Embedded Systems 5

BF -ES

Lee/Seshia

Synchronous Composition _
Section 6.2

» |mportant semantic model for concurrent compaosition
= Here: composition of actors

» Foundation of Statecharts, Simulink,
synchronous programming languages
= Esterel
= Lustre
» Scade
= |dealistic view of concurrency, not adequate for
distributed systems (Implicit assumption: presence of
global clock and instant communication;
requires broadcast mechanism)
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Goal: deterministic behavior

An important advantage of synchronous over asynchronous
composition is that determinacy can be preserved.

In the following, we’ll assume that the individual actors are
deterministic, and ensure that the composition remains
deterministic.

For example, StateCharts are deterministic, if priority rules
are introduced for transitions enabled at the same time (see,
for example, the Stateflow semantics.)

BF - ES -3-

REVIEW: Actor Model for State Machines

Expose inputs and outputs, enabling composition:

o

guard / action

guard / action

guard / action
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REVIEW: Actor Model of Continuous-Time Systems

*A system is a function that S
accepts an input s_ignal and X paranmeters| Y
yields an output signal. —» .4

*The domain and range of the ) y
system function are sets of xR—-R, yyR—R

signals, which themselves are .
functions. S:X =Y

X=Y=(R—=R)
=Parameters may affect the
definition of the function S.
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Synchronous composition

(States, Inputs, Outputs, update, initialState )

> (Srates 4, Inputs 4, Outputs 4, update 4, initialState 4 ) _‘

L (Statesg. Inputsg, Ouipuisg, updateg, initialStateg )

Synchronous composition: the machines react
simultaneously and instantaneously, despite the apparent
causal relationship!

A 4
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Synchronous composition:
Reactions are simultaneous and instantaneous

input: a: pure input: b: pure

output: b: pure output: ¢: pure
alalb true / b blblc true / -

e A > > -
>
N7 N 4
-a/ A b B
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Synchronous composition:
Reactions are simultaneous and instantaneous

input: a: pure
output: ¢: pure
SC =S 4 X S B
a
—»
input: a: pure input: b: pure
output: b: pure output: ¢: pure
alalb true / b b|blc true / ¢
—» V oy P> —
G
~— \.b_/_/ unreachable
B A - B
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Feedback composition

(States, Inputs. OQuipuis, update, initialState )
Inputs 4; Quiputs 41
> L A -

(States 4, Inputs 4. Outputs 4. update 4, initialState 4 ) >

- Quiput.
‘ Inpiits 4> Outputs 4> < Inpurs 4> e \
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Continuous feedback composition

Controller Helicopter

Angular velocity
appears on both
sides. The semantics
(meaning) of the
model is the solution
to this equation.
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Observation: Any Composition is a
feedback composition

(a)

(c)

(d)

BF -ES

If every actor is a function
then the semantics of the
overall system is a

s € SV such that F(s) = s.

The behavior of the system
is a “fixed point.”

- 11 -

Fixed point semantics

Consider an

Reorganize

interconnection of actors

(c)

Abstract signals

se SN
(d)
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We seekans € SN
that satisfies F(s) = s.

Such an s is called a
fixed point.

We would like the
fixed point to exist
and be unique. And
we would like a
constructive
procedure to find it.
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Data types
As with any connection, we require compatible data types:
V, CV,
Then the signal on the feedback loop is a function

s: N— VU {absent} >

Then we seek s such that

F(s)=s

where F is the actor function, which for determinate systems
has form

F: (N — Vi U{absent}) — (N — V,U{absent})
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Firing functions

With synchronous composition of determinate state machines,
we can break this down by reaction. At the n-th reaction, there
is a (state-dependent) function

f(n): VyU{absent} — V,U{absent}

such that
s(n) = (f(n))(s(n))

This too is a fixed point.
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Well-formed feedback

At the n-th reaction, we seek s(n) € V,, U {absent} such that

s(n) = (f(n))(s(n))

There are two potential problems: s

1. It does not exist.

2. It is not unique.

In either case, we call the system ill formed. Otherwise, it is
well formed.

