
1

 - 1 - BF - ES

Embedded Systems 24

 - 2 - BF - ES

REVIEW: Testing

Testing includes
 the application of test patterns to the inputs of the device

under test (DUT) and
 the observation of the results.

More precisely, testing requires the following steps:
1. test pattern generation,
2. test pattern application,
3. response observation, and
4. result comparison (okay, not okay, inconclusive).

2

 - 3 - BF - ES

REVIEW: Hardware Fault models

 stuck-at fault model
(net permanently
connected to ground
or Vdd)

 stuck-open faults:
for CMOS, open
transistors can
behave like memories

 delay faults: circuit is
functionally correct,
but the delay is not.

Hardware fault models include:

www.cedcc.psu.edu/ee497f

/rassp_43/sld022.htm

 - 4 - BF - ES

REVIEW: D-Algorithm

 Activate fault
• Place a D or D at fault site
• Do justification, forward implication, and consistency

check for all signals
 D-Drive

• Propagate D/D toward outputs
• Do justification, forward implication, and consistency

check for all signals
 Backtrack if

• A conflict occurs, or
• D-frontier becomes empty

 Stop when
• D or D at an output, i.e., test found, or
• If search exhausted without a test, then no test possible

Copyright Agrawal & Bushnell

3

 - 5 - BF - ES

REVIEW: An ATPG System

Random pattern
 generator

Fault simulator

Fault
 coverage

 improved?

Random
 patterns

 effective?

Save
 patterns

Deterministic
ATPG

(e.g., D-alg.) yes no

yes

no

Compact
vectors

Coverage
Sufficient?

no yes

Copyright Agrawal & Bushnell

 - 6 - BF - ES

 Typically gets
tests for 60-80%
of faults

 Then switch to
D-algorithm or
other ATPG
method

Random Pattern Generation

Copyright Agrawal & Bushnell

4

 - 7 - BF - ES

REVIEW: Fault injection

 Intentional activation of faults by HW or/and SW means
 Establish faults in a predictable and reproducible way
 Trigger error-handling routines

 Two purposes:
 Testing and Debugging

• During normal operation faults are rare events
• May be much too rare to achieve meaningful data from std.

testing
 Dependability Forecasting

• Used for deriving data about the likely dependability of the
system

• Need to know the types and frequencies of different faults in
the intended operational environment

 - 8 - BF - ES

REVIEW: Scan design

Verifying a transition requires
• Shifting-in the state to be tested
• Application of the input pattern
• Checking if output is correct
• Shifting-out the successor state

and comparing it.
Essentially reduced to testing
combinatorial logic

5

 - 9 - BF - ES

REVIEW: Limitations of a single serial scan chain

 For chips with a large number of flip-flops,
serial shifts can take a quite long time.

 Hence, it becomes necessary to provide
several scan chains.
 Trying to avoid serial shifts by generating test

patterns internally and by also storing the results
internally.

 Compaction of circuit response in a signature.
Shifting the entire result out becomes obsolete, we
just shift out the signature.

 - 10 - BF - ES

REVIEW: Signature analysis

 Response of circuit to sequence of test patterns
compacted in a signature. Only this signature is compared
to the golden reference.

 In order to exploit an n-bit signature register as well as
possible, we try to use all possible values.

 In practice, we use shift-registers with linear feedback:

n-bit shift register XOR

Response
of circuit to
sequence
of test
vectors Signature

Using proper feedback bits, all possible values for the
register can be generated.

6

 - 11 - BF - ES

Example: 4-bit signature generator

XOR

1100

0101

1010

0100

1000

0000 0001

1110

1101

1111 1001

0010

0011

0111

1011

0110

All 16 possible
signatures are
generated!

