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Testing 

Goal: make sure manufactured system behaves as 

intended. 

 

 During/after fabrication: fabrication testing 

 After delivery to customer: field testing 
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Testing embedded systems 

 Embedded/cyber-physical systems integrated into a 

physical environment may be safety-critical. As a 

result, expectations for the product quality are 

higher than for non-safety critical systems. 

 Testing embedded/cyber-physical systems in their 

real environment may be dangerous.  
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Testing: Scope 

Testing includes 

 the application of test patterns to the inputs of the device 

under test (DUT) and 

 the observation of the results. 

 

More precisely, testing requires the following steps: 

1. test pattern generation, 

2. test pattern application, 

3. response observation, and 

4. result comparison (okay, not okay, inconclusive). 
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Test pattern generation 

Test pattern generation typically  

 considers certain fault models and  

 generates patterns that enable a distinction between the 

faulty and the fault-free case. 

 Coverage criteria shed light on the likeliness of instances 

of the fault type slipping through 
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Hardware Fault models 

 stuck-at fault model 

(net permanently 

connected to ground 

or Vdd)  

 stuck-open faults: 

for CMOS, open 

transistors can 

behave like memories 

 delay faults: circuit is 

functionally correct, 

but the delay is not. 

Hardware fault models include: 

www.cedcc.psu.edu/ee497f 

/rassp_43/sld022.htm  
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Simple example 

 Could we check for a stuck at one error at a (s-a-1(a)) ? 

 Solution: 
 f='1' if there is an error 

  a='0', b='0' in order to have f='0' if there is no error 

 g='1' in order to propagate error 

 c='1' in order to have g='1' (or set d='1') 

 e='1' in order to propagate error 

 i='1' if there is no error & i='0' if there is 
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Two Copies of the Circuit 
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 algebra of signal values for both 

 good and faulty circuits. 

S
a
m

e
 i
n
p
u
t 

D
if
fe

re
n
t 

o
u
tp

u
ts

 

X 

X X 

Copyright Agrawal & Bushnell 



5 

 -  9 - BF - ES 

Symbol 
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Roth‘s 5-valued algebra (1966) 
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Function of NAND Gate 
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D-Algorithm 

 Activate fault 

• Place a D or D at fault site 

• Do justification, forward implication, and consistency 
check for all signals 

 D-Drive 

• Propagate D/D toward outputs 

• Do justification, forward implication, and consistency 
check for all signals 

 Backtrack if 

• A conflict occurs, or 

• D-frontier becomes empty 

 Stop when 

• D or D at an output, i.e., test found, or 

• If search exhausted without a test, then no test possible 
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D-Algorithm 

 Justification: Changing inputs of a gate if the present 

input values do not justify the output value. 

 Forward implication: Determination of the gate output 

value (presently X) according to the input values. 

 Consistency check: Verifying that the gate output is 

justifiable from the values of inputs, which may have 

changed since the output was determined. 

 D-frontier: Set of gates whose inputs have a D or D, 

and the output is X. 

Copyright Agrawal & Bushnell 
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Singular Cover 

 A singular cover defines the least restrictive inputs for a 

deterministic output value. 

 Used for: 

• Justification: determine gate inputs for specified output. 

• Forward implication: determine gate output. 

 a 

 

 b 
 c    

Singular 

covers 
a b c 

SC-1 0 X 1 

SC-2 X 0 1 

SC-3 1 1 0 

X 

 

X 

0 

Examples: XX0 ∩ 110 = 110 

  0XX ∩ 0X1 = 0X1 
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D-Cubes 

 D-cubes are 

singular covers with 

five-valued signals 

 Used for D-drive 

(propagation of D/D 

through gates) 

D-cube a b c 

D-1 D 1 

D-2 1 D 

D-3 1 D 

D-4 1 D 

D-5 D D 

D-6 D 

D-7 D 0 1 

D-8 0 D 1 

D-9 D 1 

D-10 D 1 

D 

D 

D D 

D 

D 

D 

D 

D 

 a 

 

 b 
 c    

X 

 

D 

X 

Examples: XDX ∩ 1DD = 1DD 

  0DX ∩ 0D1  = 0D1 

  DDX ∩ DD1 = DD1 
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D-Intersection 
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Example: Test for c sa0 
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Complexity of D-Algorithm 

 Signal values on all lines (inputs and internal lines) 

are manipulated using 5-valued algebra. 