Note that if a state is not reachable, then it is irrelevant to
determining whether the machine is well formed.
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Well-formed example

input: a: pure
output: b: pure ~a /b
al alf alb ; b
() »—
V
ey
A
&

In state 81, we get the unique s(n) = absent.
In state 2, we get the unique s(n) = present.
Therefore, s alternates between absent and present.
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Composite machine

output: b: pure
true /' b b
V N p—
g
N—7
true /
input: a: pure
output: b: pure a/b
al alf alb ; b
E a () p—
.32
\____j
—a f
A
5 -17-
lll-Formed Example 1 (Existence)
input: a: pure
output: b: pure a/b
al al al . b
E ? () r—
.52
N—7
=l Igr
B
s

In state s1, we get the unique s(n) = absent.
In state s2, there is no fixed point.
Since state S2 is reachable, this composition is ill formed.

BF -ES
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lll-Formed Example 2 (Uniqueness)

input: a: pure
output: b: pure a/b
al a /b a ’,' b . b
() »—
\J__j
—a /b
C
5

In s1, both s(n) = absent and s(n) = present are fixed points.
In state S2, we get the unique s(n) = present.
Since state $1 is reachable, this composition is ill formed.
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Constructive Semantics: Single Signal

s(n)
1. Start with s(n) unknown.
2. Determine as much as you can about (f(n))(s(n)).
3. If s(n) becomes known (whether it is present, and if it is
not pure, what its value is), then we have a unique fixed
point.
A state machine for which this procedure works is said to be
constructive.
BF - ES - 20 -
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Non-Constructive Well-Formed State Machine

input: a: {0.1}
output: b: {0,1}
al a=0/1 / b
—a
—
e
N~ 7
—a [ D
s

In state s1, if the input is unknown, we cannot immediately tell
what the output will be. We have to try all the possible values
for the input to determine that in fact s(n) = absent for all n.
For non-constructive machines, we are forced to do exhaus-
tive search. This is only possible if the data types are finite, and

is only practical if the data types are small. o

Must / May Analysis input: a pure
output: b: pure a/b
al af alb b
E a ) »—
.52
\'—T’
—a
A

5

For the above constructive machine, in state s1, we can im-
mediately determine that the machine may not produce an out-
put. Therefore, we can immediately conclude that the output is
absent, even though the input is unknown.

In state 2, we can immediately determine that the machine
must produce an output, so we can immediately conclude that
the output is present.
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Constructive Semantics: Multiple Signals

-s1(n
152(n
-53(n
1. Start with sy (n),---,sn(n) unknown.
2. Determine as much as you can about (f(n))(sy(n),---,sy(n)).
3. Using new information about s (n), - - - ,sy(n), repeat step
(2) until no information is obtained.
4. If sy(n),---,sy(n) all become known, then we have a
unique fixed point and a constructive machine.
A state machine for which this procedure works is said to be
congtructive. .

o o

Constructive Semantics: Multiple Actors

2y f1 () P2
p2
] 2 (n)

i
=
—_—
=
—

f3(n) pE=

= Procedure is the same.
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Constructive Semantics: Arbitrary Structure

spin)

= Procedure is the same.

= A state machine language with constructive semantics will
reject all compositions that in any iteration fail to make all
signals known.

= Such a language rejects some well-formed compositions.
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Mixed Signal Models

Continuous Time

desired
angular
rotation

Integrator?  Sensor Model 55"4"'3'

| B

Controller DtoAModel

Top Rotor i
Torque Model Ty

The signals inside the blue area are continuous-time
signals, and the ones outside are discrete-time signals.
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REVIEW: Hybrid Automaton for Bouncing Ball

BouncingBall ¥(t)<0
¥(t) =0/ bump >

¥(t) := —ay() ! 2

y — vertical distance from ground (position)
a — coefficient of restitution, 0 <a<1

BF -ES

v

y(U y(‘ '
¥(0) := 0 r \I\JN >
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Hybrid Automata

= Q: set of modes

S: set of state variables, partitioned into

= C={cy, Cy, ..., C,}: continuous signals (with range ‘R)

= D={d,, d,, ..., d.;}: discrete signals (with range {absent} U X)

= U={u,, u,, ..., u}: set of input signals,

= |nit < Q x R" x ({absent} U X)M: initial condition

= F: flows, defining differential equations for each
continuous state variable in each mode

= J: Q x Guards — Q x Resets: jumps, where
Guards is a constraint over C and U
and Resets is a set of assignments of the form
X; := expr(X,U) for the state variables

