
REVIEW: Automated Formal Methods

Model Checking: automatically verify whether certain properties
are guaranteed by the model; determine safe parameters

Controller Synthesis: automatically construct control strategies
that keep the system safe

Overview:
1 Intro: Analyzing FlexRay
2 Timed automata
3 Regions & zones
4 Model checking and controller synthesis
5 Hybrid automata

BF-ES - 2 -

REVIEW: Timed Automata with Nondeterministic
Delays [Alur/Dill]

A timed automaton is a tuple

TA =
(
Loc,Act,C,;, Loc0, inv,AP, L

)
where:

Loc is a finite set of locations.

Loc0 ⊆ Loc is a set of initial locations

C is a finite set of clocks

L : Loc → 2AP is a labeling function for the locations

; ⊆ Loc × CC(C)× Act × 2C × Loc is a transition relation, and

inv : Loc → CC(C) is an invariant-assignment function

BF-ES - 3 -

REVIEW: Clock Constraints

Clock constraints over set C of clocks are defined by:

g ::= True
∣∣∣ x < c

∣∣∣ x ≤ c
∣∣∣ ¬g

∣∣∣ g ∧ g

where c ∈ N and clocks x , y ∈ C

rational constants would do; neither reals nor addition of clocks!

let CC(C) denote the set of clock constraints over C

shorthands: x ≥ c denotes ¬ (x < c)
and x ∈ [c1, c2) or c1 ≤ x < c2 denotes ¬(x < c1) ∧ (x < c2)

BF-ES - 4 -

REVIEW: Guards vs. Location Invariants

The effect of a guard and an invariant:

2

4

time

2 4 6 8 10

value
of x

x >= 2 reset(x)

x <= 3

3

BF-ES - 5 -

REVIEW: Region Abstraction

Consider a timed automaton with clocks x and y

having maximal constants 3 and 2, respectively.

0 x

y

1 2 3 4

1

2

3 Equivalence relation ≃R

1 constraints
2 time elapsing
3 maximal constants

=⇒ finite index!

BF-ES - 6 -

REVIEW: Region Automaton

l0A l1

l2

a, x > 0

b,
x < 1,
x := 0

l0
x = 0

JAKr

l0
0 < x < 1

l0
x = 1

l0
1 < x

l1
x = 0

l1
0 < x < 1

l1
x = 1

l1
1 < x

l2
x = 0

l2
0 < x < 1

l2
x = 1

l2
1 < x

τ

τ

τ

τ

τ

τ

τ

τ

τ

a

a

a

b

b

BF-ES - 7 -

REVIEW: Timed Analysis

Reachability is decidable
Theorem [Alur, 1994]:

∃ path (l ,~t) −→ (l ′,~t ′)
iff

∃ path (l , [~t]R) −→ (l ′, [~t ′]R)

Symbolic data structures
Clock Region = Finest integral unit

Clock Zone = Convex union of clock regions

Federation = (Non-convex) union of clock zones

BF-ES - 8 -

Zone graph

l0A l1

l2

a, x > 0

b,
x < 1
{x} l0

true

JAKz

l1
x > 0

l2
true

a b

BF-ES - 9 -

Zones

Clock constraints are conjunctions of atomic constraints
x ≺ c and x − y ≺ c for ≺ ∈ {<,≤,=,≥, > }

A clock zone is the set of clock valuations that satisfy a clock
constraint

a clock zone for g is the maximal set of clock valuations satisfying g

Clock zone of g: [[g]] = { η ∈ Eval(C) | η |= g }

BF-ES - 10 -

Zone automaton: intuition

0 1 32

1

2

3

0 1 32

1

2

3

0 1 32

1

2

3

leaving first

0 1 32

1

2

3

entering second

0 1 32

1

2

3

leaving second

0 1 32

1

2

3

entering third

leaving initial entering first

x := 1 y ≤ 2 x ≥ 2

BF-ES - 11 -

Normalization: intuition

0 10 3020

10

20

30

0 10 3020

10

20

30

0 10 3020

10

20

30

0 10 3020

10

20

30

0 10 3020

10

20

30

0 10 3020

10

20

30

0 10 3020

10

20

30

0 10 3020

10

20

30

symbolic semantics has infinitely many zones:

normalization yields a finite zone graph:
y ≥ 20
{ x , y }

x = 10
{ x }

{ x , y }

x ≤ 10

BF-ES - 12 -

Successor and reset zones

z ′ is the successor (clock) zone of z, denoted z ′ = z↑, if:
z↑ = { η + d | η ∈ z,d ∈ R>0 }

z ′ is the zone obtained from z by resetting clocks D:
reset D in z = { reset D in η | η ∈ z }

