
1

 - 1 - BF - ES

Embedded Systems 24

 - 2 - BF - ES

REVIEW: Testing

Testing includes
 the application of test patterns to the inputs of the device

under test (DUT) and
 the observation of the results.

More precisely, testing requires the following steps:
1. test pattern generation,
2. test pattern application,
3. response observation, and
4. result comparison (okay, not okay, inconclusive).

2

 - 3 - BF - ES

REVIEW: Hardware Fault models

 stuck-at fault model
(net permanently
connected to ground
or Vdd)

 stuck-open faults:
for CMOS, open
transistors can
behave like memories

 delay faults: circuit is
functionally correct,
but the delay is not.

Hardware fault models include:

www.cedcc.psu.edu/ee497f

/rassp_43/sld022.htm

 - 4 - BF - ES

REVIEW: D-Algorithm

 Activate fault
• Place a D or D at fault site
• Do justification, forward implication, and consistency

check for all signals
 D-Drive

• Propagate D/D toward outputs
• Do justification, forward implication, and consistency

check for all signals
 Backtrack if

• A conflict occurs, or
• D-frontier becomes empty

 Stop when
• D or D at an output, i.e., test found, or
• If search exhausted without a test, then no test possible

Copyright Agrawal & Bushnell

3

 - 5 - BF - ES

REVIEW: An ATPG System

Random pattern
 generator

Fault simulator

Fault
 coverage

 improved?

Random
 patterns

 effective?

Save
 patterns

Deterministic
ATPG

(e.g., D-alg.) yes no

yes

no

Compact
vectors

Coverage
Sufficient?

no yes

Copyright Agrawal & Bushnell

 - 6 - BF - ES

 Typically gets
tests for 60-80%
of faults

 Then switch to
D-algorithm or
other ATPG
method

Random Pattern Generation

Copyright Agrawal & Bushnell

4

 - 7 - BF - ES

REVIEW: Fault injection

 Intentional activation of faults by HW or/and SW means
 Establish faults in a predictable and reproducible way
 Trigger error-handling routines

 Two purposes:
 Testing and Debugging

• During normal operation faults are rare events
• May be much too rare to achieve meaningful data from std.

testing
 Dependability Forecasting

• Used for deriving data about the likely dependability of the
system

• Need to know the types and frequencies of different faults in
the intended operational environment

 - 8 - BF - ES

REVIEW: Scan design

Verifying a transition requires
• Shifting-in the state to be tested
• Application of the input pattern
• Checking if output is correct
• Shifting-out the successor state

and comparing it.
Essentially reduced to testing
combinatorial logic

5

 - 9 - BF - ES

REVIEW: Limitations of a single serial scan chain

 For chips with a large number of flip-flops,
serial shifts can take a quite long time.

 Hence, it becomes necessary to provide
several scan chains.
 Trying to avoid serial shifts by generating test

patterns internally and by also storing the results
internally.

 Compaction of circuit response in a signature.
Shifting the entire result out becomes obsolete, we
just shift out the signature.

 - 10 - BF - ES

REVIEW: Signature analysis

 Response of circuit to sequence of test patterns
compacted in a signature. Only this signature is compared
to the golden reference.

 In order to exploit an n-bit signature register as well as
possible, we try to use all possible values.

 In practice, we use shift-registers with linear feedback:

n-bit shift register XOR

Response
of circuit to
sequence
of test
vectors Signature

Using proper feedback bits, all possible values for the
register can be generated.

6

 - 11 - BF - ES

Example: 4-bit signature generator

XOR

1100

0101

1010

0100

1000

0000 0001

1110

1101

1111 1001

0010

0011

0111

1011

0110

All 16 possible
signatures are
generated!

