Embedded Systems

BF - ES

- 1 -

25

REVIEW: Automated Formal Methods

- Model Checking: automatically verify whether certain properties are guaranteed by the model; determine safe parameters
- Controller Synthesis: automatically construct control strategies that keep the system safe

Overview:

- Intro: Analyzing FlexRay
- 2 Timed automata
- Regions & zones
- Model checking and controller synthesis
- Hybrid automata

REVIEW: Timed Automata with Nondeterministic Delays [Alur/Dill]

A timed automaton is a tuple

$$TA = (Loc, Act, C, \rightsquigarrow, Loc_0, inv, AP, L)$$
 where:

- Loc is a finite set of locations.
- $Loc_0 \subseteq Loc$ is a set of initial locations
- C is a finite set of clocks
- $L: Loc \rightarrow 2^{AP}$ is a labeling function for the locations
- $\sim \subseteq Loc \times CC(C) \times Act \times 2^{C} \times Loc$ is a transition relation, and
- $inv : Loc \rightarrow CC(C)$ is an invariant-assignment function

BF-ES

REVIEW: Clock Constraints

Clock constraints over set *C* of clocks are defined by:

$$g ::= True | x < c | x \le c | \neg g | g \land g$$

- where $c \in \mathbb{N}$ and clocks $x, y \in C$
- rational constants would do; neither reals nor addition of clocks!
- Int CC(C) denote the set of clock constraints over C
- shorthands: $x \ge c$ denotes $\neg (x < c)$ and $x \in [c_1, c_2)$ or $c_1 \le x < c_2$ denotes $\neg (x < c_1) \land (x < c_2)$

- 3 -

REVIEW: Guards vs. Location Invariants

BF-ES

REVIEW: Region Abstraction

- Consider a timed automaton with clocks x and y
- having maximal constants 3 and 2, respectively.

Equivalence relation \simeq_R \bigcirc constraints \bigcirc time elapsing \bigcirc maximal constants

 \implies finite index!

- 5 -

REVIEW: Region Automaton

Reachability is decidable

Theorem [Alur, 1994]:

$$\exists \text{ path } (I, \vec{t}) \longrightarrow (I', \vec{t}')$$

iff
$$\exists \text{ path } (I, [\vec{t}]_R) \longrightarrow (I', [\vec{t}']_R)$$

Symbolic data structures

- Clock Region = Finest integral unit
- Clock Zone = Convex union of clock regions
- Federation = (Non-convex) union of clock zones

Zone graph

Zone automaton: intuition

Normalization: intuition

z' is the successor (clock) zone of z, denoted z' = z[↑], if:
z[↑] = { η + d | η ∈ z, d ∈ ℝ_{>0} }
z' is the zone obtained from z by resetting clocks D:
reset D in z = { reset D in η | η ∈ z }

BF-ES

Representing zones

- Let **0** be a clock with constant value 0; let $C_0 = C \cup \{\mathbf{0}\}$
- Any zone $z \in Zone(C)$ can be written as:
 - conjunction of constraints x y < n or $x y \le n$ for $n \in \mathbb{Z}$, $x, y \in C_0$
 - when $x y \leq n$ and $x y \leq m$ take only $x y \leq \min(n, m)$
 - \Rightarrow this yields at most $|C_0| \cdot |C_0|$ constraints

Example:

 $x - \mathbf{0} < 20 \land y - \mathbf{0} \le 20 \land y - x \le 10 \land x - y \le -10 \land \mathbf{0} - z < 5$

- Store each such constraint in a matrix
 - this yields a difference bound matrix

- 13 -

- Zone *z* over *C* is represented by DBM **Z** of cardinality $|C+1| \cdot |C+1|$
 - for $C = x_1, ..., x_n$, let $C_0 = \{x_0, x_1, ..., x_n\}$ with $x_0 = 0$
 - $Z(i,j) = (c, \prec)$ if and only if $x_i x_j \prec c$
- Definition of **Z** for zone *z*:
 - for $x_i x_j \prec c$ let $\mathbf{Z}(i, j) = (c, \prec)$
 - if $x_i x_j$ is unbounded in z, set $\mathbf{Z}(i, j) = \infty$
 - $Z(0, i) = (\leq, 0)$ and $Z(i, i) = (\leq, 0)$
- Operations on bounds:
 - $(c, \preceq) < \infty$, $(c, <) < (c, \le)$, and $(c, \preceq) < (c', \preceq')$ if c < c'
 - $c + \infty = \infty$, $(c, \leq) + (c', \leq) = (c+c', \leq)$ and (c, <) + (c', <) = (c+c', <)
 - $(\mathbf{C},<)+(\mathbf{C}',\leq)=(\mathbf{C}+\mathbf{C}',<)$

BF-ES

Canonical DBMs

- A zone z is in *canonical form* if and only if:
 - no constraint in z can be strengthened without reducing
 [[z]] = { η | η ∈ z }
- For each zone z: \exists a *unique* and *equivalent* zone in canonical form
- Represent zone z by a weighted digraph G = (V, E, w) where
 - $V = C_0$ is the set of vertices
 - $(x_i, x_j) \in E$ whenever $x_j x_i \leq c$ is a constraint in z
 - $w(x_i, x_j) = (\preceq, c)$ whenever $x_j x_i \leq c$ is a constraint in z
- Zone z is in canonical form if and only if DBM Z satisfies:
 - $Z(i,j) \leq Z(i,k) + Z(k,j)$ for any $x_i, x_j, x_k \in C_0$
- Compute canonical zone?
 - use *Floyd-Warshall's all-pairs SP algorithm (time \mathcal{O}(|C_0|^3))*

- 15 -

• Nonemptiness: is $\llbracket Z \rrbracket \neq \emptyset$?

- search for negative cycles in the graph representation of Z, or
- mark Z when upper bound of some clock is set to value < its lower bound
- Inclusion test: is **[**Z] ⊆ **[**Z']?
 - for DBMs in canonical form, test whether $Z(i, j) \leq Z'(i, j)$, for all $i, j \in C_0$
- Delay: determine Z[↑]
 - remove the upper bounds on any clock, i.e.,
 - $\mathbf{Z}^{\uparrow}(i,0) = \infty$ and $\mathbf{Z}^{\uparrow}(i,j) = \mathbf{Z}(i,j)$ for $j \neq 0$

BF-ES

Main operations on DBMs (2)

- Conjunction: $z \wedge (x_i x_j \leq n)$
 - if $(n, \leq) < \mathbf{Z}(i, j)$ then $\mathbf{Z}(i, j) := (n, \leq)$ else do nothing
 - put **Z** back into canonical form (in time $\mathcal{O}(|C_0|^2)$ using that only $\mathbf{Z}(i, j)$ changed)
- Clock reset: $x_i := 0$
 - Z(i,j) := Z(0,j) and Z(j,i) := Z(j,0)
- Normalization
 - remove all bounds $x-y \leq m$ for which $(m, \leq) > (c_x, \leq)$, and
 - set all bounds $x-y \leq m$ with $(m, \leq) < (-c_y, <)$ to $(-c_y, <)$
 - put the DBM back into canonical form (Floyd-Warshall)

- 17 -

Controller Synthesis

BF-ES

Controller Synthesis

We distinguish between external (uncontrolled) and internal (controlled) nondeterminism

- 19 -

Zone-based timed game solving

Zone-based timed game solving

From where can $-\rightarrow$ enforce a run to c?

Zone-based timed game solving

From where can $-\rightarrow$ enforce a run to c ?