Source: P.K.Lala: Fault tolerant & fault
testable hardware design, Prentice Hall, 1985

0

1

0

1

 - 12 - BF - ES

Aliasing for signatures

Consider aliasing for some current pattern
 An n-bit signature generator can generate 2n signatures.
 For an m-bit input sequence, the best that we can get is to evenly

map 2(m-n) patterns to the same signature.
 Hence, there are 2(m-n)-1 sequences that map to the same signature

as the pattern currently considered.
 In total, there are 2m-1 sequences different from the current one.

signatures to patterns mapevenly wethat provided for
2

1

12

12

patterns other of number total

signature same to map patterns other
yProbabilit

)(

nmP

P

n

m

nm

7

 - 13 - BF - ES

Replacing serially shifted test pattern
by pseudo-random test patterns

Shifting in test patterns can be avoided if we generate (more
or less) all possible test patterns internally with a pseudo-
random test pattern generator.

DUT Pseudo-
random
test pattern
generator

Signature
analysis
register

Effect of pseudo random numbers on coverage to be analyzed.
Signature analysis register shifted-out at the end of the test.

Compare
with
reference

Comparison possible because test pattern generator is a deterministic source!

 - 14 - BF - ES

Pseudo random test pattern generation

XOR

1100

0101

1010

0100

1000

0000 0001

1110

1101

1111 1001

0010

0011

0111

1011

0110

2n-1 patterns generated!

Linear feedback shift
register (LFSR)

8

 - 15 - BF - ES

Combining signature analysis with pseudo-random
test patterns: Built-in logic block observer (BILBO)

Uses parallel inputs to compress circuit response

Könemann & Mucha

 - 16 - BF - ES

Built-in logic block observer (BILBO)
Modes of operation

9

 - 17 - BF - ES

Typical application

Compressed response shifted out of Bilbo-2 & compared
to known „golden“ reference response.

Roles of Bilbo-1 and 2 swapped for testing DUT-1

DUT-1

Bilbo-1 (generates
pseudo-random

test patterns)

Bilbo-2
(compresses

response)

DUT-2 DUT-1

Bilbo-1 (generates
pseudo-random

test patterns)

Bilbo-2
(compresses

response)

DUT-2DUT-1

Bilbo-1 (generates
pseudo-random

test patterns)

Bilbo-2
(compresses

response)

DUT-2DUT-1

Bilbo-1 (generates
pseudo-random

test patterns)

Bilbo-2
(compresses

response)

DUT-2

 - 18 - BF - ES

Summary

 Testing
• Fault model
• ATPG: D-Algorithm
• Fault coverage
• Fault simulation for computing coverage
• Fault injection
• Model-based testing

 Design for testability
• Scan path, Boundary scan
• Signature analysis
• Pseudo random patterns, BILBO

Formal Methods

The term refers to a broad set of notions and tools for

1 mathematically rigorous documentation of requirements

2 mathematically rigorous models of designs

3 verification of consistency

correctness of a design relative to requirements

replacability of one design by another

BF-ES - 19 -

Automated Formal Methods

Model Checking: automatically verify whether certain properties
are guaranteed by the model; determine safe parameters

Controller Synthesis: automatically construct control strategies
that keep the system safe

Overview:

1 Intro: Analyzing FlexRay

2 Timed automata

3 Regions & zones

4 Model checking and controller synthesis

5 Hybrid automata

BF-ES - 20 -

FlexRay Bus Protocol

FlexRay

communication protocol for distributed components in cars

used in BMW X 5 and BMW’s 7 series for X-by-wire

developed by: BMW, Bosch, Daimler, Freescale, General Motors,

NXP Semiconductors, Volkswagen, et al.

BF-ES - 21 -

FlexRay as the Future Drive-by-Wire Standard

⇒ Safety-critical!

BF-ES - 22 -

FlexRay Physical Layer

BF-ES - 23 -

Jitter and Glitch Correction

voted value

1

0

Rxx

1

0

Tx

1

0

g
lit

c
h

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

S
e
n
d
e
r

R
e
c
e
iv
e
r

BF-ES - 24 -

Protocol Operation

Received Message . . . 1 1 0 1 0 1 1 1 . . .

1 byte

Received Stream. . . 1 0 1 1 0 1 0 1 1 1 1 0 . . .

Strobing
. . . 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 . . .

Voted Values. . . 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 . . .

. . . 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 . . .

Sent Stream. . . 1 0 1 1 0 1 0 1 1 1 1 0 . . .

Sent Message . . . 1 1 0 1 0 1 1 1 . . .

