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REVIEW: StateCharts 

 

 Hierarchy 

 Concurrency 
 

 

 

Statechart SC 
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REVIEW: History and deep history 

S 
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Default states 

Active states 
H 

History connectors 

remember states 

at the same level 

as the history 

connector! 
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STATEMATE Semantics of StateCharts 

 Execution of a StateChart model consists of a sequence 

of steps 

 A step leads from one status to another 

 

 

 One step: 

 Given: 

• Current system status si 

• Current time t 

• External changes  

 Find: 

• New status si+1 
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Status of the system 

The current status of the system is given by  

 set of active states 

 current values of variables 

 the generated events from previous step 

 the values of the history connectors 

 set of all timeout events <tm(e, d), n> in the state chart 

with „emission times“ n (times n are initially set to 1)  

 set of currently scheduled actions <sc(a, d), n> with their 

times n 
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External changes 

 

 External data and external events constitute the 

interface between system and environment. 

 

 The environment provides external events at certain 

times and changes external data at certain times. 

 

 External events not yet seen in the previous step and 

changes of external data not seen in the previous step 

are called external changes for the current step. 
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StateMate Semantics 

Three phases 

 

1. Effect of external changes on events and conditions is 

evaluated 

 

2. The set of transitions to be made in the current step 

and right-hand side of assignments are computed 

 

3. Transitions become effective, variables obtain new 

values 
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Example 

 In part 2, variables a and b are assigned to temporary 
variables. In part 3, these are assigned to a and b. As a 
result, variables a and b are swapped. 

 Without this separation, executing the left state first 
would assign the old value of b (=0) to a and b. 
Executing the right state first would assign the old value 
of a (=1) to a and b. The execution of parallel assignment 
would be nondeterministic. 
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Reflects model of clocked hardware 

 In an actual clocked (synchronous) hardware system, 

both registers would be swapped as well. 

Same separation into phases found in other languages 

as well, especially those that are intended to model 

hardware. 
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Other semantics 

 Several other specification languages for hierarchical 

state machines (e.g., UML) do not include the three 

simulation phases 

 Corresponds more to a software point of view without 

synchronous clocks. 

 Some simulation tools can be run with optional multi-

phased simulation. 
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Broadcast mechanism 

 Values of variables are visible to all parts of the StateChart 

model. 

 New values become effective in part 3 of the execution 

stage for the current step and are obtained by all parts of 

the model in the following step. 

 StateCharts implicitly assumes a broadcast mechanism 

for variables. 

 StateCharts is appropriate for local control systems (), 

but not for distributed applications for which updating 

variables might take some time ().  
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Time models 

 External events and external changes of variables are 

associated with physical times. 

 

 But how does time proceed internally? 

 How many steps are performed before external changes 

are evaluated? 
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The synchronous time model 

 A single step every time unit. 

 If the current step is executed at time t, then the next 

step is executed at time t+1. 

 

 Events and variable changes are communicated 

between different states during one time unit. 

 External changes are only accumulated during one time 

unit. 
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The super-step time model (1) 

 A step of the statechart does not need time. 

 Super-steps are performed: 

 A super-step is a sequence of steps. 

 A super-step terminates when the status of the system is stable. 

 During a super-step the time does not proceed and thus external 

changes are not considered. 

 After a super-step, physical time restarts running, i.e. 

activity of the environment will be possible again.  

 The computation of the statechart is resumed when  

 external changes enable transitions in the statechart 

 Timeout events enable transitions of the statechart 
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The super-step time model (2) 

 Two-dimensional time: 

 

 

 

 

 

 

 

 

 

 

 

 

 Assumption: Computation time is neglegible compared to dynamics of 
the environment. 
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The super-step time model (3) 

 During one super-step the number of communications 
between different states is not restricted. All 
communications are assumed to be performed in zero 
time. 

 Simplified model for reality. 

 Can only be realistic, if 
 Discrete computations are fast compared to dynamics of the 

environment. 

 Discrete computations will be stable after a restricted number of 
steps.  

 Timeout events can reactivate a statechart 
  Possible to specify statecharts which permit progress of 

physical time after a limited number of steps and reactivate 
themselves via timeout events 
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Evaluation of StateCharts (1) 

Pros: 

 Hierarchy allows arbitrary nesting of AND- and OR-
superstates. 

 Formal semantics (defined in a follow-up paper to original 
paper). 

 Large number of commercial simulation tools available 
(StateMate, StateFlow, BetterState, ...) 

 Available „back-ends“ translate StateCharts into C or 
VHDL, thus enabling software or hardware 
implementations.  
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Evaluation of StateCharts (2) 

Cons: 

 Generated C programs frequently inefficient, 

 Not useful for distributed applications, 

 No program constructs, 

 No description of non-functional behavior, 

 No object-orientation, 

 No description of structural hierarchy. 
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Some general properties of languages 

1. Synchronous vs. asynchronous languages 

 Description of several (concurrent) processes in many 
languages non-deterministic: 
The order in which executable tasks are executed is not 
specified (may affect result).  

 Synchronous languages: based on automata models. 
They describe concurrently operating automata. When 
automata are composed in parallel, a transition of the 
product is made of the "simultaneous" transitions of all of 
them.  

 Synchronous languages implicitly assume the presence of 

a (global) clock. Each clock tick, all inputs are considered, 

new outputs and states are calculated and then the 

transitions are made. 
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 This requires a broadcast mechanism for all parts of the 

model. 

 Idealistic view of concurrency. 

