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Embedded Systems                                  6 

 -  2 - BF - ES 

Please register! 

 Please register in HISPOS for the exam 

 In case of problems: studium@cs.uni-saarland.de  

 If you cannot register (non-CS, Erasmus, …) please 

send email to finkbeiner@cs.uni-saarland.de 
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Petri nets 

Introduced in 1962 by Carl Adam Petri  

 

Application areas: 

 modelling, analysis, verification of distributed systems 

 automation engineering 

 business processes 

 modeling of resources 

 modeling of synchronization 

 

Focus on modeling causal dependencies; 

no global synchronization assumed (message passing only). 
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Concurrency and parallelism 

 Concurrency is central to embedded systems. A 

computer program is said to be concurrent if different 

parts of the program conceptually execute 

simultaneously. 

 A program is said to be parallel if different parts of the 

program physically execute simultaneously on distinct 

hardware (multi-core, multi-processor or distributed 

systems) 
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Example 1: The four seasons 
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 Conditions 

Either met or not met. Conditions represent “local states”. Set of 

conditions describes the potential state space. 

 Events 

May take place if certain conditions are met. Event represents a state 

transition. 

 Flow relation 

Relates conditions and events, describes how an event changes the 

local and global state. 

 Tokens 

Assignments of tokens to conditions specifies a global state. 

 

Key Elements 
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Example 2:  

Synchronization at single track rail segment 

„Preconditions“ 

of x fulfilled 

 

 mutual exclusion:  

there is at most one train using the track rail 

x 
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Playing the „token game“: dynamic behavior 

x 
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Playing the „token game“: dynamic behavior 

„Postcondition“ 

of x fulfilled 

x 
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Playing the „token game“: dynamic behavior 
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Conflict for resource „track“: 

two trains competing 
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Condition/event Petri nets 

Def.: N=(C,E,F) is called a Petri net, iff the following holds 

1. C and E are disjoint sets 

2. F  (C  E)  (E  C); is binary relation, („flow relation“) 

 

Def.: Let N be a net and let x  (C  E). 
 x := {y | y F x} is called the set of preconditions. 
 x := {y | x F y} is called the set of postconditions. 

 

Example: 

x x x 

single token per place 
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Boolean marking  

and computing changes of markings 

 A Boolean marking is a mapping  M: C  { 0,1 }. 

 „Firing“ events x generate new markings on each of the conditions c 

according to the following rules: 

 a transition at x  can be fired, iff x, i.e. all preconditions of x  are 

marked and x  is not marked, after firing x is unmarked and x is 

marked 

 M    M’, iff M’ results from M by firing exactly one transition 
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Expressiveness: basic examples 

 concurrency of  

transitions 

 alternative or  

conflict 

 synchronization 
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Competing Trains Example:  

Conflict for resource „track“ 
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Basic structural properties:  

Loops and pure nets  

Def.: Let (c,e)  C  E.  (c,e) is called a loop iff cFe  eFc. 

Def.: Net N=(C,E,F) is called pure, if F does not contain any 

loops. 
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Structural properties: Simple nets 

Def.: A net is called simple, iff  

 [x,y  (C  E)  ( x = y )  (x = y )]  →  x = y 

 

 

Example (not a simple net): 
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Properties of C/E 

Def.:  

 Marking M’ is reachable from marking M, iff there 

exists sequence of firing steps transforming M into M’  

(Not.: M *> M’) 

 A C/E net is cyclic, iff any two different markings are 

reachable from each other. 

 A C/E net fulfills liveness, iff for each marking M and 

for each event e there exists a reachable marking M’ 

that activates e for firing 
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s 

Thalys trains 

example 
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Place/transition nets 

 More than one token per condition, capacities of places 

 weights of edges 

  

ready 

p1 

t1 

produce 

idle 

send 

p2 

t2 

k=1 

k=1 

k=5 

Storage   p3 

3 2 
t3 t4 

p4 

p5 

k=2 

k=2 

accept 

accepted 

consume 

ready 

Producer Consumers 
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From conditions to resources 

 c/e nets model the flow of information at a fundamental 

level (true/false) 

 there are natural application areas for which the 

flow/transport of resources and the number of available 

resources is important (data flow, document-/workflow, 

production lines, communication networks, www, ..) 

 place/transition nets are a generalization of c/e nets 
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From conditions to resources 

 place/transition nets are a generalization of c/e nets: 

 state elements represent places where resources (tokens) can 

be stored 

 transition elements represent local transitions or transport of 

resources 

 a transition is enabled if and only if 

 sufficient resources are available on all its input places 

 sufficient capacities are available on all its output places 

 a transition occurrence 

 consumes one token from each input place and 

 produces one token on each output place 
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Place/transition nets 

Def.: (P, T, F, K, W, M0) is called a place/transition net (P/T net) iff 

1. N=(P,T,F) is a net with places P and transitions T 

2. K: P  (N0  {}) \{0} denotes the capacity of places 

( symbolizes infinite capacity) 

3. W: F (N0 \{0}) denotes the weight of graph edges 

4. M0: P  N0 {} represents the initial marking of places 

W 

M0 

(Segment of some net) 
default: 

K =   

W = 1 

multiple tokens per place 
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Example 

 P = {p1, p2, p3} 

 T = {t1, t2} 

 F = {(p1, t1), (p2, t2), (p3, t1), (t1, p2), (t2, p1), (t2, p3)} 

 W = {(p1, t1)  2, (p2, t2)  1, (p3, t1)  1, (t1, p2)  1,  

         (t2, p1)  2, (t2, p3)  1} 

 m0 = (2, 0, 1) 
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Reachability 

 

 

 

Reachability graph: 
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Reachability 
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Computing changes of markings 

 „Firing“ transitions t generate new markings on each of 

the places p according to the following rules: 
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Activated transitions 

 Transition t is „activated“ 

iff 

Activated transitions can „take place“ or „fire“, 

but don‘t have to. 