1 byte
Sender

Receiver

Bus

BF-ES - 25 -

Guaranteed Error Resilience?

Newest FlexRay Specification, Version 2.1, Revision A:

“[FlexRay] attempts to enable tolerance of the physical layer

against presence of one glitch in a bit cell [. . .]. There are

specific cases where a single glitch cannot be tolerated and
others where two glitches can be tolerated.”

BF-ES - 26 -

Michael Gerke’s Model of the Protocol

protocol

jitter (parameterized)

glitches

BF-ES - 27 -

Automated Analysis: Glitch Tolerance

The protocol tolerates

1 glitch in every sequence of 4 consecutive samples (1 out of 4)

2 arbitrarily placed glitches in the complete message (at most 2)

Note: one message ≈ 21.000 samples

The protocol does not tolerate:

2 arbitr. placed glitches in every seq. of 82 consec. samples (2 out of 82)

BF-ES - 28 -

Automated Analysis: Glitch Tolerance vs. Delay
Variance

Parameter exploration using binary search:

boundaries for variation of a single parameter

glitch delay variance

tolerance

(1 out of 4) 1.435ns → 7.6075ns

(2 at most) 1.435ns → 7.6075ns

(1 at most) 1.435ns → 12.020ns

glitch deviation of clock

tolerance from standard rate

(1 out of 4) 0.15% → 0.46%
(2 at most) 0.15% → 0.46%
(1 at most) 0.15% → 1.09%
(no glitches) 0.15% → 1.74%

BF-ES - 29 -

Model Checking

Device Specification

Device Descript.

architecture behaviour
of processor is

process fetch
 if halt=0 then
 if mem_wait=0 then
 nextins <= dport
 ...

Model Checker

♦(π ⇐ φ)

Hello world

This is DeDuCe V 1.4

Give me your design

Approval/

Counterexample

BF-ES - 30 -

Finite-State Model-Checking

InApproach EmptyEmpty

e
n

te
r!

le
a
v
e
!

Safety requirement: Gate has to be closed whenever a train is in “In”.

BF-ES - 31 -

Finite-State Automata

Open

Opening

~enter

enter

~leave

leave

Closing

Closed

*

*

leave

enter
Empty Appr. In

tick tick tick

~leave = enter, tick

~enter = leave, tick

tick

* = leave,enter,tick

BF-ES - 32 -

Model Checking

Closed

Opening

Closed

Closing

Opening

Open

Closed

Closing

Opening

Open

Closing

Open

Empty

Empty

Empty

Empty In

In

In

InAppr.

Appr.

Appr.

Appr.

BF-ES - 33 -

A Discrete-Time Coffee Machine

tick

tick

tick

tick

tick

tick

tick

tick

tick

tick

coffee−ordered tea−ordered

coffee−prepared tea−prepared

idle

BF-ES - 34 -

REVIEW: Timed Automata

edge

location

off on

a graph with locations and edges

a location is labeled with the valid atomic propositions

taking an edge is instantaneous, i.e, consumes no time

BF-ES - 35 -

REVIEW: Timed Automata

x >= 2
x >= 2on off

y=9

guard

equipped with real-valued clocks x , y , z, . . .

clocks advance implicitly, all at the same speed

logical constraints on clocks can be used as guards of actions

BF-ES - 36 -

Timed Automata with nondeterminstic delays [Alur/Dill]

off on
x >= 2

reset(x)

y=9 reset(x)

reset(x,y)

clock reset
x >= 2

clocks can be reset when taking an edge

assumption:

all clocks are zero when entering the initial location initially

BF-ES - 37 -

Timed Automata

y <= 9x <= 2
invariant

off on
x >= 2

reset(x)

y=9 reset(x)

{x >= 2
reset(x,y)

guards indicate when an edge may be taken

a location invariant specifies the amount of time that may be spent

in a location

before a location invariant becomes false, an edge must be taken

BF-ES - 38 -

A Real-Time Coffee Machine

idle

coffee−ordered tea−ordered

coffee−prepared

True reset(x) True reset(x)

x <= 10

x <= 10 x <= 15

x <= 15

x = 15 reset(x)

x = 15 reset(x)x = 10 reset(x)

x = 10 reset(x)

tea−prepared

BF-ES - 39 -

Timed Automata with Nondeterministic Delays
[Alur/Dill]

A timed automaton is a tuple

TA =
(

Loc,Act,C,!, Loc0, inv,AP, L
)

where:

Loc is a finite set of locations.