Source: P.K.Lala: Fault tolerant & fault
testable hardware design, Prentice Hall, 1985

0

1

0

1

 - 12 - BF - ES

Aliasing for signatures

Consider aliasing for some current pattern
 An n-bit signature generator can generate 2n signatures.
 For an m-bit input sequence, the best that we can get is to evenly

map 2(m-n) patterns to the same signature.
 Hence, there are 2(m-n)-1 sequences that map to the same signature

as the pattern currently considered.
 In total, there are 2m-1 sequences different from the current one.

signatures to patterns mapevenly wethat provided for
2

1

12

12

patterns other of number total

signature same to map patterns other
yProbabilit

)(

nmP

P

n

m

nm





















7

 - 13 - BF - ES

Replacing serially shifted test pattern
by pseudo-random test patterns

Shifting in test patterns can be avoided if we generate (more
or less) all possible test patterns internally with a pseudo-
random test pattern generator.

DUT Pseudo-
random
test pattern
generator

Signature
analysis
register

Effect of pseudo random numbers on coverage to be analyzed.
Signature analysis register shifted-out at the end of the test.

Compare
with
reference

Comparison possible because test pattern generator is a deterministic source!

 - 14 - BF - ES

Pseudo random test pattern generation

XOR

1100

0101

1010

0100

1000

0000 0001

1110

1101

1111 1001

0010

0011

0111

1011

0110

2n-1 patterns generated!

Linear feedback shift
register (LFSR)

8

 - 15 - BF - ES

Combining signature analysis with pseudo-random
test patterns: Built-in logic block observer (BILBO)

Uses parallel inputs to compress circuit response

Könemann & Mucha

 - 16 - BF - ES

Built-in logic block observer (BILBO)
Modes of operation

9

 - 17 - BF - ES

Typical application

Compressed response shifted out of Bilbo-2 & compared
to known „golden“ reference response.

Roles of Bilbo-1 and 2 swapped for testing DUT-1

DUT-1

Bilbo-1 (generates
pseudo-random

test patterns)

Bilbo-2
(compresses

response)

DUT-2 DUT-1

Bilbo-1 (generates
pseudo-random

test patterns)

Bilbo-2
(compresses

response)

DUT-2DUT-1

Bilbo-1 (generates
pseudo-random

test patterns)

Bilbo-2
(compresses

response)

DUT-2DUT-1

Bilbo-1 (generates
pseudo-random

test patterns)

Bilbo-2
(compresses

response)

DUT-2

 - 18 - BF - ES

Summary

 Testing
• Fault model
• ATPG: D-Algorithm
• Fault coverage
• Fault simulation for computing coverage
• Fault injection
• Model-based testing

 Design for testability
• Scan path, Boundary scan
• Signature analysis
• Pseudo random patterns, BILBO

Formal Methods

The term refers to a broad set of notions and tools for

1 mathematically rigorous documentation of requirements

2 mathematically rigorous models of designs

3 verification of consistency

correctness of a design relative to requirements

replacability of one design by another

BF-ES - 19 -

Automated Formal Methods

Model Checking: automatically verify whether certain properties
are guaranteed by the model; determine safe parameters

Controller Synthesis: automatically construct control strategies
that keep the system safe

Overview:

1 Intro: Analyzing FlexRay

2 Timed automata

3 Regions & zones

4 Model checking and controller synthesis

5 Hybrid automata

BF-ES - 20 -

FlexRay Bus Protocol

FlexRay

communication protocol for distributed components in cars

used in BMW X 5 and BMW’s 7 series for X-by-wire

developed by: BMW, Bosch, Daimler, Freescale, General Motors,

NXP Semiconductors, Volkswagen, et al.

BF-ES - 21 -

FlexRay as the Future Drive-by-Wire Standard

⇒ Safety-critical!

BF-ES - 22 -

FlexRay Physical Layer

BF-ES - 23 -

Jitter and Glitch Correction

voted value

1

0

Rxx

1

0

Tx

1

0

g
lit

c
h

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

S
e
n
d
e
r

R
e
c
e
iv
e
r

BF-ES - 24 -

Protocol Operation

Received Message . . . 1 1 0 1 0 1 1 1 . . .

1 byte

Received Stream. . . 1 0 1 1 0 1 0 1 1 1 1 0 . . .

Strobing
. . . 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 . . .

Voted Values. . . 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 . . .

. . . 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 . . .

Sent Stream. . . 1 0 1 1 0 1 0 1 1 1 1 0 . . .

Sent Message . . . 1 1 0 1 0 1 1 1 . . .