 Has the advantage of guaranteeing deterministic behavior. 

 

 Statechart steps work synchronously. 

 Broadcast of events and variable changes during each step. 

 StateCharts are deterministic, if priority rules are introduced for 

transitions enabled at the same time. 

Some general properties of languages 

1. Synchronous vs. asynchronous languages 
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Some general properties of languages 

2. Properties of processes 

 Number of processes 

static (suitable for hardware); 

dynamic (dynamically changed hardware architecture?) 

 Nested declaration of processes 

or all declared at the same level 

  StateCharts comprises  a static number of 

processes and nested declaration of processes. 
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Some general properties of languages 

3. Communication paradigms 

 Message passing 
 Asynchronous message passing = non-blocking 

communication 
Sender does not have to wait until message has arrived; potential 
problem: buffer overflow 

 Synchronous message passing = blocking communication, 
rendez-vous-based communication 
Sender will wait until receiver is ready for receiving message 
(“point of communication”) 

 Extended rendez-vous 
Explicit acknowledge from receiver required. Receiver can do 
checking before sending acknowledgement. 
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Some general properties of languages 

3. Communication paradigms 

 Shared memory 

Variables accessible to several tasks 

 Problem: Concurrent write. 

 Critical sections = sections at which exclusive access to some 

resource r must be guaranteed. 

  StateCharts uses shared memory for communication 

between processes. 
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Some general properties of languages  

4. Specifying timing 

4 types of timing specs required [Burns, 1990]: 

 Measure elapsed time 

Check, how much time has elapsed since last call 

 Means for delaying processes 

 Possibility to specify timeouts 

We would like to be in a certain state only a certain 

maximum amount of time. 

 Methods for specifying deadlines 

With current languages not available or specified in 

separate control file. 

  StateCharts comprises a mechanism for specifying 

timeouts. Other types of timing specs are not 

supported. 



Matlab, Simulink & StateFlow

MATLAB - Matrix Laboratory

Produced by Mathworks
Used for simulation and numerical computation
No (Maple-like) symbolical solving
Industrial standard tool for developing embedded systems



MATLAB Structure

MATLAB core: IDE for the MATLAB language
Simulink: Graphical environment for continuous simulation
Stateflow: Statecharts for Simulink
Many other add-ons available...

Numerical Computing

Some problems do not have a closed-form solution
Approximative numerical solutions often suffice
Simulation of the physical world



Starting MATLAB

1 ssh -Y appsrv1.studcs.uni-saarland.de

2 matlab

alternatively:

1 http://sunray1.studcs.uni-sb.de

2 Log in
3 Click on MatLab

MATLAB IDE

1

2
3

4
5

1 Current directory
2 Directory explorer
3 Workspace
4 Command history
5 Command window



The MATLAB Language

Simplified C-like syntax
Case sensitive
Interactive shell: command window
User defined functions: m-files
Many built-in commands:

lookfor <keyword>
help <function>
sprintf (<format str>, v1, v2, ...)
disp (<object>)
plot (Y)
plot (X, Y)
...

Variables

Each numerical variable is a matrix
Scalars = 1× 1 matrices
No explicit declarations / dynamic typing
Polymorphism
Removing variables:

clear <variable>
clear



Working with Matrices

a = 4

b = [4 8 15 ; 16 23 42 ; 1 2 3]

c = b’

d = ones(4)

e = eye(3)

f = b*b

g = b.*b

h = 0:10

i = 0:0.01:2*pi

Script Files

m-files
Must be located in

the current directory or
the global search path

Can be executed from the command window
Can also define functions



Control Structures

Conditional
if <cond>

<statements>
[else

<statements>]
end

While loop
while <cond>

<statements>
end

For loop
for v = <from>:[<step>:]<to>

<statements>
end

Example: Computing π

Monte Carlo method for computing π

points inside
points total

≈ π

4



Simulink

Harmonic Oscillator

Hooke’s Law: F = −ky
F : restoring force
k : positive constant that characterizes the oscillator
y : amplitude or displacement



Harmonic Oscillator (2)

m: mass constant
k : spring constant
y0: initial displacement
y : current displacement
v = ẏ : current velocity
a = v̇ = ÿ : current acceleration

F = ma = −ky
⇔ ma + ky = 0
⇔ mÿ + ky = 0
⇔ mv̇ + ky = 0

Harmonic Oscillator in Simulink



Damped Harmonic Oscillator

m = mass constant
R = damper constant
k : spring constant
y0: initial displacement
y : current displacement
v = ẏ : current velocity
a = v̇ = ÿ : current acceleration

mÿ + Rẏ + ky = 0
⇔ mv̇ + Rv + ky = 0

Damped Harmonic Oscillator in Simulink



Semantics: Statemate vs. Stateflow

Standard (Statemate)
Any finite number of
active events.

Emitted events are
collected and then
passed to the entire chart.

Stateflow
At most one active
event.

Emitted events are
immediately passed to
the receiver.

Semantics: Statemate vs. Stateflow (2)

Standard (Statemate)
Non-determinism is
allowed.

Synchronous execution of
AND-states.

Variable changes at the
end of the step.

Stateflow
Non-determinism is not
allowed.

Sequential execution of
AND-states.

Immediate variable
changes.



Simulink/Stateflow Development

Example: Fan Controller

Specification
Turn on / off
Two modes: low / high
Can only accelerate
Damped
Feedback



Fan Controller: Simulink Model

Fan Controller: Statechart


