
Final exam Wednesday Aug 01, 09:00–11:00

HS 001, 002, 003 in E1 3
Seating arrangement will be posted at doors
The exam will be open book. That is, you are allowed to use
printouts of the lecture slides, books and any handwritten notes
during the exam.
Re-exam: 01.10.12 10:00-12:00, Günter Hotz lecture hall

BF-ES - 2 -

REVIEW: Automated Formal Methods

Model Checking: automatically verify whether certain properties
are guaranteed by the model; determine safe parameters
Controller Synthesis: automatically construct control strategies
that keep the system safe

Overview:
1 Intro: Analyzing FlexRay
2 Timed automata
3 Regions & zones
4 Model checking and controller synthesis
5 Hybrid automata

BF-ES - 3 -

REVIEW: Controller Synthesis

We distinguish between external (uncontrolled) and internal
(controlled) nondeterminism

order coffee

show warning

order espresso

brew drink

BF-ES - 4 -

REVIEW: Games

Game between two players

Environment Controllervs.

“wants to violate the spec.” “wants to satisfy the spec.”

controlled moves

uncontrolled moves

BF-ES - 5 -

Template-based synthesis

A controller template consists of a timed automaton, a finite set of
Boolean parameters, and a total function Π defining which edges are
enabled for a given parameter valuation.

BF-ES - 6 -

Example templates

BF-ES - 7 -

Example templates

BF-ES - 8 -

Example templates

BF-ES - 9 -

Example templates

BF-ES - 10 -

Parameters as variables

BF-ES - 11 -

Parameter synthesis by model checking

BF-ES - 12 -

Parameter synthesis by model checking

set of feasible parameter values: ∀C ∀Loc . P

BF-ES - 13 -

Example: Outflow controller

BF-ES - 14 -

Example: Outflow controller

Template-based SYNTHIA UPPAAL-TIGA Standard SYNTHIA
Benchmark Steps Abs Time Mem States Time Mem Steps Abs Time Mem
Dam 5 58 100 1 80 88592 2 65 230 149 4 80
Dam 25 268 380 13 87 3114648 307 443 1115 718 1182 91
Dam 50 530 730 87 105 13545848 5018 2355 TIMEOUT
Dam 75 793 1080 329 111 TIMEOUT TIMEOUT
Dam 100 1055 1430 927 143 TIMEOUT TIMEOUT
Dam 125 1318 1780 1949 149 TIMEOUT TIMEOUT
Dam 150 1580 2130 3483 153 TIMEOUT TIMEOUT
Dam 175 1843 2480 5127 213 TIMEOUT TIMEOUT
Dam 200 TIMEOUT TIMEOUT TIMEOUT

time in seconds / memory consumption in MB

BF-ES - 15 -

Verifying Hybrid Automata

BF-ES - 16 -

Towards model checking hybrid automata
Idea: Iterate transition relation and continuous dynamics until an
unsafe state is hit:
Initial Step 1 Step 2 Step 3 Step 4

unsafe

initial

Result: Terminates if HA is unsafe.
Requires: Effective representations of transition relation,
continuous dynamics, and initial, intermediate, and unsafe state
sets s.t.

1 Calculation of the state set reachable within n ∈ N steps is
effective,

2 Emptiness of intersection of unsafe state set with the state set
reachable in n steps is decidable.

(implemented in e.g. HyTech [Henzinger, Ho, Wong-Toi, 1995–])
BF-ES - 17 -

Hybrid automata with polyhedral constraints

We assume that the following predicates are given as polyhedral
constraints:

An initial state predicate initialσ ∈ FOL(R, =, +) defines the
possible initial states in mode σ

An activity predicate actσ ∈ FOL(R, =, +) defines the possible
evolution of the continuous state while the system is in mode σ

A transition predicate transσ→σ′ ∈ FOL(R, =, +) defines guard and
effect of transition from mode σ to mode σ′

BF-ES - 18 -

From hybrid automata to logic

A: A:

σσ

↼
x= 10 ∧ x = 0 ∧ y =

↼
y
2 − 1

x = 0 ∧ y = 0

∃δt .

x =

↼
x +δt

y =
↼
y +δt

x ≤ 10

x := 0, y := 0

·
y= 1

x = 10 → x := 0, y := y
2 − 1

·
x= 1

x ≤ 10

BF-ES - 19 -

Reachability

Reachability of a final mode σ′ from an initial mode σ and through an
execution containing n transitions can be formalized through the
inductively defined predicate φnσ→σ′ , where

φ0σ→σ′ =

{
false , if σ (= σ′ ,
actσ , if σ = σ′ ,

φn+1σ→σ′ =
∨

σ̃∈Σ

∃$x1,$x2 .