1 byte
Sender

Receiver

Bus

BF-ES - 25 -

Guaranteed Error Resilience?

Newest FlexRay Specification, Version 2.1, Revision A:

“[FlexRay] attempts to enable tolerance of the physical layer

against presence of one glitch in a bit cell [. . .]. There are

specific cases where a single glitch cannot be tolerated and
others where two glitches can be tolerated.”

BF-ES - 26 -

Michael Gerke’s Model of the Protocol

protocol

jitter (parameterized)

glitches

BF-ES - 27 -

Automated Analysis: Glitch Tolerance

The protocol tolerates

1 glitch in every sequence of 4 consecutive samples (1 out of 4)

2 arbitrarily placed glitches in the complete message (at most 2)

Note: one message ≈ 21.000 samples

The protocol does not tolerate:

2 arbitr. placed glitches in every seq. of 82 consec. samples (2 out of 82)

BF-ES - 28 -

Automated Analysis: Glitch Tolerance vs. Delay
Variance

Parameter exploration using binary search:

boundaries for variation of a single parameter

glitch delay variance

tolerance

(1 out of 4) 1.435ns → 7.6075ns

(2 at most) 1.435ns → 7.6075ns

(1 at most) 1.435ns → 12.020ns

glitch deviation of clock

tolerance from standard rate

(1 out of 4) 0.15% → 0.46%
(2 at most) 0.15% → 0.46%
(1 at most) 0.15% → 1.09%
(no glitches) 0.15% → 1.74%

BF-ES - 29 -

Model Checking

Device Specification

Device Descript.

architecture behaviour
of processor is

process fetch
 if halt=0 then
 if mem_wait=0 then
 nextins <= dport
 ...

Model Checker

♦(π ⇐ φ)

Hello world

This is DeDuCe V 1.4

Give me your design

Approval/

Counterexample

BF-ES - 30 -

Finite-State Model-Checking

InApproach EmptyEmpty

e
n

te
r!

le
a
v
e
!

Safety requirement: Gate has to be closed whenever a train is in “In”.

BF-ES - 31 -

Finite-State Automata

Open

Opening

~enter

enter

~leave

leave

Closing

Closed

*

*

leave

enter
Empty Appr. In

tick tick tick

~leave = enter, tick

~enter = leave, tick

tick

* = leave,enter,tick

BF-ES - 32 -

Model Checking

Closed

Opening

Closed

Closing

Opening

Open

Closed

Closing

Opening

Open

Closing

Open

Empty

Empty

Empty

Empty In

In

In

InAppr.

Appr.

Appr.

Appr.

BF-ES - 33 -

A Discrete-Time Coffee Machine

tick

tick

tick

tick

tick

tick

tick

tick

tick

tick

coffee−ordered tea−ordered

coffee−prepared tea−prepared

idle

BF-ES - 34 -

REVIEW: Timed Automata

edge

location

off on

a graph with locations and edges

a location is labeled with the valid atomic propositions

taking an edge is instantaneous, i.e, consumes no time

BF-ES - 35 -

REVIEW: Timed Automata

x >= 2
x >= 2on off

y=9

guard

equipped with real-valued clocks x , y , z, . . .

clocks advance implicitly, all at the same speed

logical constraints on clocks can be used as guards of actions

BF-ES - 36 -

Timed Automata with nondeterminstic delays [Alur/Dill]

off on
x >= 2

reset(x)

y=9 reset(x)

reset(x,y)

clock reset
x >= 2

clocks can be reset when taking an edge

assumption:

all clocks are zero when entering the initial location initially

BF-ES - 37 -

Timed Automata

y <= 9x <= 2
invariant

off on
x >= 2

reset(x)

y=9 reset(x)

{x >= 2
reset(x,y)

guards indicate when an edge may be taken

a location invariant specifies the amount of time that may be spent

in a location

before a location invariant becomes false, an edge must be taken

BF-ES - 38 -

A Real-Time Coffee Machine

idle

coffee−ordered tea−ordered

coffee−prepared

True reset(x) True reset(x)

x <= 10

x <= 10 x <= 15

x <= 15

x = 15 reset(x)

x = 15 reset(x)x = 10 reset(x)

x = 10 reset(x)

tea−prepared

BF-ES - 39 -

Timed Automata with Nondeterministic Delays
[Alur/Dill]

A timed automaton is a tuple

TA =
(

Loc,Act,C,!, Loc0, inv,AP, L
)

where:

Loc is a finite set of locations.