BF-ES - 13 -

Representing zones

Let 0 be a clock with constant value 0; let C0 = C ∪ {0 }
Any zone z ∈ Zone(C) can be written as:

conjunction of constraints x − y < n or x − y ≤ n for n ∈ Z,
x , y ∈ C0

when x − y � n and x − y � m take only x − y � min(n,m)
⇒ this yields at most |C0|·|C0| constraints

Example:

x − 0 < 20 ∧ y − 0 ≤ 20 ∧ y − x ≤ 10 ∧ x − y ≤ −10 ∧ 0 − z < 5

Store each such constraint in a matrix
this yields a difference bound matrix

BF-ES - 14 -

Difference bound matrices

Zone z over C is represented by DBM Z of cardinality
|C+1|·|C+1|

for C = x1, . . . , xn, let C0 = { x0, x1, . . . , xn } with x0 = 0
Z(i , j) = (c,≺) if and only if xi − xj ≺ c

Definition of Z for zone z:
for xi − xj ≺ c let Z(i , j) = (c,≺)
if xi − xj is unbounded in z, set Z(i , j) = ∞
Z(0, i) = (≤,0) and Z(i , i) = (≤,0)

Operations on bounds:
(c,�) < ∞, (c, <) < (c,≤), and (c,�) < (c′,�′) if c < c′

c +∞ = ∞, (c,≤) + (c′,≤) = (c+c′,≤) and
(c, <) + (c′,≤) = (c+c′, <)

BF-ES - 15 -

Canonical DBMs

A zone z is in canonical form if and only if:
no constraint in z can be strengthened without reducing
[[z]] = { η | η ∈ z }

For each zone z: ∃ a unique and equivalent zone in canonical form
Represent zone z by a weighted digraph G = (V ,E ,w) where

V = C0 is the set of vertices
(xi , xj) ∈ E whenever xj − xi � c is a constraint in z
w(xi , xj) = (�, c) whenever xj − xi � c is a constraint in z

Zone z is in canonical form if and only if DBM Z satisfies:
Z(i , j) ≤ Z(i , k) + Z(k , j) for any xi , xj , xk ∈ C0

Compute canonical zone?
use Floyd-Warshall’s all-pairs SP algorithm (time O(|C0|3))

BF-ES - 16 -

Main operations on DBMs (1)

Nonemptiness: is [[Z]] 6= ∅?
search for negative cycles in the graph representation of Z, or
mark Z when upper bound of some clock is set to value < its lower
bound

Inclusion test: is [[Z]] ⊆ [[Z′]]?
for DBMs in canonical form, test whether Z(i , j) ≤ Z′(i , j), for all
i , j ∈ C0

Delay: determine Z↑

remove the upper bounds on any clock, i.e.,
Z↑(i ,0) = ∞ and Z↑(i , j) = Z(i , j) for j 6= 0

BF-ES - 17 -

Main operations on DBMs (2)

Conjunction: z ∧ (xi − xj � n)
if (n,�) < Z(i , j) then Z(i , j) := (n,�) else do nothing
put Z back into canonical form (in time O(|C0|2) using that only
Z(i , j) changed)

Clock reset: xi := 0
Z(i , j) := Z(0, j) and Z(j , i) := Z(j ,0)

Normalization
remove all bounds x−y � m for which (m,�) > (cx ,≤), and
set all bounds x−y � m with (m,�) < (−cy , <) to (−cy , <)
put the DBM back into canonical form (Floyd-Warshall)

BF-ES - 18 -

Controller Synthesis

BF-ES - 19 -

Controller Synthesis

We distinguish between external (uncontrolled) and internal
(controlled) nondeterminism

order coffee

show warning

order espresso

brew drink

BF-ES - 20 -

Games

Game between two players

Environment Controllervs.

“wants to violate the spec.” “wants to satisfy the spec.”

controlled moves

uncontrolled moves

BF-ES - 21 -

Reachability games played on timed automata

From where can 99K enforce a run to c ?

a b cx > 1

x := 0

x > 4

x > 2

BF-ES - 22 -

Zone-based timed game solving

From where can 99K enforce a run to c ?

a b cx > 1

x := 0

x > 4

x > 2

Attr[c] = {True}

BF-ES - 22 -

Zone-based timed game solving

From where can 99K enforce a run to c ?

a b cx > 1

x := 0

x > 4

x > 2

Attr[c] = {True}
Attr[a] = {x > 4}

BF-ES - 22 -

Zone-based timed game solving

From where can 99K enforce a run to c ?

a b cx > 1

x := 0

x > 4

x > 2

Attr[c] = {True}
Attr[a] = {x > 4}

Attr[b] = {x > 2}

BF-ES - 22 -

Zone-based timed game solving

From where can 99K enforce a run to c ?

a b cx > 1

x := 0

x > 4

x > 2

Attr[c] = {True}

Attr[b] = {x > 2}
Attr[a] = {x > 2}

BF-ES - 22 -