Note: our definitions follow Lee/Seshia, there are several

other definitions of hybrid automata
BF - ES
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Hybrid Time Set

A hybrid time set is a finite or infinite sequence of intervals
T= {Ii}iZO..N SUCh that

» |, =[r,7] foralli<N;
» If N < oo then either I = [t\,Tn] OF Iy = [theTy'); @nd
- T < Ti‘ = Ti+1 fOI‘ a" |
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Hybrid Trajectory

= A hybrid trajectory (t, g, X) consists of a hybrid time set t
and two sequences of functions
* q={0i(): i > Qlizo.n
= Xx={ci(): I > R}io.n {di(): [} > X U {absent} }io n

BF - ES - 30-
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Execution of a Hybrid Automaton

]

-~ o

i T

=

=~

time

-l

=

BF -ES

(qo.%0)

~+ (0. %)
l

(q1,%1)

~ (q1.x})

l

(gn.xn)
~ (qn, xy)

An execution of a hybrid automaton
is a hybrid trajectory (t, g, X) that
statisfies the following conditions

= [nitial condition: (gg, Xg) € Init
= Discrete evolution: the pair

((@i(7) . xi(TD)s (Aisa(Tira) Xi(Tie1))
satisfies J
= Continuous evolution: for all i,

1. q(-) is constant over I,

2. c¢i()) is the solution to the differential
equations in F(q(t))

3. di(-) are absent during (t;,t%)

4. All jumps in J are disabled during
(7,7%) S 31-

Execution of a Hybrid Automaton

-

i T

=

=~

time

-l

=
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(qo.%0)

~+ (0. %)
l

(q1,%1)

~ (q1.x})

l

(gn.xn)
~ (qn, xy)

1

=
I
=
=
3
2

Continuous extent of 7:

oo

7= 7 -7

=0
Discrete extent of 7:

\
() =

N if 7 is afinite sequence of length Vv
oo if 7 is an infinite sequence

- 32-
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REVIEW: Hybrid Automaton for Bouncing Ball

¥(t)
BouncingBall ¥(t)<0
ounengta ¥(t) =0/ bump »bump ‘ !
¥(t) := —ay(t) f ’
/) 45(2)
free
e S t
y(O —0 r 1 I >
BF -ES - 33-
Zeno Behavior
70 (g0, %0)
0 ~ (g0, Xg)
- ! An execution of a hybrid automaton
1 (g1.%1) with time set 7 is zeno
o ~ (q1,%7) iff (7) = o0 but |7| < .
I}
) )
E :
)
™ (gn.XN)
N ~ gy, Xy)
!
¥F _C - 34-
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Superdense Time

A signal can have a sequence of values at each (real) time.

X: ]R : Velocities
x:Rx N R«
i: ]R >< 3 ’ o 2 4 B g “‘Wrrlie 12 14 16 18

At (real) time ¢, = has a sequence of values

x(t,0),2(¢,1),- -

BF -ES
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Initial and final value signals

Let #: R x Z — R* be a CT signal. Define the initial
value signal to be a function z,;: R — R where

xi(t) = x(2,0)

Define the final value signal to be a function z;: R —
R where
xp(t) = a(t,m)

where m € N is the least value such that

Yn>m, x(t,n)=axtm).

If there is no such m at any ¢, then the signal is said
to be a stuttering Zeno signal.
BF - ES
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Simulation of continuous-time Lee/Seshia
systems Section 6.4

* The (numeric) simulator cannot directly deal with the
time continuum, but can approximate it

= We consider equations of the
form )

(0, 0)

» An equivalent model is
an integral equation

x(f) = x(O)+[UIX(r)dT

S, 1

I
X
=
+

S
~

W
)
A
hab
o,
A

Y
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x(n

Forward Euler Solver

F(x(r), 1)

0), 0)

I [

>
A forward Euler solver estimates the value of x at time points 0,/4,2h,3h,---, where 5 is
called the step size. The integration is approximated as follows,
x(h) = x(0)+hf(x(0),0)
x(2h) = (11) +hf(x(h),h)
x(3h) = x(2h)+hf(x(2h),2h)
xX((k+1)h) = x(kh)+hf(x(kh).kh).
BF -ES -38-
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