Loc0 ⊆ Loc is a set of initial locations

C is a finite set of clocks

L : Loc → 2AP is a labeling function for the locations

! ⊆ Loc × CC(C)× Act × 2C × Loc is a transition relation, and

inv : Loc → CC(C) is an invariant-assignment function

BF-ES - 40 -

Clock Constraints

Clock constraints over set C of clocks are defined by:

g ::= True

∣

∣

∣
x < c

∣

∣

∣
x ≤ c

∣

∣

∣
¬g

∣

∣

∣
g ∧ g

where c ∈ N and clocks x , y ∈ C

rational constants would do; neither reals nor addition of clocks!

let CC(C) denote the set of clock constraints over C

shorthands: x ≥ c denotes ¬ (x < c)
and x ∈ [c1, c2) or c1 ≤ x < c2 denotes ¬(x < c1) ∧ (x < c2)

BF-ES - 41 -

Intuitive Interpretation

Edge !
g:α,C′

−−−−−→ !′ means:

action α is enabled once guard g holds
when moving from location ! to !′, any clock in C′

will be reset to

zero

inv(!) constrains the amount of time that may be spent in
location !

the location ! must be left before the invariant inv(!) becomes false

BF-ES - 42 -

Guards vs. Location Invariants

The effect of a lowerbound guard:

2

4

time

2 4 6 8 10

value

of x
x >= 2 reset(x)

BF-ES - 43 -

Guards vs. Location Invariants

The effect of a lowerbound and upperbound guard:

2

4

time

2 4 6 8 10

value

of x 3

2 <= x <= 3 reset(x)

BF-ES - 44 -

Guards vs. Location Invariants

The effect of a guard and an invariant:

2

4

time

2 4 6 8 10

value

of x
x >= 2 reset(x)

x <= 3
3

BF-ES - 45 -

Arbitrary Clock Differences

clock x
clock y

2

4

time

2 4 6 8 10

clock
value

y >= 2 reset(y)

x >= 2 reset(x)

BF-ES - 46 -

Composing Timed Automata

Let TAi =
(

Loci ,Acti ,Ci ,!i , Loc0,i , invi ,AP, Li

)

and H an action-set

TA1 ||H TA2 =
(

Loc,Act1 ∪ Act2,C,!, Loc0, inv,AP, L
)

where:

Loc = Loc1 × Loc2 and Loc0 = Loc0,1 × Loc0,2 and C = C1 ∪ C2

inv(〈!1, !2〉) = inv1(!1) ∧ inv2(!2) and L(〈!1, !2〉) = L1(!1) ∪ L2(!2)

! is defined by the inference rules:

for α ∈ H
!1

g1:α,D1

!1 !′1 ∧ !2

g2:α,D2

!2 !′2

〈!1, !2〉
g1∧g2:α,D1∪D2

! 〈!′1, !
′

2〉

for α .∈ H:
!1

g:α,D
!1 !′1

〈!1, !2〉
g:α,D
! 〈!′1, !2〉

and
!2

g:α,D
!2 !′2

〈!1, !2〉
g:α,D
! 〈!1, !

′
2〉

BF-ES - 47 -

Example: Railroad Crossing

BF-ES - 48 -

Example: Railroad Crossing

Gate

BF-ES - 49 -

Example: Railroad Crossing

(Train{approach,exit}||Controller)||{lower ,raise}Gate

BF-ES - 50 -

Clock valuations

A clock valuation v for set C of clocks is a function v : C → R≥0

assigning to each clock x ∈ C its current value v(x)

Clock valuation v+d for d ∈ R≥0 is defined by:

(v+d)(x) = v(x) + d for all clocks x ∈ C

Clock valuation reset x in v for clock x is defined by:

(reset x in v)(y) =

{

v(y) if y .= x

0 if y = x .

reset x in (reset y in v) is abbreviated by reset x , y in v

BF-ES - 51 -

Timed automaton semantics

For timed automaton TA =
(

Loc,Act,C,!, Loc0, inv,AP, L
)

:

state graph S(TA) = (Q,Q0,E , L′) over AP where:

Q = Loc × val(C), state s = 〈!, v〉 for location ! and clock

valuation v

Q0 = { 〈!0, v0〉 | !0 ∈ Loc0 ∧ v0(x) = 0 for all x ∈ C }

L′(〈!, v〉) = L(!)