 Worst-case combinations of signals that may be tried 

is 5#lines 

• For XOR circuit, 512 = 244,140,625. 

 Podem: A reduced-complexity ATPG algorithm 

• Recognizes that internal signals depend on inputs. 

• Only inputs are independent variables and should be 

manipulated. 

• Because faults are internal, an input can assume only  

3 values (0, 1, X). 

• Worst-case combinations = 3#PI; for XOR circuit, 32 = 8. 
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Fault coverage 

A certain set of test patterns will not always detect all faults 

that are possible within a fault model 

 

model fault the to due possible faults of Number

set pattern test given a for faults detectable of Number
coverage

For actual designs, the coverage should be at least in the 

order of 98 to 99% 
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Fault simulation  

 Coverage can be computed with fault simulation: 

  faults  fault model: check if distinction between faulty and 

the fault-free case can be made: 
Simulate fault-free system; 

  faults  fault model DO 

   test patterns DO  

   Simulate faulty system; 

   Can the fault be observed for 1 pattern? 

Faults are called redundant if they do not affect the 

observable behavior of the system  

 

 Fault simulation checks whether mechanisms for improving 

fault tolerance actually help.  
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An ATPG System 

Random pattern 

 generator 

Fault simulator 

Fault 

 coverage 

 improved? 

Random 

 patterns 

 effective? 

Save 

 patterns 

Deterministic 

ATPG  

(e.g., D-alg.) yes no 

yes 

no 

Compact 

vectors 

Coverage 

Sufficient? 

no 
yes 
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 Typically gets 

tests for 60-80% 

of faults 

 Then switch to 

D-algorithm or 

other ATPG 

method 

Random Pattern Generation 
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Vector Compaction 

 Objective: Reduce the size of test vector set 

without reducing fault coverage. 

 Simulate faults with test vectors in reverse order of 

generation 

• ATPG patterns go first 

• Randomly-generated patterns go last (because they may 

have less coverage) 

• When coverage reaches 100% (or the original maximum 

value), drop remaining patterns 

 Significantly shortens test sequence  testing cost 

reduction. 

Copyright Agrawal & Bushnell 
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Finding other detected faults by the generated test 

 Determine good circuit signal values. 

 

 For each fault 

• Place a D or D at the fault site 

• Perform forward implication and D-drive 

• Fault is detected if any output assumes a D or 

D value 
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Example: Detect c2 sa0 with Test(0,1)? 
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Example: Detect c1 sa0 with Test(0,1)? 
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Test for c1 sa0 with Test(1,0)? 

 a 

 b 
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Static and Dynamic Compaction of Sequences 

 Static compaction 

• ATPG should leave unassigned inputs as X 

• Two patterns compatible – if no conflicting values for any 

input 

• Combine two tests ta and tb into one test tab = ta ∩ tb using 

intersection  

• Detects union of faults detected by ta and tb 

 Dynamic compaction 

• Process every partially-done ATPG vector immediately 

• Assign 0 or 1 to inputs to test additional faults 

Copyright Agrawal & Bushnell 
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Example 

t1 = 0 1 X                  t2 = 0 X 1 

t3 = 0 X 0                  t4 = X 0 1 
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Fault Injection 
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Fault injection 

 Fault simulation may be too time-consuming 

 If real systems are available, faults can be injected. 

 

 Two types of fault injection: 

1. local faults within the system, and 

2. faults in the environment (behaviors which do not  

correspond to the specification). 

For example, we can check how the system behaves if 

it is operated outside the specified temperature or 

radiation ranges. 
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Fault injection 

 Intentional activation of faults by HW or/and SW means 
 Establish faults in a predictable and reproducible way 

 Trigger error-handling routines 

 Two purposes: 
 Testing and Debugging 

• During normal operation faults are rare events 

• May be much too rare to achieve meaningful data from std. 
testing 

 Dependability Forecasting 

• Used for deriving data about the likely dependability of the 
system 

• Need to know the types and frequencies of different faults in 
the intended operational environment 
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Software Fault Injection 

 Errors are seeded into memory by software 
 Mimic errors originating in hardware faults by software 

 Either randomly or in specific location to provoke specific fault-

management routine 

 

 Advantages over physical fault injection include 
 Predictability and reproducibility: fault injection is independent of 

uncontrollable or statistical effects 

 Reachability of inner registers in VLSI chips 

 Simplicity of experiments: can be carried out with software tools 

 

