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REVIEW: Testing 

Testing includes 
 the application of test patterns to the inputs of the device 

under test (DUT) and 
 the observation of the results. 

 
More precisely, testing requires the following steps: 
1. test pattern generation, 
2. test pattern application, 
3. response observation, and 
4. result comparison (okay, not okay, inconclusive). 
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REVIEW: Hardware Fault models 

 stuck-at fault model 
(net permanently 
connected to ground 
or Vdd)  

 stuck-open faults: 
for CMOS, open 
transistors can 
behave like memories 

 delay faults: circuit is 
functionally correct, 
but the delay is not. 

Hardware fault models include: 

www.cedcc.psu.edu/ee497f 

/rassp_43/sld022.htm  
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REVIEW: D-Algorithm 

 Activate fault 
• Place a D or D at fault site 
• Do justification, forward implication, and consistency 

check for all signals 
 D-Drive 

• Propagate D/D toward outputs 
• Do justification, forward implication, and consistency 

check for all signals 
 Backtrack if 

• A conflict occurs, or 
• D-frontier becomes empty 

 Stop when 
• D or D at an output, i.e., test found, or 
• If search exhausted without a test, then no test possible 

Copyright Agrawal & Bushnell 
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REVIEW: An ATPG System 

Random pattern 
 generator 

Fault simulator 

Fault 
 coverage 

 improved? 

Random 
 patterns 

 effective? 

Save 
 patterns 

Deterministic 
ATPG  

(e.g., D-alg.) yes no 

yes 

no 

Compact 
vectors 

Coverage 
Sufficient? 

no yes 

Copyright Agrawal & Bushnell 
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 Typically gets 
tests for 60-80% 
of faults 

 Then switch to 
D-algorithm or 
other ATPG 
method 

Random Pattern Generation 

Copyright Agrawal & Bushnell 
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REVIEW: Fault injection 

 Intentional activation of faults by HW or/and SW means 
 Establish faults in a predictable and reproducible way 
 Trigger error-handling routines 

 Two purposes: 
 Testing and Debugging 

• During normal operation faults are rare events 
• May be much too rare to achieve meaningful data from std. 

testing 
 Dependability Forecasting 

• Used for deriving data about the likely dependability of the 
system 

• Need to know the types and frequencies of different faults in 
the intended operational environment 
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REVIEW: Scan design 

Verifying a transition requires 
• Shifting-in the state to be tested 
• Application of the input pattern 
• Checking if output is correct 
• Shifting-out the successor state 

and comparing it. 
Essentially reduced to testing 
combinatorial logic 



5 

 -  9 - BF - ES 

REVIEW: Limitations of a single serial scan chain 

 For chips with a large number of flip-flops, 
serial shifts can take a quite long time. 

 Hence, it becomes necessary to provide 
several scan chains. 
 Trying to avoid serial shifts by generating test 

patterns internally and by also storing the results 
internally. 

 Compaction of circuit response in a signature. 
Shifting the entire result out becomes  obsolete, we 
just shift out the signature. 
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REVIEW: Signature analysis 

 Response of circuit to sequence of test patterns 
compacted in a signature. Only this signature is compared 
to the golden reference. 

 In order to exploit an n-bit signature register as well as 
possible, we try to use all possible values. 

 In practice, we use shift-registers with linear feedback: 

n-bit shift register XOR 

Response 
of circuit to 
sequence 
of test 
vectors Signature 

Using proper feedback bits, all possible values for the 
register can be generated. 
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Example: 4-bit signature generator 

XOR 

1100 

0101 

1010 

0100 

1000 

0000 0001 

1110 

1101 

1111 1001 

0010 

0011 

0111 

1011 

0110 

All 16 possible 
signatures are 
generated! 