Loc0 ⊆ Loc is a set of initial locations

C is a finite set of clocks

L : Loc → 2AP is a labeling function for the locations

! ⊆ Loc × CC(C)× Act × 2C × Loc is a transition relation, and

inv : Loc → CC(C) is an invariant-assignment function

BF-ES - 40 -

Clock Constraints

Clock constraints over set C of clocks are defined by:

g ::= True

∣

∣

∣
x < c

∣

∣

∣
x ≤ c

∣

∣

∣
¬g

∣

∣

∣
g ∧ g

where c ∈ N and clocks x , y ∈ C

rational constants would do; neither reals nor addition of clocks!

let CC(C) denote the set of clock constraints over C

shorthands: x ≥ c denotes ¬ (x < c)
and x ∈ [c1, c2) or c1 ≤ x < c2 denotes ¬(x < c1) ∧ (x < c2)

BF-ES - 41 -

Intuitive Interpretation

Edge !
g:α,C′

−−−−−→ !′ means:

action α is enabled once guard g holds
when moving from location ! to !′, any clock in C′

will be reset to

zero

inv(!) constrains the amount of time that may be spent in
location !

the location ! must be left before the invariant inv(!) becomes false

BF-ES - 42 -

Guards vs. Location Invariants

The effect of a lowerbound guard:

2

4

time

2 4 6 8 10

value

of x
x >= 2 reset(x)

BF-ES - 43 -

Guards vs. Location Invariants

The effect of a lowerbound and upperbound guard:

2

4

time

2 4 6 8 10

value

of x 3

2 <= x <= 3 reset(x)

BF-ES - 44 -

Guards vs. Location Invariants

The effect of a guard and an invariant:

2

4

time

2 4 6 8 10

value

of x
x >= 2 reset(x)

x <= 3
3

BF-ES - 45 -

Arbitrary Clock Differences

clock x
clock y

2

4

time

2 4 6 8 10

clock
value

y >= 2 reset(y)

x >= 2 reset(x)

BF-ES - 46 -

Composing Timed Automata

Let TAi =
(

Loci ,Acti ,Ci ,!i , Loc0,i , invi ,AP, Li

)

and H an action-set

TA1 ||H TA2 =
(

Loc,Act1 ∪ Act2,C,!, Loc0, inv,AP, L
)

where:

Loc = Loc1 × Loc2 and Loc0 = Loc0,1 × Loc0,2 and C = C1 ∪ C2

inv(〈!1, !2〉) = inv1(!1) ∧ inv2(!2) and L(〈!1, !2〉) = L1(!1) ∪ L2(!2)

! is defined by the inference rules:

for α ∈ H
!1

g1:α,D1

!1 !′1 ∧ !2

g2:α,D2

!2 !′2

〈!1, !2〉
g1∧g2:α,D1∪D2

! 〈!′1, !
′

2〉

for α .∈ H:
!1

g:α,D
!1 !′1

〈!1, !2〉
g:α,D
! 〈!′1, !2〉

and
!2

g:α,D
!2 !′2

〈!1, !2〉
g:α,D
! 〈!1, !

′
2〉

BF-ES - 47 -

Example: Railroad Crossing

BF-ES - 48 -

Example: Railroad Crossing

Gate

BF-ES - 49 -

Example: Railroad Crossing

(Train{approach,exit}||Controller)||{lower ,raise}Gate

BF-ES - 50 -

Clock valuations

A clock valuation v for set C of clocks is a function v : C → R≥0

assigning to each clock x ∈ C its current value v(x)

Clock valuation v+d for d ∈ R≥0 is defined by:

(v+d)(x) = v(x) + d for all clocks x ∈ C

Clock valuation reset x in v for clock x is defined by:

(reset x in v)(y) =

{

v(y) if y .= x

0 if y = x .

reset x in (reset y in v) is abbreviated by reset x , y in v

BF-ES - 51 -

Timed automaton semantics

For timed automaton TA =
(

Loc,Act,C,!, Loc0, inv,AP, L
)

:

state graph S(TA) = (Q,Q0,E , L′) over AP where:

Q = Loc × val(C), state s = 〈!, v〉 for location ! and clock

valuation v

Q0 = { 〈!0, v0〉 | !0 ∈ Loc0 ∧ v0(x) = 0 for all x ∈ C }

L′(〈!, v〉) = L(!)