φnσ→σ̃[$x1/$x] ∧
transσ̃→σ′ [$x1,$x2/

↼

$x ,$x] ∧
actσ′ [$x2/

↼

$x]

BF-ES - 20 -

Safety of hybrid automata

⇒ An unsafe state is reachable within n steps iff

unsafen =
∨

σ′∈Σ

Reach≤n
σ′ ∧ ¬safeσ′

is satisfiable, where

Reach≤n
σ′ =

∨

i∈N≤n

∨

σ∈Σ

φiσ→σ′ ∧ initialσ[
↼

$x /$x]

characterizes the continuous states reachable in at most n steps
within mode σ′.
An unsafe state is reachable iff there is some n ∈ N for which
unsafen is satisfiable.
The unsafe states are unreachable if (but not only if)
unsafen is unsatisfiable and Reach≤n+1

σ′ ⇒ Reach≤n
σ′ .

BF-ES - 21 -

 - 22 - BF - ES

REVIEW

 - 23 - BF - ES

Modeling, Design, Analysis

Modeling is the process of
gaining a deeper understanding
of a system through imitation.
Models specify what a system does.

Design is the structured creation of
artifacts. It specifies how a system does
what it does. This includes optimization.

Analysis is the process of gaining a deeper understanding of
a system through dissection.
It specifies why a system does what it does
(or fails to do what a model says it should do).

 - 24 - BF - ES

Modeling

 - 25 - BF - ES

Computational models

Communication/
local computations

Shared memory Asynchronous message
passing

Communicating
finite state
machines

Hybrid automata,
statecharts,
synchronous
composition

Data flow Petri nets,
Kahn process networks,

SDF
Discrete event
model

VHDL

 - 26 - BF - ES

The super-step time model
 Two-dimensional time:

 Assumption: Computation time is neglegible compared to dynamics of
the environment.

 - 27 - BF - ES

VHDL Semantics

Initialization

End of simulation

Assign new values
to signals

Update
current time

Evaluate processes

Resume processes

 - 28 - BF - ES

Timed and Hybrid automata

 Motivation
 The design of an embedded system must consider both

the continuous evolution of the environment and
the discrete computation of the controller

 Major points
 Modeling with hybrid automata
 Semantics (hybrid time sets, hybrid trajectories)
 Zenoness
 Automatic verification
 Automatic controller synthesis

 - 29 - BF - ES

Zeno Behavior
tim

e

 - 30 - BF - ES

 - 31 - BF - ES

 - 32 - BF - ES

 - 33 - BF - ES

Actor Model of Continuous-Time Systems

A system is a function that
accepts an input signal and
yields an output signal.

The domain and range of the
system function are sets of
signals, which themselves are
functions.

Parameters may affect the
definition of the function S.

 - 34 - BF - ES

Design

 - 35 - BF - ES

Embedded System Hardware

 Embedded system hardware is frequently used in a loop
(„hardware in a loop“):

actuators

 - 36 - BF - ES

Sensors, A/D + D/A converters

 Motivation
 Embedded systems interact with physical environment

 Major points
 Sample & hold circuits
 A/D converters
 D/A converters
 Aliasing
 Interfaces

 - 37 - BF - ES

Information processing

 Motivation
 Embedded systems must be efficient
 Embedded processors need not be instruction set compatible

with standard PCs

 Major points
 Power/energy efficiency
 Code size efficiency
 Runtime efficiency
 Reconfigurable logic, multimedia processors, scratch pad
memory…

 - 38 - BF - ES

Real-time communication

 Motivation
 Modular system development, support, and evolution
 Network vs. wiring harness

 Major points
 Electrical robustness
 Priority-based arbitration
 TDMA
 CSMA
 FlexRay

 - 39 - BF - ES

FlexRay

 - 40 - BF - ES

Scheduling

 Motivation
 Key issue in implementing RT-systems
 Different algorithms have different assumptions and cost

 Major points
 Aperiodic scheduling
 Periodic scheduling
 Scheduling with resource constraints
 Multiprocessor scheduling

 - 41 - BF - ES

EDF – Earliest Deadline First

 EDF: At every instant execute the task with the earliest
absolute deadline among all the ready tasks.

 Theorem (Horn ’74):
Given a set of n independent task with arbitrary arrival
times, any algorithm that at every instant executes the
task with the earliest absolute deadline among all the
ready tasks is optimal with respect to minimizing the
maximum lateness.

 - 42 - BF - ES

Aperiodic scheduling: Non-preemptive version

 Theorem (Jeffay et al. ’91): EDF is an optimal non-idle
scheduling algorithm also in a non-preemptive task
model.