Source: P.K.Lala: Fault tolerant & fault 
testable hardware design, Prentice Hall, 1985 

0 

1 

0 
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Aliasing for signatures 

Consider aliasing for some current pattern 
 An n-bit signature generator can generate 2n signatures. 
 For an m-bit input sequence, the best that we can get is to evenly 

map 2(m-n) patterns to the same signature. 
 Hence, there are 2(m-n)-1 sequences that map to the same signature 

as the pattern currently considered. 
 In total, there are 2m-1 sequences different from the current one. 

signatures to patterns mapevenly   wethat provided   for 
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Replacing serially shifted test pattern 
by pseudo-random test patterns 

Shifting in test patterns can be avoided if we generate (more 
or less) all possible test patterns internally with a pseudo-
random test pattern generator. 

DUT Pseudo-
random 
test pattern 
generator 

Signature 
analysis 
register 

Effect of pseudo random numbers on coverage to be analyzed. 
Signature analysis register shifted-out at the end of the test. 

Compare 
with 
reference 

Comparison possible because test pattern generator is a deterministic source! 
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Pseudo random test pattern generation 

XOR 

1100 

0101 

1010 

0100 

1000 

0000 0001 

1110 

1101 

1111 1001 

0010 

0011 

0111 

1011 

0110 

2n-1 patterns generated! 

Linear feedback shift 
register (LFSR) 
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Combining signature analysis with pseudo-random 
test patterns: Built-in logic block observer (BILBO) 

Uses parallel inputs to compress circuit response 

Könemann & Mucha 
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Built-in logic block observer (BILBO) 
Modes of operation 
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Typical application 

Compressed response shifted out of Bilbo-2 & compared 
to known „golden“ reference response. 

Roles of Bilbo-1 and 2 swapped for testing DUT-1 

DUT-1 

Bilbo-1 (generates 
pseudo-random 

test patterns) 

Bilbo-2 
(compresses 

response) 

DUT-2 DUT-1

Bilbo-1 (generates 
pseudo-random 

test patterns)

Bilbo-2 
(compresses 

response)

DUT-2DUT-1

Bilbo-1 (generates 
pseudo-random 

test patterns)

Bilbo-2 
(compresses 

response)

DUT-2DUT-1

Bilbo-1 (generates 
pseudo-random 

test patterns)

Bilbo-2 
(compresses 

response)

DUT-2
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Summary 

 Testing 
• Fault model 
• ATPG: D-Algorithm 
• Fault coverage 
• Fault simulation for computing coverage 
• Fault injection 
• Model-based testing 
 

 Design for testability 
• Scan path, Boundary scan 
• Signature analysis 
• Pseudo random patterns, BILBO 



Formal Methods

The term refers to a broad set of notions and tools for

1 mathematically rigorous documentation of requirements

2 mathematically rigorous models of designs

3 verification of consistency

correctness of a design relative to requirements

replacability of one design by another

BF-ES - 19 -

Automated Formal Methods

Model Checking: automatically verify whether certain properties
are guaranteed by the model; determine safe parameters

Controller Synthesis: automatically construct control strategies
that keep the system safe

Overview:

1 Intro: Analyzing FlexRay

2 Timed automata

3 Regions & zones

4 Model checking and controller synthesis

5 Hybrid automata

BF-ES - 20 -



FlexRay Bus Protocol

FlexRay

communication protocol for distributed components in cars

used in BMW X 5 and BMW’s 7 series for X-by-wire

developed by: BMW, Bosch, Daimler, Freescale, General Motors,

NXP Semiconductors, Volkswagen, et al.

BF-ES - 21 -

FlexRay as the Future Drive-by-Wire Standard

⇒ Safety-critical!

BF-ES - 22 -



FlexRay Physical Layer

BF-ES - 23 -

Jitter and Glitch Correction
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Protocol Operation

Received Message . . . 1 1 0 1 0 1 1 1 . . .

1 byte

Received Stream. . . 1 0 1 1 0 1 0 1 1 1 1 0 . . .

Strobing
. . . 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 . . .

Voted Values. . . 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 . . .

. . . 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 . . .

Sent Stream. . . 1 0 1 1 0 1 0 1 1 1 1 0 . . .

Sent Message . . . 1 1 0 1 0 1 1 1 . . .

1 byte
Sender

Receiver

Bus

BF-ES - 25 -

Guaranteed Error Resilience?

