2. faults in the environment (behaviors which do not

correspond to the specification).

For example, we can check how the system behaves if

it is operated outside the specified temperature or

radiation ranges.

17

 - 33 - BF - ES

Fault injection

 Intentional activation of faults by HW or/and SW means
 Establish faults in a predictable and reproducible way

 Trigger error-handling routines

 Two purposes:
 Testing and Debugging

• During normal operation faults are rare events

• May be much too rare to achieve meaningful data from std.
testing

 Dependability Forecasting

• Used for deriving data about the likely dependability of the
system

• Need to know the types and frequencies of different faults in
the intended operational environment

 - 34 - BF - ES

Software Fault Injection

 Errors are seeded into memory by software
 Mimic errors originating in hardware faults by software

 Either randomly or in specific location to provoke specific fault-

management routine

 Advantages over physical fault injection include
 Predictability and reproducibility: fault injection is independent of

uncontrollable or statistical effects

 Reachability of inner registers in VLSI chips

 Simplicity of experiments: can be carried out with software tools

 Coverage similar to physical fault injection, if well-done
 Statistical data gathered from physical injection experiments can be used

to trim software fault injection

18

 - 35 - BF - ES

Typical forms of SW fault injection

 Random bit flips in memory
 Simulates adverse operational conditions corrupting memory

 Boolean masking of words written to (some) memory

 Discard some message(s)
 Simulates imperfect communication media

 Adding messages
 Simulates presence of a babbling idiot

 Checks consequences of certain fault tolerance mechanisms (resend…)

if used when transient fault condition was no longer present (very hard to

test by HW fault injection)

 Delaying messages / result delivery

 …and many more

 - 36 - BF - ES

Model-based testing

19

 - 37 - BF - ES

Model-based testing: model as “golden device”

Test

cases
(input

vectors)

stimuli
response

Device

under

test

Beha-

vioral

model

 e.g. Stateflow+

Simulink

 e.g. SW comp.,

ECU

Compa-

rison

Result

report

 - 38 - BF - ES

Model-based testing:

model-based test vector generation

Test

cases
(input

vectors)

Test goals

Desired behavior

Coverage

criteria

Beha-

vioral

model

 e.g. Stateflow+

Simulink

Gene-

ration

Main operation is search of computation paths in the

model which lead to states with certain properties.

20

 - 39 - BF - ES

Breadth-first search (BFS)

- hard depth limit (#states
generated exponential in
depth)

- finds all fulfilling states
within depth limit

- cannot find fulfilling states
with path length longer than
depth limit

(Copyright this and next slide: M. Lettrari, MbEES 05/06)

 - 40 - BF - ES

Heuristic search

- uses a heuristic function h
for computing value h(s)

- h(s) approximates the real
distance from s to a p-fulfilling
state s‘

- Heuristic search can be
combined with BFS

- if h is a good approximation
of real distance, heuristic
search can find fulfilling states
with very long path length

21

 - 41 - BF - ES

Design for testability

 - 42 - BF - ES

Testing finite state machines

Difficult to check states and transitions.

2

1

3 A/f

B/c C/d

E/d

For example, verifying the transition from

state 2 to 3 requires

 Getting into state 2

 Application of A

 Check if output is f

 Check if we have actually reached 3

Can be simplified by “design for testability”

 Scan design

22

 - 43 - BF - ES

Scan design

 - 44 - BF - ES

Scan design: usage

Verifying a transition requires

• Shifting-in the state to be tested

• Application of the input pattern

• Checking if output is correct

• Shifting-out the successor state

and comparing it.

Essentially reduced to testing

combinatorial logic

23

 - 45 - BF - ES

JTAG (Boundary scan)

JTAG / IEEE 1149.1 defines a 4-5

wire serial interface to access

complex ICs. Any compatible IC

contains shift registers + an FSM

to execute the JTAG functions.

TDI: test data in; goes into

instruction register or into one of

the data registers.

TDO: test data out

TCK: clock

TMS: controls the state of the test

access port (TAP).

Optional TRST* is reset signal. Source: http://www.jtag.

com/brochure.php

 - 46 - BF - ES

Limitations of a single serial scan chain

 For chips with a large number of flip-flops,

serial shifts can take a quite long time.

 Hence, it becomes necessary to provide

several scan chains.

 Trying to avoid serial shifts by generating test

patterns internally and by also storing the results

internally.

 Compaction of circuit response in a signature.

Shifting the entire result out becomes obsolete, we

just shift out the signature.

24

 - 47 - BF - ES

Signature analysis

 Response of circuit to sequence of test patterns

compacted in a signature. Only this signature is compared

to the golden reference.

 In order to exploit an n-bit signature register as well as

possible, we try to use all possible values.

 In practice, we use shift-registers with linear feedback:

n-bit shift register XOR

Response

of circuit to

sequence

of test

vectors Signature

Using proper feedback bits, all possible values for the

register can be generated.

 - 48 - BF - ES

Example: 4-bit signature generator

XOR

1100

0101

1010

0100

1000

0000 0001

1110

1101

1111 1001

0010

0011

0111

1011

0110

All 16 possible

signatures are

generated!

Source: P.K.Lala: Fault tolerant & fault

testable hardware design, Prentice Hall, 1985

0

1

0

1