The order in which activated transitions fire is not fixed 

(it is non-deterministic). 
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Boundedness 

 A place is called k-bounded or k-safe if it contains in all 

reachable markings at most k tokens 

 A net is bounded if each place is bounded 

 

Application: places represent buffers and registers 

 avoid buffer overflow 

p1 

p2 

p3 

t1 t2 

2 

2 

2 
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Liveness  

 A transition is live if in every reachable marking there 

exists a firing sequence such that the transition 

becomes enabled 

 A net is live if all its transitions are live 
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Deadlock 

 A dead marking (deadlock) is a marking where no 

transition can fire 

 A net is deadlock-free if no dead marking is reachable 
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Computation of Invariants 

We are interested in subsets consisting of places whose 

number of tokens remain invariant under transitions, 

e.g. the number of trains commuting between 

Amsterdam and Paris (Cologne and Paris) remains 

constant 

Important for correctness proofs,  

e.g. the proof of liveness 
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Shorthand for changes of markings 
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Matrix N describing all changes of markings 

Def.: Matrix N of net N is a mapping 

 

                N: P T   Z (integers) 

 

such that  t T:  N(p,t)=t(p) 

Component in column t and row p indicates the change of 

the marking of place p if transition t takes place. 
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Example: N = 

s 
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Place invariants 
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Characteristic Vector 
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Condition for place invariants 

Accumulated marking constant for all transitions if 

0

.........

01





Rn

R

ct

ct

Equivalent to  NT cR = 0  where NT is the transposed of N 

0)()()(  


pcptctpt
R

Pp

jRj

Rp

j

 -  40 - BF - ES 

System of linear equations 

System of linear equations. 

Solution vectors must consist of zeros and ones. 
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Competing trains example 

p2 

p-2 

p3 

p-3 p3 

p1 

p0 

p-1 

t1 

t2 t3 

t4 

t5 
t6 
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Application to Thalys example 

NT cR = 0, with NT= 
p p p p p p p p p p p p p 

 00000001111111, Rc
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Interpretation of the 1st invariant 

Characteristic vector describes 

places for Cologne train. 

We proved that: the number of 

trains along the path remains 

constant. 

 00000001111111, Rc

s 

CR,1 
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Application to Thalys example 

NT cR = 0, with NT= 
p p p p p p p p p p p p p 

,1,0,0),1,0,0,1,1(1,0,0,0,12, Rc
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Interpretation of the 2nd invariant 

We proved that: 

None of the Amsterdam trains  

gets lost. 

,1,0,0),1,0,0,1,1(1,0,0,0,12, Rc

s 

CR,2 
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Application to Thalys example 

NT cR = 0, with NT= 
p p p p p p p p p p p p p 

 01000110000002, Rc



24 

 -  47 - BF - ES 

Solution vectors for Thalys example 

We proved that: 

• the number of trains serving 

Amsterdam, Cologne and 

Paris remains constant. 

• the number of train drivers 

remains constant. 

 00000001111111, Rc

 01000110000002, Rc

 10011000000003, Rc

 00111001100014, Rc s 

CR,2 

CR,3 CR,1 CR,4 
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Solution vectors for Thalys example 

It follows: 

• each place invariant must 

have at least one label at the 

beginning, otherwise “dead” 

• at least three labels are 

necessary in the example 
s 

CR,2 

CR,3 CR,1 CR,4 

 



25 

 -  49 - BF - ES 

Invariants & boundedness 

 A net is covered by place invariants  

iff every place is contained in some invariant. 

 

Theorem 1:  

a) If R is a place invariant and p  R, then p is bounded. 

b) If a net is covered by place invariants then it is 

    bounded.  
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Extensions: Petri nets with priorities 

 t1  t2 : t2 has higher priority than t1. 

 

 

 

 

 

 

 

 

 Petri nets with priorities are Turing-complete. 

 

 

 

test 

p1 p0 

t2 t1 
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Extensions: Predicate/transition nets 

 Goal: compact representation of complex systems. 

 Key changes: 

 Tokens are becoming individuals; 

 Transitions enabled if functions at incoming edges true; 

 Individuals generated by firing transitions defined through functions 

 Changes can be explained by folding and unfolding C/E 

nets, 

  semantics can be defined by C/E nets. 
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Predicate/transition model 

of the dining philosophers problem 

 Let x be one of the philosophers, 

 let l(x) be the left fork of x, 

 let r(x) be the right fork of x. 

p1 
p3 

p2 

f1 
f2 

f3 

Token: individuals. 

Semantics can be 

defined by replacing 

net by equivalent 

condition/event net. 

Model can be 

extended to arbitrary 

numbers. 