Newest FlexRay Specification, Version 2.1, Revision A:

“[FlexRay] attempts to enable tolerance of the physical layer

against presence of one glitch in a bit cell [. . . ]. There are

specific cases where a single glitch cannot be tolerated and
others where two glitches can be tolerated.”

BF-ES - 26 -



Michael Gerke’s Model of the Protocol

protocol

jitter (parameterized)

glitches

BF-ES - 27 -

Automated Analysis: Glitch Tolerance

The protocol tolerates

1 glitch in every sequence of 4 consecutive samples (1 out of 4)

2 arbitrarily placed glitches in the complete message (at most 2)

Note: one message ≈ 21.000 samples

The protocol does not tolerate:

2 arbitr. placed glitches in every seq. of 82 consec. samples (2 out of 82)

BF-ES - 28 -



Automated Analysis: Glitch Tolerance vs. Delay
Variance

Parameter exploration using binary search:

boundaries for variation of a single parameter

glitch delay variance

tolerance

(1 out of 4) 1.435ns → 7.6075ns

(2 at most) 1.435ns → 7.6075ns

(1 at most) 1.435ns → 12.020ns

glitch deviation of clock

tolerance from standard rate

(1 out of 4) 0.15% → 0.46%
(2 at most) 0.15% → 0.46%
(1 at most) 0.15% → 1.09%
(no glitches) 0.15% → 1.74%

BF-ES - 29 -

Model Checking

Device Specification

Device Descript.

architecture behaviour
of processor is

process fetch
  if halt=0 then
    if mem_wait=0 then
      nextins <= dport
  ...

Model Checker

♦(π ⇐ φ)

Hello world

This is DeDuCe V 1.4

Give me your design

Approval/

Counterexample

BF-ES - 30 -



Finite-State Model-Checking

InApproach EmptyEmpty

e
n

te
r!

le
a
v
e
!

Safety requirement: Gate has to be closed whenever a train is in “In”.

BF-ES - 31 -

Finite-State Automata

Open

Opening

~enter

enter

~leave

leave

Closing

Closed

*

*

leave

enter
Empty Appr. In

tick tick tick

~leave = enter, tick

~enter = leave, tick

tick

* = leave,enter,tick

BF-ES - 32 -



Model Checking

Closed

Opening

Closed

Closing

Opening

Open

Closed

Closing

Opening

Open

Closing

Open

Empty

Empty

Empty

Empty In

In

In

InAppr.

Appr.

Appr.

Appr.
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A Discrete-Time Coffee Machine

tick

tick

tick

tick

tick

tick

tick

tick

tick

tick

coffee−ordered tea−ordered

coffee−prepared tea−prepared

idle

BF-ES - 34 -



REVIEW: Timed Automata

edge

location

off on

a graph with locations and edges

a location is labeled with the valid atomic propositions

taking an edge is instantaneous, i.e, consumes no time

BF-ES - 35 -

REVIEW: Timed Automata

x >= 2
x >= 2on off

y=9

guard

equipped with real-valued clocks x , y , z, . . .

clocks advance implicitly, all at the same speed

logical constraints on clocks can be used as guards of actions

BF-ES - 36 -



Timed Automata with nondeterminstic delays [Alur/Dill]

off  on
x >= 2

reset(x)

y=9                  reset(x)

reset(x,y)

clock reset
x >= 2

clocks can be reset when taking an edge

assumption:

all clocks are zero when entering the initial location initially

BF-ES - 37 -

Timed Automata

y <= 9x <= 2
invariant

off  on
x >= 2

reset(x)

y=9                  reset(x)

{x >= 2
reset(x,y)

guards indicate when an edge may be taken

a location invariant specifies the amount of time that may be spent

in a location

before a location invariant becomes false, an edge must be taken

BF-ES - 38 -



A Real-Time Coffee Machine

idle

coffee−ordered tea−ordered

coffee−prepared

True   reset(x) True  reset(x)

x <= 10

x <= 10 x <= 15

x <= 15

x = 15   reset(x)

x = 15   reset(x)x = 10   reset(x)

x = 10   reset(x)

tea−prepared

BF-ES - 39 -

Timed Automata with Nondeterministic Delays
[Alur/Dill]

A timed automaton is a tuple

TA =
(

Loc,Act,C,!, Loc0, inv,AP, L
)

where:

Loc is a finite set of locations.