E is the edge set defined on the next slide

BF-ES - 52 -

Timed automaton semantics

The edge set E consist of the following two types of transitions:

Discrete transition: 〈!, v〉 α−−→〈!′, v ′〉 if all following conditions hold:

there is an edge labeled (g : α,D) from location ! to !′ such that:

g is satisfied by v , i.e., v |= g

v
′ = v with all clocks in D reset to 0, i.e., v ′ = reset D in v

v
′ fulfills the invariant of location !′, i.e., v ′ |= inv(!′)

Delay transition: 〈!, v〉 d−−→〈!, v+d〉 for positive real d
if for any 0 ≤ d ′ ≤ d the invariant of ! holds for v+d ′

, i.e.
v+d ′ |= inv(!)

BF-ES - 53 -

Time divergence

Let for any t < d , for fixed d ∈ R>0, clock valuation η+t |= inv(!)

A possible execution fragment starting from the location ! is:

〈!, η〉 d1−−→ 〈!, η+d1〉
d2−−→ 〈!, η+d1+d2〉

d3−−→〈!, η+d1+d2+d3〉
d4−−→ . .

where di > 0 and the infinite sequence d1 + d2 + . . . converges

towards d
such path fragments are called time-convergent

⇒ time advances only up to a certain value

Time-convergent execution fragments are unrealistic and ignored

BF-ES - 54 -

Example: light switch

on off x <= 2
x >= 1

reset(x)

The path

π = 〈off , 0〉 〈off , 1〉 〈on, 0〉 〈on, 1〉 〈off , 1〉 〈off , 2〉 〈on, 0〉 〈on, 1〉 〈off , 1〉 . . .

is time-divergent.

The path

π′ = 〈off , 0〉 〈off , 1/2〉 〈off , 3/4〉 〈off , 7/8〉 〈off , 15/16〉 . . .

is time-convergent.

BF-ES - 55 -

Timelock

on off

reset(x)

1 <= x < 2
x < 3

State s ∈ S(TA) contains a timelock if there is a reachable state s

where there is no time-divergent path from s

Timelocks are considered as modeling flaws that should be

avoided

BF-ES - 56 -

Region Abstraction

Consider a timed automaton with clocks x and y

having maximal constants 3 and 2, respectively.

0 x

y

1 2 3 4

1

2

3 Equivalence relation /R

1 constraints

2 time elapsing

3 maximal constants

BF-ES - 57 -

Region Abstraction

Consider a timed automaton with clocks x and y

having maximal constants 3 and 2, respectively.

0 x

y

1 2 3 4

1

2

3 Equivalence relation /R

1 constraints

2 time elapsing

3 maximal constants

=⇒ finite index!

BF-ES - 57 -

Finite Semantics: Region Automaton

l0A l1

l2

a, x > 0

b,
x < 1,

x := 0

l0
x = 0

!A"r

l0
0 < x < 1

l0
x = 1

l0
1 < x

l1
x = 0

l1
0 < x < 1

l1
x = 1

l1
1 < x

l2
x = 0

l2
0 < x < 1

l2
x = 1

l2
1 < x

τ

τ

τ

τ

τ

τ

τ

τ

τ

a

a

a

b

b

BF-ES - 58 -

Timed Analysis

Reachability is decidable

Theorem [Alur, 1994]:

∃ path (l ,%t) −→ (l ′,%t ′)
iff

∃ path (l , [%t]R) −→ (l ′, [%t ′]R)

Symbolic data structures

Clock Region = Finest integral unit

Clock Zone = Convex union of clock regions

Federation = (Non-convex) union of clock zones

BF-ES - 59 -

