
1

Embedded Systems 4

 - 2 - BF - ES

REVIEW: StateCharts

 Hierarchy

 Concurrency

Statechart SC

2

 - 3 - BF - ES

REVIEW: History and deep history

S

DC CO

ID OP

SL FA

Default states

Active states
H

History connectors

remember states

at the same level

as the history

connector!

 - 4 - BF - ES

STATEMATE Semantics of StateCharts

 Execution of a StateChart model consists of a sequence

of steps

 A step leads from one status to another

 One step:

 Given:

• Current system status si

• Current time t

• External changes 

 Find:

• New status si+1

3

 - 5 - BF - ES

Status of the system

The current status of the system is given by

 set of active states

 current values of variables

 the generated events from previous step

 the values of the history connectors

 set of all timeout events <tm(e, d), n> in the state chart

with „emission times“ n (times n are initially set to 1)

 set of currently scheduled actions <sc(a, d), n> with their

times n

 - 6 - BF - ES

External changes

 External data and external events constitute the

interface between system and environment.

 The environment provides external events at certain

times and changes external data at certain times.

 External events not yet seen in the previous step and

changes of external data not seen in the previous step

are called external changes for the current step.

4

 - 7 - BF - ES

StateMate Semantics

Three phases

1. Effect of external changes on events and conditions is

evaluated

2. The set of transitions to be made in the current step

and right-hand side of assignments are computed

3. Transitions become effective, variables obtain new

values

 - 8 - BF - ES

Example

 In part 2, variables a and b are assigned to temporary
variables. In part 3, these are assigned to a and b. As a
result, variables a and b are swapped.

 Without this separation, executing the left state first
would assign the old value of b (=0) to a and b.
Executing the right state first would assign the old value
of a (=1) to a and b. The execution of parallel assignment
would be nondeterministic.

5

 - 9 - BF - ES

Reflects model of clocked hardware

 In an actual clocked (synchronous) hardware system,

both registers would be swapped as well.

Same separation into phases found in other languages

as well, especially those that are intended to model

hardware.

 - 10 - BF - ES

Other semantics

 Several other specification languages for hierarchical

state machines (e.g., UML) do not include the three

simulation phases

 Corresponds more to a software point of view without

synchronous clocks.

 Some simulation tools can be run with optional multi-

phased simulation.

6

 - 11 - BF - ES

Broadcast mechanism

 Values of variables are visible to all parts of the StateChart

model.

 New values become effective in part 3 of the execution

stage for the current step and are obtained by all parts of

the model in the following step.

 StateCharts implicitly assumes a broadcast mechanism

for variables.

 StateCharts is appropriate for local control systems (),

but not for distributed applications for which updating

variables might take some time ().

 - 12 - BF - ES

Time models

 External events and external changes of variables are

associated with physical times.

 But how does time proceed internally?

 How many steps are performed before external changes

are evaluated?

7

 - 13 - BF - ES

The synchronous time model

 A single step every time unit.

 If the current step is executed at time t, then the next

step is executed at time t+1.

 Events and variable changes are communicated

between different states during one time unit.

 External changes are only accumulated during one time

unit.

 - 14 - BF - ES

The super-step time model (1)

 A step of the statechart does not need time.

 Super-steps are performed:

 A super-step is a sequence of steps.

 A super-step terminates when the status of the system is stable.

 During a super-step the time does not proceed and thus external

changes are not considered.

 After a super-step, physical time restarts running, i.e.

activity of the environment will be possible again.

 The computation of the statechart is resumed when

 external changes enable transitions in the statechart

 Timeout events enable transitions of the statechart

8

 - 15 - BF - ES

The super-step time model (2)

 Two-dimensional time:

 Assumption: Computation time is neglegible compared to dynamics of
the environment.

 - 16 - BF - ES

The super-step time model (3)

 During one super-step the number of communications
between different states is not restricted. All
communications are assumed to be performed in zero
time.

 Simplified model for reality.

 Can only be realistic, if
 Discrete computations are fast compared to dynamics of the

environment.

 Discrete computations will be stable after a restricted number of
steps.

 Timeout events can reactivate a statechart
 Possible to specify statecharts which permit progress of

physical time after a limited number of steps and reactivate
themselves via timeout events

9

 - 17 - BF - ES

Evaluation of StateCharts (1)

Pros:

 Hierarchy allows arbitrary nesting of AND- and OR-
superstates.

 Formal semantics (defined in a follow-up paper to original
paper).

 Large number of commercial simulation tools available
(StateMate, StateFlow, BetterState, ...)

 Available „back-ends“ translate StateCharts into C or
VHDL, thus enabling software or hardware
implementations.

 - 18 - BF - ES

Evaluation of StateCharts (2)

Cons:

 Generated C programs frequently inefficient,

 Not useful for distributed applications,

 No program constructs,

 No description of non-functional behavior,

 No object-orientation,

 No description of structural hierarchy.

10

 - 19 - BF - ES

Some general properties of languages

1. Synchronous vs. asynchronous languages

 Description of several (concurrent) processes in many
languages non-deterministic:
The order in which executable tasks are executed is not
specified (may affect result).

 Synchronous languages: based on automata models.
They describe concurrently operating automata. When
automata are composed in parallel, a transition of the
product is made of the "simultaneous" transitions of all of
them.

 Synchronous languages implicitly assume the presence of

a (global) clock. Each clock tick, all inputs are considered,

new outputs and states are calculated and then the

transitions are made.

 - 20 - BF - ES

 This requires a broadcast mechanism for all parts of the

model.