Loc0 ⊆ Loc is a set of initial locations

C is a finite set of clocks

L : Loc → 2AP is a labeling function for the locations

! ⊆ Loc × CC(C)× Act × 2C × Loc is a transition relation, and

inv : Loc → CC(C) is an invariant-assignment function

BF-ES - 40 -



Clock Constraints

Clock constraints over set C of clocks are defined by:

g ::= True

∣

∣

∣
x < c

∣

∣

∣
x ≤ c

∣

∣

∣
¬g

∣

∣

∣
g ∧ g

where c ∈ N and clocks x , y ∈ C

rational constants would do; neither reals nor addition of clocks!

let CC(C) denote the set of clock constraints over C

shorthands: x ≥ c denotes ¬ (x < c)
and x ∈ [c1, c2) or c1 ≤ x < c2 denotes ¬(x < c1) ∧ (x < c2)

BF-ES - 41 -

Intuitive Interpretation

Edge !
g:α,C′

−−−−−→ !′ means:

action α is enabled once guard g holds
when moving from location ! to !′, any clock in C′

will be reset to

zero

inv(!) constrains the amount of time that may be spent in
location !

the location ! must be left before the invariant inv(!) becomes false

BF-ES - 42 -



Guards vs. Location Invariants

The effect of a lowerbound guard:

2

4

time

2 4 6 8 10

value

of x
x >= 2   reset(x)

BF-ES - 43 -

Guards vs. Location Invariants

The effect of a lowerbound and upperbound guard:

2

4

time

2 4 6 8 10

value

of x 3

2 <= x <= 3   reset(x)

BF-ES - 44 -



Guards vs. Location Invariants

The effect of a guard and an invariant:

2

4

time

2 4 6 8 10

value

of x
x >= 2   reset(x)

x <= 3
3

BF-ES - 45 -

Arbitrary Clock Differences

clock x
clock y

2

4

time

2 4 6 8 10

clock
value

y >= 2   reset(y)

x >= 2   reset(x)

BF-ES - 46 -



Composing Timed Automata

Let TAi =
(

Loci ,Acti ,Ci ,!i , Loc0,i , invi ,AP, Li

)

and H an action-set

TA1 ||H TA2 =
(

Loc,Act1 ∪ Act2,C,!, Loc0, inv,AP, L
)

where:

Loc = Loc1 × Loc2 and Loc0 = Loc0,1 × Loc0,2 and C = C1 ∪ C2

inv(〈!1, !2〉) = inv1(!1) ∧ inv2(!2) and L(〈!1, !2〉) = L1(!1) ∪ L2(!2)

! is defined by the inference rules:

for α ∈ H
!1

g1:α,D1

!1 !′1 ∧ !2

g2:α,D2

!2 !′2

〈!1, !2〉
g1∧g2:α,D1∪D2

! 〈!′1, !
′

2〉

for α .∈ H:
!1

g:α,D
!1 !′1

〈!1, !2〉
g:α,D
! 〈!′1, !2〉

and
!2

g:α,D
!2 !′2

〈!1, !2〉
g:α,D
! 〈!1, !

′
2〉

BF-ES - 47 -

Example: Railroad Crossing
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Example: Railroad Crossing

Gate

BF-ES - 49 -

Example: Railroad Crossing

(Train{approach,exit}||Controller)||{lower ,raise}Gate

BF-ES - 50 -



Clock valuations

A clock valuation v for set C of clocks is a function v : C → R≥0

assigning to each clock x ∈ C its current value v(x)

Clock valuation v+d for d ∈ R≥0 is defined by:

(v+d)(x) = v(x) + d for all clocks x ∈ C

Clock valuation reset x in v for clock x is defined by:

(reset x in v)(y) =

{

v(y) if y .= x

0 if y = x .

reset x in (reset y in v) is abbreviated by reset x , y in v

BF-ES - 51 -

Timed automaton semantics

For timed automaton TA =
(

Loc,Act,C,!, Loc0, inv,AP, L
)

:

state graph S(TA) = (Q,Q0,E , L′) over AP where:

Q = Loc × val(C), state s = 〈!, v〉 for location ! and clock

valuation v

Q0 = { 〈!0, v0〉 | !0 ∈ Loc0 ∧ v0(x) = 0 for all x ∈ C }

L′(〈!, v〉) = L(!)

E is the edge set defined on the next slide
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Timed automaton semantics

The edge set E consist of the following two types of transitions:

Discrete transition: 〈!, v〉 α−−→〈!′, v ′〉 if all following conditions hold:

there is an edge labeled (g : α,D) from location ! to !′ such that:

g is satisfied by v , i.e., v |= g

v
′ = v with all clocks in D reset to 0, i.e., v ′ = reset D in v

v
′ fulfills the invariant of location !′, i.e., v ′ |= inv(!′)

Delay transition: 〈!, v〉 d−−→〈!, v+d〉 for positive real d
if for any 0 ≤ d ′ ≤ d the invariant of ! holds for v+d ′

, i.e.
v+d ′ |= inv(!)

BF-ES - 53 -

Time divergence

Let for any t < d , for fixed d ∈ R>0, clock valuation η+t |= inv(!)

A possible execution fragment starting from the location ! is:

〈!, η〉 d1−−→ 〈!, η+d1〉
d2−−→ 〈!, η+d1+d2〉

d3−−→〈!, η+d1+d2+d3〉
d4−−→ . .

where di > 0 and the infinite sequence d1 + d2 + . . . converges

towards d
such path fragments are called time-convergent

⇒ time advances only up to a certain value

Time-convergent execution fragments are unrealistic and ignored
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Example: light switch

on off x <= 2
x >= 1

reset(x)

The path

π = 〈off , 0〉 〈off , 1〉 〈on, 0〉 〈on, 1〉 〈off , 1〉 〈off , 2〉 〈on, 0〉 〈on, 1〉 〈off , 1〉 . . .

is time-divergent.

The path

π′ = 〈off , 0〉 〈off , 1/2〉 〈off , 3/4〉 〈off , 7/8〉 〈off , 15/16〉 . . .

is time-convergent.
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Timelock

on off

reset(x)

1 <= x <  2
x < 3

State s ∈ S(TA) contains a timelock if there is a reachable state s

where there is no time-divergent path from s

Timelocks are considered as modeling flaws that should be

avoided
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Region Abstraction

Consider a timed automaton with clocks x and y

having maximal constants 3 and 2, respectively.

0 x

y

1 2 3 4

1

2

3 Equivalence relation /R

1 constraints

2 time elapsing

3 maximal constants
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Region Abstraction

Consider a timed automaton with clocks x and y

having maximal constants 3 and 2, respectively.

0 x

y

1 2 3 4

1

2

3 Equivalence relation /R

1 constraints

2 time elapsing

3 maximal constants

=⇒ finite index!
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Finite Semantics: Region Automaton

l0A l1

l2

a, x > 0

b,
x < 1,

x := 0

l0
x = 0

!A"r

l0
0 < x < 1

l0
x = 1

l0
1 < x

l1
x = 0

l1
0 < x < 1

l1
x = 1

l1
1 < x

l2
x = 0

l2
0 < x < 1

l2
x = 1

l2
1 < x

τ

τ

τ

τ

τ

τ

τ

τ

τ

a

a

a

b

b
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Timed Analysis

Reachability is decidable

Theorem [Alur, 1994]:

∃ path (l ,%t) −→ (l ′,%t ′)
iff

∃ path (l , [%t ]R) −→ (l ′, [%t ′]R)

Symbolic data structures

Clock Region = Finest integral unit

Clock Zone = Convex union of clock regions

Federation = (Non-convex) union of clock zones
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