E is the edge set defined on the next slide

BF-ES - 52 -

Timed automaton semantics

The edge set E consist of the following two types of transitions:

Discrete transition: 〈!, v〉 α−−→〈!′, v ′〉 if all following conditions hold:

there is an edge labeled (g : α,D) from location ! to !′ such that:

g is satisfied by v , i.e., v |= g

v
′ = v with all clocks in D reset to 0, i.e., v ′ = reset D in v

v
′ fulfills the invariant of location !′, i.e., v ′ |= inv(!′)

Delay transition: 〈!, v〉 d−−→〈!, v+d〉 for positive real d
if for any 0 ≤ d ′ ≤ d the invariant of ! holds for v+d ′

, i.e.
v+d ′ |= inv(!)

BF-ES - 53 -

Time divergence

Let for any t < d , for fixed d ∈ R>0, clock valuation η+t |= inv(!)

A possible execution fragment starting from the location ! is:

〈!, η〉 d1−−→ 〈!, η+d1〉
d2−−→ 〈!, η+d1+d2〉

d3−−→〈!, η+d1+d2+d3〉
d4−−→ . .

where di > 0 and the infinite sequence d1 + d2 + . . . converges

towards d
such path fragments are called time-convergent

⇒ time advances only up to a certain value

Time-convergent execution fragments are unrealistic and ignored

BF-ES - 54 -

Example: light switch

on off x <= 2
x >= 1

reset(x)

The path

π = 〈off , 0〉 〈off , 1〉 〈on, 0〉 〈on, 1〉 〈off , 1〉 〈off , 2〉 〈on, 0〉 〈on, 1〉 〈off , 1〉 . . .

is time-divergent.

The path

π′ = 〈off , 0〉 〈off , 1/2〉 〈off , 3/4〉 〈off , 7/8〉 〈off , 15/16〉 . . .

is time-convergent.

BF-ES - 55 -

Timelock

on off

reset(x)

1 <= x < 2
x < 3

State s ∈ S(TA) contains a timelock if there is a reachable state s

where there is no time-divergent path from s

Timelocks are considered as modeling flaws that should be

avoided

BF-ES - 56 -

Region Abstraction

Consider a timed automaton with clocks x and y

having maximal constants 3 and 2, respectively.

0 x

y

1 2 3 4

1

2

3 Equivalence relation /R

1 constraints

2 time elapsing

3 maximal constants

BF-ES - 57 -

Region Abstraction

Consider a timed automaton with clocks x and y

having maximal constants 3 and 2, respectively.

0 x

y

1 2 3 4

1

2

3 Equivalence relation /R

1 constraints

2 time elapsing

3 maximal constants

=⇒ finite index!

BF-ES - 57 -

Finite Semantics: Region Automaton

l0A l1

l2

a, x > 0

b,
x < 1,

x := 0

l0
x = 0

!A"r

l0
0 < x < 1

l0
x = 1

l0
1 < x

l1
x = 0

l1
0 < x < 1

l1
x = 1

l1
1 < x

l2
x = 0

l2
0 < x < 1

l2
x = 1

l2
1 < x

τ

τ

τ

τ

τ

τ

τ

τ

τ

a

a

a

b

b

BF-ES - 58 -

Timed Analysis

Reachability is decidable

Theorem [Alur, 1994]:

∃ path (l ,%t) −→ (l ′,%t ′)
iff

∃ path (l , [%t]R) −→ (l ′, [%t ′]R)

Symbolic data structures

Clock Region = Finest integral unit

Clock Zone = Convex union of clock regions

Federation = (Non-convex) union of clock zones

BF-ES - 59 -