 Idealistic view of concurrency.

 Has the advantage of guaranteeing deterministic behavior.

 Statechart steps work synchronously.

 Broadcast of events and variable changes during each step.

 StateCharts are deterministic, if priority rules are introduced for

transitions enabled at the same time.

Some general properties of languages

1. Synchronous vs. asynchronous languages

11

 - 21 - BF - ES

Some general properties of languages

2. Properties of processes

 Number of processes

static (suitable for hardware);

dynamic (dynamically changed hardware architecture?)

 Nested declaration of processes

or all declared at the same level

  StateCharts comprises a static number of

processes and nested declaration of processes.

 - 22 - BF - ES

Some general properties of languages

3. Communication paradigms

 Message passing
 Asynchronous message passing = non-blocking

communication
Sender does not have to wait until message has arrived; potential
problem: buffer overflow

 Synchronous message passing = blocking communication,
rendez-vous-based communication
Sender will wait until receiver is ready for receiving message
(“point of communication”)

 Extended rendez-vous
Explicit acknowledge from receiver required. Receiver can do
checking before sending acknowledgement.

12

 - 23 - BF - ES

Some general properties of languages

3. Communication paradigms

 Shared memory

Variables accessible to several tasks

 Problem: Concurrent write.

 Critical sections = sections at which exclusive access to some

resource r must be guaranteed.

  StateCharts uses shared memory for communication

between processes.

 - 24 - BF - ES

Some general properties of languages

4. Specifying timing

4 types of timing specs required [Burns, 1990]:

 Measure elapsed time

Check, how much time has elapsed since last call

 Means for delaying processes

 Possibility to specify timeouts

We would like to be in a certain state only a certain

maximum amount of time.

 Methods for specifying deadlines

With current languages not available or specified in

separate control file.

  StateCharts comprises a mechanism for specifying

timeouts. Other types of timing specs are not

supported.

Matlab, Simulink & StateFlow

MATLAB - Matrix Laboratory

Produced by Mathworks
Used for simulation and numerical computation
No (Maple-like) symbolical solving
Industrial standard tool for developing embedded systems

MATLAB Structure

MATLAB core: IDE for the MATLAB language
Simulink: Graphical environment for continuous simulation
Stateflow: Statecharts for Simulink
Many other add-ons available...

Numerical Computing

Some problems do not have a closed-form solution
Approximative numerical solutions often suffice
Simulation of the physical world

Starting MATLAB

1 ssh -Y appsrv1.studcs.uni-saarland.de

2 matlab

alternatively:

1 http://sunray1.studcs.uni-sb.de

2 Log in
3 Click on MatLab

MATLAB IDE

1

2
3

4
5

1 Current directory
2 Directory explorer
3 Workspace
4 Command history
5 Command window

The MATLAB Language

Simplified C-like syntax
Case sensitive
Interactive shell: command window
User defined functions: m-files
Many built-in commands:

lookfor <keyword>
help <function>
sprintf (<format str>, v1, v2, ...)
disp (<object>)
plot (Y)
plot (X, Y)
...

Variables

Each numerical variable is a matrix
Scalars = 1× 1 matrices
No explicit declarations / dynamic typing
Polymorphism
Removing variables:

clear <variable>
clear

Working with Matrices

a = 4

b = [4 8 15 ; 16 23 42 ; 1 2 3]

c = b’

d = ones(4)

e = eye(3)

f = b*b

g = b.*b

h = 0:10

i = 0:0.01:2*pi

Script Files

m-files
Must be located in

the current directory or
the global search path

Can be executed from the command window
Can also define functions

Control Structures

Conditional
if <cond>

<statements>
[else

<statements>]
end

While loop
while <cond>

<statements>
end

For loop
for v = <from>:[<step>:]<to>

<statements>
end

Example: Computing π

Monte Carlo method for computing π

points inside
points total

≈ π

4

Simulink

Harmonic Oscillator

Hooke’s Law: F = −ky
F : restoring force
k : positive constant that characterizes the oscillator
y : amplitude or displacement

Harmonic Oscillator (2)

m: mass constant
k : spring constant
y0: initial displacement
y : current displacement
v = ẏ : current velocity
a = v̇ = ÿ : current acceleration

F = ma = −ky
⇔ ma + ky = 0
⇔ mÿ + ky = 0
⇔ mv̇ + ky = 0

Harmonic Oscillator in Simulink

Damped Harmonic Oscillator

m = mass constant
R = damper constant
k : spring constant
y0: initial displacement
y : current displacement
v = ẏ : current velocity
a = v̇ = ÿ : current acceleration

mÿ + Rẏ + ky = 0
⇔ mv̇ + Rv + ky = 0

Damped Harmonic Oscillator in Simulink

Semantics: Statemate vs. Stateflow

Standard (Statemate)
Any finite number of
active events.

Emitted events are
collected and then
passed to the entire chart.

Stateflow
At most one active
event.

Emitted events are
immediately passed to
the receiver.

Semantics: Statemate vs. Stateflow (2)

Standard (Statemate)
Non-determinism is
allowed.

Synchronous execution of
AND-states.

Variable changes at the
end of the step.

Stateflow
Non-determinism is not
allowed.

Sequential execution of
AND-states.

Immediate variable
changes.

Simulink/Stateflow Development

Example: Fan Controller

Specification
Turn on / off
Two modes: low / high
Can only accelerate
Damped
Feedback

Fan Controller: Simulink Model

Fan Controller: Statechart