 Coverage similar to physical fault injection, if well-done 
 Statistical data gathered from physical injection experiments can be used 

to trim software fault injection 



18 

 -  35 - BF - ES 

Typical forms of SW fault injection 

 Random bit flips in memory 
 Simulates adverse operational conditions corrupting memory 

 Boolean masking of words written to (some) memory 

 Discard some message(s) 
 Simulates imperfect communication media 

 Adding messages 
 Simulates presence of a babbling idiot 

 Checks consequences of certain fault tolerance mechanisms (resend…) 

if used when transient fault condition was no longer present (very hard to 

test by HW fault injection) 

 Delaying messages / result delivery 

 …and many more 
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Model-based testing 
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Model-based testing: model as “golden device” 

Test 

cases 
(input 

vectors) 

stimuli 
response 

Device 

under 

test 

Beha- 

vioral 

model 

   e.g. Stateflow+ 

Simulink 

   e.g. SW comp., 

ECU 

Compa- 

rison 

Result 

report 
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Model-based testing:  

model-based test vector generation 

Test 

cases 
(input 

vectors) 

Test goals 

Desired behavior 

Coverage 

criteria 

Beha- 

vioral 

model 

   e.g. Stateflow+ 

Simulink 

Gene- 

ration 

Main operation is search of computation paths in the 

model which lead to states with certain properties. 
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Breadth-first search (BFS)  

- hard depth limit (#states 
generated exponential in 
depth) 

- finds all fulfilling states 
within depth limit 

- cannot find fulfilling states 
with path length longer than 
depth limit 

(Copyright this and next slide: M. Lettrari, MbEES 05/06) 
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Heuristic search 

- uses a heuristic function h 
for computing value h(s)  

- h(s) approximates the real 
distance from s to a p-fulfilling 
state s‘ 

- Heuristic search can be 
combined with BFS  

- if h is a good approximation 
of real distance, heuristic 
search can find fulfilling states 
with very long path length 
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Design for testability 
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Testing finite state machines 

Difficult to check states and transitions. 

2 

1 

3 A/f 

B/c C/d 

E/d 

For example, verifying the transition from 

state 2 to 3 requires 

 Getting into state 2 

 Application of A 

 Check if output is f 

 Check if we have actually reached 3 

Can be simplified by “design for testability” 

 Scan design 
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Scan design 
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Scan design: usage 

Verifying a transition requires 

• Shifting-in the state to be tested 

• Application of the input pattern 

• Checking if output is correct 

• Shifting-out the successor state 

and comparing it. 

Essentially reduced to testing 

combinatorial logic 
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JTAG (Boundary scan)  

JTAG / IEEE 1149.1 defines a 4-5 

wire serial interface to access 

complex ICs. Any compatible IC 

contains shift registers + an FSM 

to execute the JTAG functions. 

TDI: test data in; goes into 

instruction register or into one of 

the data registers. 

TDO: test data out 

TCK: clock 

TMS: controls the state of the test 

access port (TAP). 

Optional TRST* is reset signal. Source: http://www.jtag. 

com/brochure.php 
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Limitations of a single serial scan chain 

 For chips with a large number of flip-flops, 

serial shifts can take a quite long time. 

 Hence, it becomes necessary to provide 

several scan chains. 

 Trying to avoid serial shifts by generating test 

patterns internally and by also storing the results 

internally. 

 Compaction of circuit response in a signature. 

Shifting the entire result out becomes  obsolete, we 

just shift out the signature. 
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Signature analysis 

 Response of circuit to sequence of test patterns 

compacted in a signature. Only this signature is compared 

to the golden reference. 

 In order to exploit an n-bit signature register as well as 

possible, we try to use all possible values. 

 In practice, we use shift-registers with linear feedback: 

n-bit shift register XOR 

Response 

of circuit to 

sequence 

of test 

vectors Signature 

Using proper feedback bits, all possible values for the 

register can be generated. 
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Example: 4-bit signature generator 

XOR 

1100 

0101 

1010 

0100 

1000 

0000 0001 

1110 

1101 

1111 1001 

0010 

0011 

0111 

1011 

0110 

All 16 possible 

signatures are 

generated! 

Source: P.K.Lala: Fault tolerant & fault 

testable hardware design, Prentice Hall, 1985 
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