 Non-preemptive scheduling with idle schedules allowed

is NP-hard

 Possible approaches:

 Heuristics
 Bratley’s algorithm: Branch-and-bound

 - 43 - BF - ES

Periodic scheduling

 Theorem: A set of periodic tasks 1, ..., n with Di = Ti is
schedulable with EDF iff U 1.

 Theorem (Liu, Layland, 1973):
RM is optimal among all fixed-priority scheduling
algorithms.

 Any set of n periodic tasks with a processor utilization
factor ≤ can be scheduled by RM.

 - 44 - BF - ES

The priority inversion problem

 normal execution critical region
 priority(J1) > priority(J2) > priority(J3)

 Blocking time equal to length of critical section +
computation time of J2.

 Unbounded time of priority inversion, if J3 is interrupted
by tasks with priority between J1 and J3 during its critical
region.

J1

J2

J1 blocked

J3

 - 45 - BF - ES

Multiprocessor scheduling

LLF is optimal.

 - 46 - BF - ES

Periodic scheduling

1. Divide the time line into time slices such that each
period of each process is divided into an integral
number of time slices.

2. Within each time slice, allocate processor time in
proportion to the utilization Ui = Ci / Ti originating from
the various tasks.

 - 47 - BF - ES

Partitioning

 Motivation
 HW/SW codesign
 Software (alone) may not have sufficent performance
 Hardware (alone) may be too expensive

 Major points
 Integer Linear Programming (ILP)
 Hierarchical clustering
 Kernighan-Lin algorithm
 F-M heuristic

 - 48 - BF - ES

Fault tolerance: failure modes

 Fail-silent failures
 subsystem either produces correct results

or produces (recognizable) incorrect results
or remains quiet

 can be masked as long as at least one system survives
 Consistent failures

 If subsystem produces incorrect results all recipients receive same
(incorrect) result

 can be masked iff the failing systems form a minority
 Byzantine failures

 subsystem reports different results to different dependent systems
 can be masked iff strictly less than a third of the systems fail

 - 49 - BF - ES

Analysis

 - 50 - BF - ES

Estimation and Verification

 Motivation
 Design-space exploration
 Real-time guarantees
 Fault tolerance
 Correctness
 Safety

 Major points
 WCET analysis based on abstract interpretation
 Testing
 Reliability analysis
 Verification
 Controller synthesis

 - 51 - BF - ES

 - 52 - BF - ES

 - 53 - BF - ES

Fault tree analysis

Neil Storey:
Safety-critical computer systems

 - 54 - BF - ES

Inductive computation of reliability

 Assumption: failures of the individual components are
independent

 Serial composition

 Parallel composition

 - 55 - BF - ES

An ATPG System

Random pattern
 generator

Fault simulator

Fault
 coverage
 improved?

Random
 patterns

 effective?

Save
 patterns

Deterministic
ATPG

(e.g., D-alg.) yes no

yes

no

Compact
vectors

Coverage
Sufficient?

no yes

Copyright Agrawal & Bushnell

 - 56 - BF - ES

Scan design

 - 57 - BF - ES

 - 58 - BF - ES

 - 59 - BF - ES

59
Development of Safety-Critical Embedded
Systems
 Daniel Kästner, Florian Martin, Reinhard Wilhelm.
 Advanced course (6 ECTS): Fr 10-12, E1.3 / HS003. Exercises, 2h.
 Goal: Working with industry tools for developing safety-critical

embedded systems and understanding their theoretical background.
 Contents: Functional safety, model-based code generation, synchronous

programming, task scheduling, static program analysis for safety
aspects (worst-case execution time, stack usage, runtime errors).

 Tools used:
 SCADE: CASE tool for safety-critical embedded systems (avionics)
 Symta/S: Task scheduling & schedulability analysis (automotive)
 aiT WCET Analyzer / StackAnalyzer / Astrée: Static program

analyzers (avionics & automotive)
 Practical project with Lego Mindstorms

 - 60 - BF - ES

Automata, Games, and Verification

 Bernd Finkbeiner, Hazem Torfah, Markus Rabe
 Advanced course (6 ECTS)
 Goal: logical and game-theoretic foundations of

automatic verification and synthesis
 Contents:

 Automata over infinite words and trees (omega-automata)
 Infinite two-player games
 Logical systems for the specification of nonterminating behavior
 Transformation of automata according to logical operations

 - 61 - BF - ES

Seminar: Real-Time Systems & Synthesis

 Bernd Finkbeiner, Michael Gerke, Peter Faymonville
 Seminar (7 ECTS)
 Organizational meeting in October
 Preparatory meetings during lecture period
 Kolloquium (1-2 days) after exams in February

